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Abstract: This work addresses the robust control of a pool of a main irrigation canal working
in a submerged flow condition. A laboratory prototype of hydraulic canal at the University of
Castilla-La Mancha is used in this study. A series connection of a non-linear static block and a
linear first order plus time delay system is proposed to model the dynamics of such process for all
the considered operating regimes. The gain variations in function of the operating regimes are
counted and corrected by using a gain scheduling block that inverts the before nonlinearity.
However, a residual gain variation remains, whose effect is corrected by a fractional-order
proportional integral PI controller that is robust to process gain changes. Such controller is
tuned to make the closed-loop system fulfill two temporal specifications: (a) a desired overshoot,
obtained defining an equivalent phase margin frequency specification and (b) a desired settling
time, obtained defining an equivalent gain crossover frequency specification. Moreover, a third
specification is defined: the isophase margin condition, which accounts for the changes in the
gain. The simulated results of our canal show the adequate performance of this control system.

Keywords: Hydraulic canal control, fractional-order control, robust control, gain scheduling,
system identification

1. INTRODUCTION

Automatic control of water distribution is an efficient way
of solving some of the problems of water management,
reduction of the huge losses of water in irrigation main
canals, and promotion of sustainable development of ir-
rigation areas (Litrico and Fromion (2009)). However, de-
signing these controllers is not simple since irrigation main
canals are complex systems with distributed parameters
over long distances, significant time-delays, strong non-
linearities and dynamics that change with the operation
conditions (Rivas-Perez et al. (2014)).

For an hydraulic canal system prototype, and around
several operating regimes, linear first and fractional or-
der models with time delays have been adjusted using a
linearized form of the Saint Venant differential equations
(Feliu-Batlle et al. (2018)). Around a chosen operating
regime, it was used the Wiener-Hopf control and the Pade
approximation of time delay to develop a new methodology
of control for the adjusted fractional order plus time delay
model. This same canal was also configured as a double
pools system and identified using MIMO model ( Multi
input Multi output) adjusting the water levels in both
pools to the pump frequencies and the upstream gate posi-
tions respectively. Using a fractional order derivative term
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has clearly outperformed the model accuracy compared
to first and second order delayed models (Feliu-Batlle
et al. (2017)). In order to reproduce a real-word conditions
where the functioning of the first pool is independent on
the opening and closing of the upstream gate, an inner-
loop control is applied to the pump frequencies based on
the adjusted fractional order model. By decreasing the
error between the real and simulated data with a percent-
age of 50%, such fractional order model clearly prove its
efficiency on capturing the canal dynamics compared to
the classical first order system (San-Millan et al. (2017)).

In order to generalize the functioning regime for an hy-
draulic canal system configured as single pool system,
Linear delayed first and fractional order models, non lin-
ear delayed first and fractional order models around sub-
merged and free flow water regimes are adjusted with the
downstream end water levels when upstream pool is con-
figured as constant water level storage. The nonlinearity
caused by the gate movements and the sensor’s resolu-
tion was corrected using analytical models to improve the
accuracy of the global adjusted models (Gharab et al.
(2019)). Global non linear fractional order model com-
posed by the combination of two submodes of respectively
submerged and free flow regimes was concluded and it
precisely reproduce the experimental data around all the
regimes that contains such canal dynamics. Revising the
literature, there are many works that consider hydraulic
structures control models using different techniques. Bolea
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proposed a gain-scheduled Smith Predictor PID controller
to control an open loop canal system that deals with
large variation in operating conditions. That work pro-
posed linear parameter varying PID control system H∞
and linear matrix inequalities pole placement where the
results was validated using a single real reach canal (Bolea
et al. (2013)). Reinforcement learning upstream control
system was developed and applied with canal structures to
maintain water depths upstream of an automatic structure
inside a dead band with acceptable stability (Shahverdi
and Monem (2015)). In (Zheng et al. (2019)), Zheng for-
mulated a model predictive control for a cascaded irriga-
tion canal system, it consists of an advanced algorithm
embedded with feedforward process and with the ability
to incorporate constraints in optimization.

