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Abstract: Superconducting accelerating cavities for continuous wave low-current particle
accelerators requires a tight resonance control to optimize the RF power costs and to minimize
the beam delivery downtime. When the detuning produced by radiation pressure becomes
comparable to the RF bandwidth, the monotonic instability starts to affect the cavity operation.
When this instability is triggered by external vibrations or drifts, the accelerating field amplitude
drops rapidly, and the beam acceleration has to be stopped. Past experiments showed that using
an integral control of the piezoelectric tuners installed on the cavity prevents the adverse effects
of the monotonic instability. This paper derives theoretically why an integral controller is an
effective way to counteract the monotonic instability. To perform the study a linearized state-
space model of the cavity is derived. Simulations and experiments in a superconducting test
facility indicate that the use of this kind of control has the additional benefit of bringing the
cavities to the resonance condition automatically.

Keywords: Particle accelerators, Control systems, Parametric resonances, Electromagnetic
devices

1. INTRODUCTION

Superconducting Radio-Frequency (SRF) Continuous Wave
(CW) electron linear accelerators are increasingly interest-
ing for their scientific and industrial applications ranging
from X-ray and UV laser generation for experimental and
medical uses (Sekutowicz et al. (2015); Zhu et al. (2017);
Raubenheimer (2018); Serafini et al. (2019)), short-lived
isotope production for medicine and industry (Habs and
Köster (2011)), and semiconductor lithography (Naka-
mura et al. (2015)). The main components of this kind of
machines are the superconducting resonant RF cavities.
When an electron bunch passes through an RF cavity, it
gets accelerated by the inner electric field, thus absorbing
part of the stored electromagnetic energy. To maximize
the RF efficiency accelerating cavities are driven at or
near the resonance frequency of the accelerating mode.
Superconducting cavities possess an RF surface resistance
of a factor 105 lower compared to their normal conducting
counterparts. Therefore, they can operate continuously at
fields over 10 MV m−1 without enduring a mechanically
damaging thermal dissipation or needing excessive RF
power expenditures. Cryogenic temperatures are needed to
maintain the superconducting state of this kind of cavities.
Therefore to maximize the thermal exchange, the super-
conducting cavities are operated in a liquid or superfluid
helium bath. The ability of a certain cavity to retain the
RF field with low power dissipation is usually given in
terms of the intrinsic quality factor (Q0). The Q0 is equal
to the cavity stored electromagnetic energy multiplied by
two times Pi over the amount of energy dissipated in one

RF period. TESLA is one of the type of superconduct-
ing cavities, which is most frequently used in electron
accelerators. This type of resonator has a design resonant
frequency of 1.3 GHz, and state-of-the-art TESLA cavities
have a Q0 that exceed 2 · 1010. To match the cavity with
the beam loading and to optimize the RF budget, the
required quality factor for operations or loaded quality
factor (QL) is usually lower than the intrinsic one. In low-
current SRF CW accelerators based on TESLA cavities
a QL higher than 107 is generally used, that results in a
system bandwidth of some tens of Hertz (Padamsee et al.
(2008)). Such a narrow bandwidth makes the cavity field
very sensitive to disturbances that deforms its geometry
in the micron range. These detuning disturbances can
originate from the accelerating field radiation pressure,
the Lorentz Force Detuning (LFD), and external mechan-
ical disturbances (microphonics). Detuning disturbances
make it harder to keep the cavity resonance frequency
at a fixed value and have to be compensated. Moreover,
when the LFD is comparable to the cavity bandwidth,
an instability, the monotonic instability, might cause a
loss of gradient if the resonance frequency is not tightly
controlled (Schulze (1972)). Therefore, piezoelectric tuners
are used when an online correction of the cavity resonance
frequency is required. In Section 2, the impact of the
monotonic instability on operations is explained and a
electromechanical state-space model of a resonant cavity
(useful to design a resonance controller) is derived. The
parameters used in the model are the ones that are foreseen
for the CW upgrade of the European X-Ray Free Electron
Laser (EuXFEL), a short pulse superconducting accelera-
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tor used to produce high intensity hard X-rays to perform
various physical, chemical and biological investigations. In
Section 3, the stability conditions of the system, when
an integral control on the piezoelectric tuner is applied,
are presented. An evaluation of the controller behavior
for heavily detuned systems is also presented. In Section
4, the capability of the controller of bringing the system
to resonance and preventing the occurrence of the mono-
tonic instability disturbances is evaluated experimentally
on multiple TESLA acceleration cavities.