Otherwise, the generalized PIαDβ fractional order con-
troller and its simplified versions like PIα or PDβ are
proposed in several works to improve the performance
of the classical PID controllers in terms of robustness,
e.g. (Monje et al. (2004)), and output response, e.g. (Luo
et al. (2010)). Regions of feasible frequency specifications
(RFFS) of pairs (phase margin: φ and gain crossover
frequency: ωc): are defined and yield stable closed-loop
systems that verify these frequency specifications without
ambiguity. The RFFSs of first order plus time delay sys-
tems controlled by some fractional order controllers were
obtained in (Castillo-Garcia et al. (2013)). A KRFFS
was defined in (Gharab and Feliu-Batlle (2019)) for a
fractional order model with time delay controlled by a PIα

structure. The KRFFS is a subset of RFFS that verifies
the additional property that the closed-loop system is not
fragile to gain variations (φ and ωcg do not change sharply
as the process gain changes).

We consider in this paper the series connection of a
nonlinear static block and a first order plus time delay
system developed modeling the dynamics of a pool of
a main irrigation canal system operating in submerged
flow (Gharab et al. (2019)). Based on that model, a
fractional order PIα controller in series with a term that
inverts the previous nonlinear static block is designed. All
these techniques have been applied to control the main
pool of the laboratory hydraulic canal at the University of
Castilla La Mancha.

This paper is organized as follows. Section 2 presents
the mentioned experimental platform and carries out the
identification of the canal dynamics. Section 3 proposes a
new robust fractional order controller. Section 4 carries out
some simulations of the controlled system. Finally, Section
5 is reserved for the conclusion.

2. HYDRAULIC CANAL SYSTEM MODEL

2.1 Platform Presentation

The laboratory hydraulic canal system is located in the
School of Industrial Engineering at the University of
Castilla-La Mancha. It is a variable slope rectangular canal
with glass walls. Its dimensions are 5m long, 0.08m wide
and 0.25m walls high. The canal has been divided into
two pools: an upstream pool, characterized by its small
dimensions (a length of about 0.50m), that acts as an
upstream reservoir, and a downstream pool characterized

by more large dimensions compared to the previous one (a
length of about 4.50m), that plays the role of the main pool
to be automated. Fig. 1 shows this setup where upstream
and downstream pools are separated by an upstream slide
gate translating vertically in the range [0, 50cm] by the
fact of a DC motor.

Fig. 1. Schematic representation of the laboratory proto-
type of the hydraulic canal system.

2.2 Saint-Venant Equations

Saint-Venant equations are often used by hydraulic en-
gineers as an efficient tool to characterize the dynamics
of hydraulic canal systems. In order to apply these non
linear equations, some hypotheses have to be fulfilled: (a)
the flow is one-dimensional and the velocity is uniform;
(b) vertical accelerations are negligible and the pressure is
hydrostatic; (c) the average canal bed slope is small and
(d) the variation of canal width along the horizontal axis
is small.

Saint-Venant equations are often linearized around a de-
fined flow regime. In its actual configuration, our hydraulic
canal system behaves as a single input - single output
(SISO) system in which the upstream gate opening is
the input and the water level measured at the end of the
downstream pool is the output. In this configuration, the
canal can operate in both submerged and free water flows.
The submerged flow regime is analyzed in this paper. Four
operating points in this regime are defined in function
of four specific gate maneuvers whose initial and final
upstream gate positions xupinit and xupfin, as well as the
step directions ( positive when the gate is opening and
negative when it is closing), are shown in Table 1.