2. CAVITY MODEL

To understand how detuning affects the operation of
superconducting cavities, an electro-mechanical model of
the cavity has to be derived.

2.1 Electrical model

The following first-order matrix differential equation rep-
resents an electrical baseband description of an RF cavity
(Schilcher (1998))

v̇ = ω1/2

[
−1 y
−y −1

]
v +

[
ω1/2

0

]
Vg, (1)

with

v =

[
Vr
Vi

]
, |v| = EaccL, y = 2QL

∆f

f0
(2)

Here, Vr and Vi are the in-phase and quadrature part of
the cavity accelerating voltage v, Eacc is the accelerating
field, L is the cavity length, y is the detuning factor, f0 is
the design resonant frequency and ∆f is the detuning.
The generator induced voltage Vg is supposed to be
constant and in-phase to simplify the derivations. The
detuning factor y can be written as the sum of the
cavity predetuning y? and the contributions of the cavity
mechanical modes driven by LFD or other external forces

y = y? +

N∑
µ=1

y(µ) =
(2πf0 − ωu)

ω1/2
+

(ωu − ωc)
ω1/2

,

y? =
(2πf0 − ωu)

ω1/2
,

N∑
µ=1

y(µ) =
(ωu − ωc)
ω1/2

,

(3)

with the angular resonant frequency of the cavity ωc, the
resonant frequency of the predetuned cavity at rest ωu,
the cavity half bandwidth ω1/2, and y(µ) the detuning
contribution produced by the mode µ ∈ [1, . . . , N ].

2.2 Mechanical model

The mechanical model of the cavity can be repre-
sented by a a set of second-order differential equations
(Schulze (1972)). Each equation is a particular mechanical
mode of the resonator structure:

ẏ(µ) = A(µ)
m y(µ) + B(µ)

m (u(µ)m +K
(µ)
lfd |v|

2),

y(µ) =

[
y(µ)

ẏ(µ)

]
, A(µ)

m =

[
0 1

−(ω(µ))2 − ω(µ)

Q(µ)

]
,

B(µ)
m =

[
0

(ω(µ))2

]
, K

(µ)
lfd =

2πk
(µ)
lfd

L2ω1/2
.

(4)

In the above equation ω(µ) is the mechanical mode angu-
lar resonant frequency, Q(µ) is the mode quality factor,

K
(µ)
lfd is the normalized LFD constant, k

(µ)
lfd is the LFD

constant in Hz/(MVm−1)2. The input u
(µ)
m represents the

time-dependent external mechanical forces produced by
microphonics and the fast tuner on the cavity. For SRF

cavities K
(µ)
lfd and k

(µ)
lfd are always less than zero because of

the Slater’s theorem and radiation pressure (Slater (1946);
Liepe (2001)). The electrical and mechanical model, (1)
and (4), are coupled through the detuning factor y and
the squared amplitude of the cavity voltage |v|2.

2.3 Zero-order approximation

A first step towards understanding the effects arising from
the coupling of (1) and (4) is to perform a steady-state
analysis: the derivative terms are set to zero, whereas
the steady-state values are denoted with the zero (“0”)
subscript. For (1) the following equations are obtained

|v0|2 =
V 2
g

1 + y20
, y0 = −Vi0

Vr0
= − tan (θ0), (5)

with θ0 as the phase angle of the cavity voltage. For the
mechanical equations of (4) it results in

Klfd =

N∑
µ=1

K
(µ)
lfd ,

N∑
µ=1

y
(µ)
0 = Klfd|v0|2, (6)

where Klfd is the total normalized LFD constant of the
cavity. Using (5) and (6) with the definition of the detuning
parameter in (3) leads to the following equation

y? = −Klfd|v0|2 ±

√
V 2
g

|v0|2
− 1, (7)

and evaluating (7) at resonance (|v0| = Vg, y0 = 0) gives

(y?)res = −KlfdV
2
g , (8)

with (y?)res the predetuning that has to be applied to the
cavity to achieve the resonance condition.

2.4 Monotonic instability

The result of (8) shows that the steady-state cavity be-
haviour is driven by the term Klfd|Vg|2:

case I: |KlfdVg|2 � 1. The LFD has a low impact and the
cavity resonant frequency can be considered independent
from the accelerating gradient.

case II: |KlfdVg|2 � 1. The LFD frequency deviation is
higher than the cavity half bandwidth and a variation
in cavity gradient produces a sensible variation in the
detuning.