Table 1. Submerged operating points

Op xup initial xup final step sense

Op1 10 mm 20 mm positive
Op2 20 mm 10 mm negative
Op3 20 mm 30 mm positive
Op4 30 mm 20 mm negative

2.3 Submerged operating regime

The very often proposed model on modeling hydraulic
canal system is the delayed first order model (Litrico and
Fromion (2009)):

G(s) =
K

1 + Ts
e−Ls (1)

where K is the static gain, T is the time constant, and L
is the time delay.
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A hydraulic canal system works in submerged flow regime
if the flow remains subcritical at the canal. In that case,
the flow is influenced by the downstream level. Our canal
works in that regime if the following condition is veri-
fied (Swamee (1992)):

yup > 0.81 · ydwe ·
(
ydwe
xup

)
(2)

where xup(t) is the upstream gate opening, whose value
is very close to the electrical command signal to the gate
u(t), yup(t) is the upstream water level, which is artificially
maintained constant to a value yup = 60mm by the action
of a PI that controls the water level of the upstream
pool, and ydwe(t) is the measured downstream end water
level. The discharge through the gate in submerged flow is
approximated by (Litrico and Fromion (2009)):

Qs(t) = cd · b · xup(t) · (2 · g · (yup(t)− ydwe(t)))γ (3)

where γ represents a non-linearity factor that is usually
equal to 0.5, b is the width of the upstream gate and cd is
a discharge coefficient, generally close to 0.6 (Litrico and
Fromion (2009)). Variables xup, yup and xdwe are measured
and used in the control system. Moreover xup will hereafter
be considered as the input u.

2.4 Non-Linear Dynamic Model

The combination of the previously stated static nonlinear
model with a first order plus time delay model yields the
following nonlinear dynamic model (Gharab et al. (2019)):

T ·D∆ydwe(t) + ∆ydwe(t) = K ·∆v(t− L) (4)

∆v(t) = (yup(t)− ydwe(t))γ ·∆xup(t) (5)

where D is the derivative operator, K is the static gain, T
is the time constant, L is the time delay, xup(t) and ydwe(t)
are respectively the input and the output of the system,
v(t) is an intermediate variable proportional to Qs(t), and
∆ represents the increment of the variables with respect
to its value in the operating regime.

2.5 Identification Technique

Previous experiments carried out in our canal showed
that gain is the parameter that most varies in model (1)
when the operating regime is changed. In this subsection,
identification of linear model (1) and non-linear model (4),
(5) are carried out. Fig. 2 shows schemes of them, in which
function f(·) = (yup(t)− ydwe(t))γ implements the time
varying gain of (5).

G(s)
∆xup ∆ydwe

G(s)
∆xup ∆ydwe

f(.)
∆v

Fig. 2. (a): Linear Model (b): Non Linear Model

Let N represent the number of operating regimes (in our
case 4). An identification procedure is therefore carried
out of the set of the N models (1) associated to these
operating regimes such that T and L are constant in the

N models and only the gain K changes with the operating
regime (having thus a gain Ki, for each i operating regime,
i = 1 . . . N). A time domain identification technique has
been used based on: 1) recording the N responses obtained
when pseudo-random binary signal (PRBS) are applied to
the upstream gate of the main pool around the four defined
operating regimes.

The amplitude of the PRBS is chosen arbitrarly APRBS =
5 cm and its period is chosen in such a way to cover all
the frequency band of our considered system (taking into
account the frequency ranges of the gate movement and
the water fluctuation).

• The bits number : nbits = 8 bits.
• The number of state per signal : N = 2nbits−1 = 255.
• The sample period is Ts = 5 s.
• Each experiment last : D = 1275 s.

2) subsequently executing an optimization process in
which the cost:

C = max
1<i<N

(
max

1<k<M
|ydwe,i(k)− ŷdwe,i(k)|

)
(6)

is minimized with respect to the parameters K1 . . . KN , T
and L. In this cost, M is the number of recorded samples
in each test (equal for all the tests), and ydwe,i(k) and
ŷdwe,i(k) are the samples at instant k of, respectively, the
real time response and the simulated time response of
model (1) in the operating regime i. The identified models
are shown in Table 2 with their corresponding costs Ci and
Nrmsei indexes.