In Fig. 1 resonance curves for different values of KlfdV
2
g

are displayed. As it can be seen, above a threshold of
KlfdV

2
g multiple steady-state solutions of the amplitude

and phase for a singular value of y appear for (7). Such
threshold is KlfdV

2
g < −1.54 and determines the presence

of the monotonic instability (Schulze (1972)). Due to the
presence of the instability, the system may experience
significant amplitude and phase jumps if the detuning is
changed in a way that a discrete variation of the cavity
parameters is required to reach a stable solution of (7)
(Fig. 3). One consequence is that if the cavity is driven
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Fig. 1. Static LFD effects on SRF TESLA cavities with
QL = 3 × 107 and the LFD constant klfd =
−1 Hz/(MVm−1)2. For KlfdV

2
g < −1.54 the cavity

is affected by the monotonic instability. Monotonic
drop thresholds are indicated by arrows that points
downwards. Inverse monotonic drops point upwards.

near resonance, an external disturbance can trigger the
instability and make the cavity gradient to incur in a
static drop. Such an effect is unwanted due to the need
to recover the gradient inside the cavity to continue the
beam acceleration. A jump in the opposite direction is
the inverse static drop. For the EuXFEL CW upgrade
TESLA cavities have a target design value of klfd equal
to −1 Hz/(MV)2, L = 1.038 m, QL higher than 3 · 107 and
a maximum Eacc of 16 MV m−1. For these parameters it
is KlfdV

2
g < −11.8 and the presence of the monotonic

instability is expected.

2.5 First order approximation

A way to find out when a monotonic drop happens is to
derive a small-signal state-space representation of (1) and
(4) and study when the stability conditions are met. In
the following, the small gain quantity of a variable x is
denoted by δx.
The small-gain representation of (1) is given by

δv̇ = ω1/2

[
−1 y0
−y0 −1

]
δv −

ω1/2Vg

1 + y20

[
y0 0
1 0

] N∑
µ=1

δy(µ), (9)

and that of (4) by

δẏ(µ) = A(µ)
m δy(µ) + Bm

(µ)u(µ) + G(µ)δv (10)

with

G(µ) =
2(ω(µ))2K

(µ)
lfd Vg

1 + y20

[
0 0
1 −y0

]
. (11)

G(µ) is a matrix that couples the field variations to
the detuning variations. Then, using (9) and (10), a
state transformation is applied to get an amplitude-phase
representation with the following transformation matrix

Tap =

 ∂a
∂Vr

∂a
∂Vi

∂θ
∂Vr

∂θ
∂Vi

 =
1

Vg

[
1 −y0
y0 1

]
, (12)

such that [
δa
δθ

]
= Tapδv , (13)

where δa is the amplitude variation normalized to its
steady-state value. Using the derived small-signal equa-
tions it is possible to write a state-space system in the
form

ẋ = Ax + Bu. (14)

The state matrix A ∈ R2(N+1)×2(N+1) is defined as

A =



Ae H H . . . H

Ĝ(1) A
(1)
m 0 . . . 0

Ĝ(2) 0 A
(2)
m

. . .
...

...
...

. . .
. . . 0

Ĝ(N) 0 . . . 0 A
(N)
m

 , (15)

with

Ae = ω1/2

[
−1 y0
−y0 −1

]
, H = ω1/2

[
0 0
−1 0

]
, (16)

and

Ĝ(µ) =
2(ω(µ))2K

(µ)
lfd V

2
g

1 + y20

[
0 0
1 0

]
. (17)

The input matrix B ∈ R2(N+1)×N is

B =



0 0 . . . 0

Bm
(1) 0 . . . 0

0 Bm
(2) . . .

...
...

. . .
. . . 0

0 . . . 0 Bm
(N)

 . (18)

x ∈ R2(N+1) and u ∈ RN represent the state and the input
vector, by

x =


δa
δθ
δy(1)

...
δy(N)

 , u =

u
(1)

...
u(N)

 . (19)

Measuring Q(µ) and k
(µ)
lfd for each cavity is not straightfor-

ward and instead of relying on a precise model of the cav-
ity, a further assumption is made to simplify the system:
the mechanical resonant frequencies are supposed to be at
approximately an order of magnitude larger than the res-
onance half bandwidth of the cavity. Such an assumption
is supported by the values reported in literature (Czarski
et al. (2006)). Then, for frequencies lower than ω1/2 the
derivative terms of the mechanical detuning contributions
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δẏ(µ) can be approximated to zero and the detuning error
contributions δy(µ) can be redefined as

δy(µ) = −
(
Am

(µ)
)−1 [

Ĝ(µ)xr + B(µ)u(µ)
]

(20)

with

xr =

[
δa
δθ

]
. (21)

As a consequence, (19) can be reduced to a second order
system incorporating the terms that depends on Klfd in
the electrical part of the system matrix given as

ẋr = Aexr −H

N∑
µ=1

(
Am

(µ)
)−1 [

Ĝ(µ)xr + B(µ)u(µ)
]
.

(22)

With (3), (11) and (16), the reduced system (22) can be
defined as

ẋr = Arxr + Brur (23)

with

Ar = Ae −H

N∑
µ=1

(
Am

(µ)
)−1

Ĝ(µ), (24)

= Ae − ω1/2

2KlfdV
2
g

1 + y20

[
0 0
1 0

]
(25)

and

Br = H

N∑
µ=1

(
Am

(µ)
)−1

B(µ) = ω1/2

[
0
1

]
. (26)

The term ur represents the total mechanical perturbation
and is defined as

ur =

N∑
µ=1

u(µ) (27)

The system in (23) is stable if the eigenvalues of Ar

have a negative real part. This is equivalent to satisfy the
following inequality

β = y0

(
y0 +

2KlfdV
2
g

1 + y20

)
≥ −1. (28)

A stability limit can be found studying (28) near the reso-
nance. In such case a small value of the detuning and a big
contribution of LFD is assumed (|y0| � 1� |2KlfdV

2
g |).

This simplification leads to the monotonic stability condi-
tion

y0 ≤ −
1

2KlfdV 2
g

. (29)

This means that for the EuXFEL CW upgrade, an increase
of the detuning of 0.96 Hz can trigger a monotonic drop
when driving the cavities at resonance. Therefore, given
that such stability can hardly be assured due to pressure
drifts, a controller has to be added to prevent the occur-
rence of monotonic drops.

3. INTEGRAL CONTROL

Using piezo tuners with an integral control policy was
already experimentally reported as a successful technique
to compensate detuning errors for QL = 1.5 · 107 (Ryban-
iec et al. (2017)). Here, we want to theoretically derive
stability conditions for such a controller and study its

behavior in the presence of a strong monotonic instability.
The usage of a pure integral control is justified by the
presence of high mechanical resonances Q(µ) that limit
the usage of a proportional controller. For this analysis
(23) can be used as a starting point to derive the stability
conditions. For the piezo tuners an integral control policy
is given by

p = pt=t0 +KIω1/2

∫ t

t0

δθdt . (30)

In the equation above p the piezoelectric tuner input and
KI the gain of the integrating feedback. The produced
mechanical effect on each mechanical mode of the cavity
can be described defining u(µ) as

u(µ) = g(µ)p+m(µ), (31)

where g(µ) is the coupling constant of the mechanical tuner
to the mode µ, and m(µ) is the microphonic contribution.
In the following pages, the coupling constant g(µ) is as-
sumed to be larger than zero. For the model of the cavity
system controlled by the feedback the total amount of me-
chanical coupling g and the total microphonic contribution
m have to be taken into account, given as

g =

N∑
µ=1

g(µ), m =

N∑
µ=1

m(µ). (32)

Substituting the integral control law (31) into (27) and
then into (23) gives the following closed-loop matrix dif-
ferential equation

ẋf = Afxf + Bfm (33)

(34)

with

Af = ω1/2

[ −1 y0 0
β/y0 −1 g

0 KI 0

]
, xf =

[
δa
δθ
p

]
, (35)

and

Bf = ω1/2

[
0
1
0

]
. (36)

The stability of (33) can be derived studying the eigen-
values of the system matrix Af . Then, given the following
assumptions

A.1 : the electric source term Vg is constant,

A.2 : the dynamics of the cavity is described by (14),

A.3 : ω1/2 � ω(µ),

A.4 : the feedback delay is negligible compared to 1/ω1/2,

a stability condition can then be expressed by

KI ≥

{
0 for (β + 1) > 0

−2
(β + 1)

g for (β + 1) ≤ 0
. (37)