The Nrmse index is the normalized root mean-squared
error, which is a standard measure of the accuracy pro-
vided by the model fitted to the data. This criterion is
a non-dimensional version of the root-mean-squared error
RMSE and is given by:

Nrmsei = 100 ·
(

1− ‖ ydwe,i(k)− ŷdwe,i(k) ‖2
‖ ydwe,i(k)−mean (ydwe,i(k)) ‖2

)
(7)

Only cost values (7) over 70% are regarded as acceptable
fittings.

Table 2 shows a large variation of the parameter K
of model (1) in function of the operating regime: the

maximum relative variation is 100 ·max1<i<N
∣∣∣Ki−K

K

∣∣∣ =

39%, where K = 0.296 is the mean of the Ki values.

Table 2. Submerged operating regimes: linear
models

regime i Ki T L Ci Nrmsei
1 0.4102

5.1249 3.3478

0.0721 92.79%
2 0.2396 0.0915 90.85%
3 0.3339 0.0803 91.97%
4 0.1996 0.0969 90.31%

The previous process is subsequently repeated fitting
model (4), (5). The same experimental data as before has
been used in this identification. The same cost (6) has
been used, but minimized with respect to the parameters
K1 . . . KN , T , L and γ. In this case, ŷdwe,i(k) is the output
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of the simulated model (4), (5). Models identified around
the four regimes are presented in Table 3. Note that the
best fitting to the data is provided by a value γ = 0.44
instead of the expected value 0.5.

Table 3. Submerged operating regimes: non-
linear models

regime i Ki γ T L Ci Nrmsei
1 0.0705

0.44 5.4925 4.3005

0.0906 90.93%
2 0.0597 0.0774 92.25%
3 0.0629 0.1005 89.94%
4 0.0770 0.1460 85.40%

Table 3 presents the global adjusted model which charac-
terizes the hydraulic canal dynamics when the submerged
flow condition takes place. In this case, Nrmse4 = 85.4%
is the worst fitting index. It is lower than the worst index
Nrmse4 = 90.31% (see Table 2), obtained using the linear
models fittings. However, it is still a high enough index,
which proves that such non-linear model highly catches
the dynamics of our canal. Table 3 shows that, in this
case, the maximum relative variation of the gain is 14%
and K = 0.0675. Then, though the static gain K varies
significantly less than before, which facilitates the control
of this system, it still has a noticeable variation in function
of the operating regime in the submerged flow condition.

If the mean K = 0.0675 were used in model (4) combined
with (5), in order to reproduce the responses at the 4
operating regimes, the resulting costs of such a unique
model would become significantly worst, as Fig. 3 shows.
This illustrates the fact that static gain changes affect con-
siderably the performance of the adjusted global model.
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Fig. 3. Performance of the non-linear model using param-
eters K and T , L and γ of Table 3

3. PROPOSED CONTROLLER

Fig. 4 shows the gain scheduling control scheme proposed
in this work. It is composed of the series connection of a
LTI controller - whose transfer function is C(s) and its
output is denoted ∆v′(t) - and the inverse of the gain f(·).
This last block is f−1(·) = (yup(t)− ydwe(t))−γ , and its
output is the control signal ∆xup(t) = f−1(·) ·∆v′(t). In
this figure, ∆y∗dwe(t) is the reference and e(t) is the error
signal. f

If the inversion of the time varying component f(·) of the
gain of the process were perfectly carried out by the gain

+

-

C(s) f−1(.) f (.) G(s)
∆y∗dwe e ∆v′ ∆xup ∆v ∆ydwe

Controller Process

Fig. 4. Control scheme

scheduling part of the controller, an equivalent LTI closed-
loop system would be obtained composed of a fictitious
process transfer function G(s), a fictitious linear controller
C(s) and a fictitious control signal ∆v(t) = ∆v′(t). Since
the gain K still experiences some variation in function of
the operating regime (in accordance with Table 3) in that
linearized control system, a controller C(s) robust to gain
changes is searched. Fractional-order controllers may have
enhanced robustness features to gain changes. Then a LTI
fractional-order controller is proposed as C(s).