The solution above shows that the system stability is
achieved only for positive values of KI . An attractive
property of the closed-loop system is that with a non-zero
value of the integrator gain KI , the system is stable for
values of β that are lower than minus one. Therefore, using
an appropriate integral gain KI , it is possible to drive
the cavities at otherwise unstable conditions (see (28)).
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Fig. 2. Loop transfer functions for (14) (continuous lines)
and simplified mode-less one (23) (dotted lines). QL =
3 · 107

Nonetheless, one should keep in mind that the mechanical
resonances neglected in the derivation of (33) limit the
maximum value of the feedback gain and may make the
feedback loop unstable. With the mechanical resonances
an additional phase shift of −180◦ is introduced (4). Thus,
to satisfy bode’s stability criteria, the integral gain KI

has to be chosen small enough, such that the magni-
tude of the open loop transfer function is less than one
at the eigenfrequency of each mechanical resonance. At
the same time, it is desirable to obtain a magnitude of
the open loop transfer function as large as possible for
frequencies lower than the cavity half bandwidth ω1/2.
For the values of QL and Eacc foreseen in the EuXFEL
CW upgrade and using the mechanical values of TESLA
cavities listed in Czarski et al. (2006) a good compromise
is to set the unit gain on the feedback at values that are
approximately one order of magnitude less than the lowest

value mechanical eigenfrequency. For
ω1/2gKI

2π = 10.8 Hz

(gKI = 0.5 for QL = 3 · 107) the maximum magnitude in
the open loop transfer function of about −18 dB for y0 = 0
at frequencies above 200 Hz (Fig. 2). Such significant gain
margin is required to address the uncertainties in the
mechanical modes quality factors, couplings, and cavity
detuning. At the same time, the closed-loop transfer func-
tion shown in Fig. 3 is attenuated by more than −22 dB
at 1 Hz.

3.1 Considerations over the nonlinear model

All the derivations on the controller stability presented
so far use a linearized model of the cavity. A proof
of stability on the linearized model is a necessary but
not sufficient condition for the stability of the nonlinear
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]

Fig. 3. Comparison between open-loop (dotted lines) and
closed-loop (continuous lines) transfer functions from
the external mechanical disturbance to the detuning
factor y.

model represented by (1) and (4). Furthermore, it has to
be tested if the controller can bring the cavity back to
a determined setpoint starting from an arbitrary initial
detuning value. To do this, the cavity system has to be
simulated under the effect of the integral controller. Before,
a steady-state analysis is performed, where the time-scale
of the controller is assumed to be small compared to the
RF timescale of the system. To do this the controller
action timescale is supposed to be slow compared to the
RF timescale of the system. Such an assumption holds
because |gKI | < 1 was chosen. Therefore it is possible to
approximate the instantaneous values of cavity status to
the steady-state case described by (7) and represented
by Fig. 1. Because of this the action of the piezoelectric
tuner can be supposed to directly change the zero gradient
detuning. Such a study, represented in Fig. 4, shows
that the cavity system always returns to the setpoint,
independently of the initial detuning condition. If the
system starts from the low gradient side of the monotonic
instability, first the controller brings it to the high gradient
side pushing it through the inverse static drop and then
tunes it to the setpoint. In the graphical study, it turns
out that the controller brings the cavity back to the phase
setpoint independently of the initial detuning even when
the system experiences a static drop. A numerical closed-
loop simulation of the nonlinear cavity model confirms the
behavior derived by the steady-state evaluation and shows
that the system converges to the setpoint.

4. EXPERIMENTAL RESULTS

The ability of the designed controller to prevent static
drops is verified experimentally on TESLA-type super-
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Fig. 4. Trajectory of the cavity phase using the feedback
controller. The arrows denote the direction of the
trajectory. The red part of the curve constitutes the
stable steady-state solutions of (7).