3.1 Fractional order operator

The fractional order operators have been defined in sev-
eral ways, e.g, the Riemann-Liouville (RL), Caputo and
Grünwald-Letnikov definitions. They generalize the stan-
dard derivative (Dn) and integral (In = D−n) operators
to the case Dα in which the order of the operator α is a real
number (positive α means fractional-order derivative and
negative α means fractional-order integral). We use in this
work the Grünwald-Letnikov definition of this operator
(e.g, Podlubny (1998)):

aD
α
t f(t) = lim

h→0

1

hα

[
t−a
h

]∑
j=0

(−1)j
(
α
j

)
f(t− jh) = lim

h→0

1

hα
∆α
hf(t)

(8)

where [a] is the integer part of a, h is the step size, D is
the differential integral operator, α is the fractional order
and the combinatorial function has been generalized in the
following sense:(

α

j

)
=
α(α− 1)....(α− j + 1)

j!

The fractional order integrator is then implemented con-
sidering the previous expression with a negative value of
α. If zero initial conditions were considered, the Laplace
transform of the integral of order α of the function q(t)
would be:

L
[
aD
−α
t q(t)

]
=

1

sα
Q(s) (9)

where Q(s) is the Laplace transform of q(t).

3.2 Fractional Order PIα Controller

We propose a fractional-order PIα controller defined by
the transfer function:

C(s) = Kp +
Ki

sα
(10)
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The following design specifications are proposed for the
control system:

(1) An overshoot Mp = 20%, which approximately cor-

responds to a damping ς = M2
p/
√
π2 +M2

p = 0.45.

Then, according to the expression φ = 100 · ς (e.g,
Ogata (1993)) an approximately equivalent frequency
specification is φo = 45◦.

(2) A settling time ts = 110 s. An approximately equiv-
alent frequency specification (e.g, Ogata (1993)) can
also be established: ωcgo = 4/ts = 0.0365 rad/s.

(3) Since relatively small variations (though not negli-
gible) are produced in the process gain K, a local
robustness condition is searched for our controller.
Then we propose that C(s) fulfills the so called ”local
isophase margin condition”.
This condition states that the phase of the frequency
response of G(s)·C(s), which is 6 (G(j · ω) · C(j · ω)),
must be ”flat” (horizontal slope) at frequency ωcgo.
This condition is expressed as

d 6 (G(j · ω) · C(j · ω))

dω

∣∣∣∣
ω=ωcgo

= 0 (11)

and its fulfillment implies that small changes in the
gain produce negligible changes in the phase margin
φ (e.g. Oustaloup (1991)).

Specifications 1 and 2 are achieved if the following condi-
tion in the complex plane is verified:

G(j · ωcgo) · C(j · ωcgo) = −ej·φo (12)

which is split into two real conditions. Taking into account
that (j · ω)−α = e−j·

π
2 ·α · ω−α and operating yields that:

Ki =
ωαcgo

sin
(
π
2 · α

) · =(χ)

Kp = −
(
<(χ) + cot

(π
2
· α
)
· =(χ)

)
(13)

being χ = ej·φo/G(j ·ωgco) and <(χ) and =(χ) the real and
imaginary components respectively of χ . By making α =
1, the rules to tune a standard PI controller that verifies
the frequency specifications (φo, ωcgo) are obtained.