Fig. 5. Simulated closed-loop response of the cavity ampli-
tude and phase with Vg/L = 16 MV m−1 and QL =
3×107. The complete nonlinear model, constituted by
(1) and (4) with mechanical data from Czarski et al.
(2006), was used.

conducting cavities. All tests were performed at the Cryo
Module Test Bench (CMTB) using a EuXFEL-like cry-
omodule prototype, XM50.1 (Branlard et al. (2019)) First,
the stability of the static detuning is evaluated (Fig. 6). It
turned out that every 45 s some event triggers a decrease
of the detuning of 4 Hz. This effect originates probably
from a subsystem that is used to regulate the helium bath
or cavity vacuum. Even though investigations are on-going
to determine the cause of such repetitive detuning event,
a way to maintain the cavity frequency at a fixed value is
helpful to avoid static drops. Then a simultaneous drive of
eight cavities in resonance was achieved. An additional Ac-
tive Noise Controller (ANC) (Rybaniec et al. (2017)) was

Fig. 6. Measured stability of the static detuning over
twenty minutes. A periodic 4 Hz detuning effect is
present. The measurement was performed in open
loop at Vg/L = 4 MV m−1

used to compensate for repetitive noise with frequencies
higher than 1 Hz. The objective was to evaluate how much
the monotonic instability impacts the cavity operations
at the target gradients of EuXFEL upgrade. All tests
were done at QL = 3 · 107 For gradient values of higher
than 10 MV m−1 it was hard to achieve good stability or
even to reach the cavity resonance without incurring a
static drop after some minutes of operation. The severity
of the instability effects increased at higher gradients. At
gradients around 16 MV m−1, the interlock system made
the operation of the module impossible due to the large
gradient variations correlated to static drops. Successive
tests, done with the fast tuner feedback switched on,
showed substantial improvement compared to the previ-
ous attempts to raise the field inside the cavities to the
resonance condition. The controller used in these tests is a
CW adaptation of the current EuXFEL LLRF controller,
which includes a Proportional-Integral (PI) feedback on
the fast tuners. During the tests, only the integral part
of the PI controller was used. The unit gain was set to
10.8 Hz as in the simulations. Then, switching on the
feedback controller, it was possible to achieve a stable
resonance condition on all the cavities inside the module
at the same time for gradients up to 16 MV m−1. Past
studies (Branlard et al. (2018)) confirm the effectiveness
of the discussed feedback controller at even higher values of
QL and Eacc. The ability of the controller to bring back the
cavity to the desired tune with an arbitrary large initial
detuning was also confirmed (Fig. 7). When the system
starts from the overtuned case (∆f > 0, θ < 0), there is
an initial delay of about 100 ms which was not seen in the
simulations. The reason for this delay could be explained
by the presence of backlash in the piezo actuator. Such an
effect did not affect the final performance of the feedback
controller in keeping the cavity resonance at the desired
value.

5. CONCLUSION

In this article, the monotonic instability is studied to see
how it would impact the operations of high QL SRF cavi-
ties driven in CW mode of operation. It is found that such
instability would prevent to operate the cavities in sta-
ble conditions at high gradients (> 10 MV m−1) because
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Fig. 7. Experimental closed-loop response of the cavity
amplitude and phase with Vg/L = 16 MV m−1 and
QL = 3 × 107. The controller is able to bring the
cavity to resonance for either for positive or negative
initial value of the detuning.

of the proximity of the RF resonance to the monotonic
drop threshold. Therefore, the behaviour of an integral
control law of the piezo tuners to mitigate this issue
was studied and tested. The analytical explanation why
a pure integrating feedback controller on the fast piezo-
electric tuner of the cavities is an effective way to prevent
monotonic drops was derived theoretically, demonstrated
by simulations and verified experimentally. Eight cavities
were driven at previously unstable conditions (Eacc =
13 MV m−1, QL = 3 × 107) thanks to the use of the
controller. An added benefit of using the controller derived
in this work is the ability to tune the cavities the resonance
without the manual intervention of an operator. Some
questions remain about the impact of the nonidealities of
the piezo actuator (backlash, nonlinearity) and the possi-
ble limitations of of the proposed solution. Another aspect
to be studied is how drifts in the RF detection chain affect
the operations because the fast tuner feedback controller
uses the detected RF phase of the cavity signals. Due to
changes in humidity and temperature, a variation in the
delay of the signals could induce the feedback controller
to trip the cavity operating point over the static drop
threshold. Finally, the effects that the beam induces on
the accelerating field were neglected. Therefore, it has to
be studied if more refined detuning estimation techniques
are needed rather than relying only on the cavity RF phase
to correct the effects produced by LFD. Nevertheless, the
electro-mechanical cavity model derived in this paper, and
the approach used to correct the monotonic instability can

be used as a starting point for further development of the
fast tuner feedback controller.
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