A free parameter α is left in (13). These equations allow to
obtain Kp and Ki in function of α. This extra parameter
(compared to the two parameters to be tuned in a PI
controller) is tuned to achieve the third specification. A
simple search algorithm is implemented in which α is
varied in the range (0, 2). For each value of α, controller
gains are obtained from (13), the frequency response of

the controller is determined, and d 6 (G(j·ω)·C(j·ω))
dω

∣∣∣
ωcgo

is

calculated. The value of the fractional order that makes
zero this derivative, denoted α∗, is the one chosen for our
controller. The controller gains are obtained substituting
this value in (13), yielding K∗p and K∗i . The resulting
controller is

C(s) = 0.419 +
0.213

s1.29
(14)

It can be checked that these three specifications belong to
the K − RFFS of a first order plus time delay process
controlled by a PIα controller (Gharab and Feliu-Batlle
(2019)).

4. SIMULATED RESULTS

4.1 PIα controller

Time response of the closed-loop system are simulated
using Matlab. Performances of the designed PIα in the
time domain are synthesized in Fig. 5. We focus on the
design specifications: overshoot and settling time. For each
specification, the nominal value and a maximum deviation
are provided in Table (4).

Table 4. Performances of PIα controller.

Controller overshoot Settling time(s)

Nominal
Maximum
deviation

Nominal
Maximum
deviation

α = 1.29 20.07% ±14.7% 104.39 ±8.74%

The nominal value gives the idea of the average behavior
in the region defined by nominal model. The maximum
deviation gives an idea of the robustness achieved for this
specification (the variations in the response that can be
expected from parameters changes).

The overshoot varies with a maximum deviation equal
to ±14.7% which justifies that the iso-phase margin con-
straint around the designed gain crossover frequency is well
satisfied by such controller.

0 50 100 150 200 250

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
e
ig

h
t 
(m

m
)

PI  fractional controller perfermances

Nominal Model

Process 1

Process 2

Process 3

Process 4

Reference

 5% error band
20 40 60 80 100 120 140

Time (s)

0.8

0.9

1

1.1

1.2

H
e

ig
h

t 
(m

m
)

Fig. 5. Simulated closed-loop step responses.

4.2 PI controller

In this section, a standard PI controller is tuned to fulfill
the two first defined time specifications: overshoot of 20%
and settling time of 110 s. By defining α = 1 in equation
13, it is possible to tune such new controller:

CPI(s) = −6.306 +
0.503

s
(15)

The step responses of such controller are illustrated in Fig
6. The controlled system clearly achieves the desired per-
formance around the nominal model, but high variances
in terms of overshoot and settling time are recorded when
moving away from such averaged regime, which is well
detailed in Table 5.
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Fig. 6. Performances of a PI classic control system.

Table 5. Performances of standard PI con-
troller.

Controller overshoot Settling time(s)

Nominal
Maximum
deviation

Nominal
Maximum
deviation

α = 1 27.06% ±54.14% 128.89 ±25.14%

5. CONCLUSION

The research presented in this paper has been focused
on the laboratory hydraulic canal of the University of
Castilla-La Mancha. The main pool of this canal operates
in a submerged flow mode, in which four operating regimes
have been defined. First order plus time delay models (1)
were used to identify the dynamics of the canal at each
of these four regimes, and it was noticed that the gains
of these models changed significantly in function of the
operating regime. Subsequently, an accurate global model
of the canal dynamics was obtained, which combined
model (1) with a variable gain function (5), in order to
achieve a constant gain K in the model (1). However, in
this new model, that gain K still changes slightly (in a
range of ±14% of its average value) in function of the
operating regime. This suggests that a controller robust
to gain changes has to be designed.

Consequently, a gain scheduling control system combined
with a LTI fractional-order PI controller has been pro-
posed in this paper. PIα controllers are used in this work
because they have already demonstrated good robustness
to gain changes if they are properly tuned. The gain
scheduling block inverts (and cancels) the non-linear com-
ponent of the process gain previously identified.

Simulation results have shown the adequate performance
of the proposed control system. Moreover, a comparison
with a standard PI controller (combined also with the
same gain scheduling block) equivalent to the PIα in the
sense of having been tuned for the same first and second
specifications (φo, ωcgo) shows the superior performance of
the fractional-order controller in terms of robustness.

Our next step will be testing this control system in our
laboratory canal.
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