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1. INTRODUCTION

Systems of interconnected ordinary and partial differential
equations appear in mathematical modeling of different
physical, biological, chemical and other processes as well as
in dynamics of discrete mechanical systems including elas-
tic and fluid objects. For example such a coupling appears
in the modeling thermo-elasticity or thermo-plasticity pro-
cesses with phase transformations, see Dashkovskiy and
Narimanyan (2007) and Dachkovski and Böhm (2004),
respectively, where the temperature distribution as well as
elastic deformations are described by partial differential
equations (PDE) and the evolution of solid-solid phase
transformations is given in terms of ordinary differential
equations (ODE). Stability properties of linear and non-
linear coupled ordinary and partial differential equations
of the parabolic type were studied in many papers, see
for example Bartyšev (1980); Kedyk (1991); Martynyuk
and Slyn’ko (2008); Kang and Fridman (2017); Ahmed-
Ali et al. (2017); Karafyllis and Krstic (2019), see also
Mironchenko and Prieur (2020). To investigate different
dynamical properties of a coupled system of a parabolic
PDE and ODE Bartyšev (1980) applies the method of
vector Lyapunov function, see Lakshmikantham et al.
(1991). In the work of Kedyk (1991) stability problems
of the monotone dynamic extensions of coupled ODE
with PDE of the parabolic type were investigated. Also
here the method of vector Lyapunov function is applied
and hence in these works the asymptotic stability for
each subsystem is assumed. Similar assumptions on the
dynamics of subsystems are applied in the derivations
of the small-gain type developed in the ISS framework
for interconnected systems Karafyllis and Krstic (2019).
Martynyuk and Slyn’ko (2008) propose a Lyapnov func-
tion for a coupled linear ODE-PDE parabolic system that
allows to study stability in case when the ODE is unstable.
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The results in Martynyuk and Slyn’ko (2008); Karafyllis
and Krstic (2019); Bartyšev (1980) were developed for
autonomous ODE-PDE couplings. Some special cases of
non-autonomous ODE-PDE systems were considered in
Kedyk (1991). The derivation of Lyapunov functions in
the general non-autonomous case of a coupled ODE-PDE
parabolic system is still an open problem. We also note
that in most of works devoted to the investigations of
the ISS-like properties for distributed parameter systems
the case of autonomous systems only is considered. The
ISS framework of non-autonomous infinite dimensional
systems needs to be developed yet.

In this work we investigate the ISS properties of a linear
periodic system of the coupled ODE-PDE parabolic sys-
tem with input signals which enter at the boundary. Using
the ideas from Slyn’ko (2019) we provide a time dependent
Lyapunov function and derive conditions guaranteeing the
ISS property including explicit estimations for solutions.

Notation. For a continuous function r ∈ C([0, l];R),
r(z) > 0 by L2

r(0, 1) we denote the Banach weighted
space of Lebesgue measurable and square integrable func-
tions with weight r and norm given by ‖f‖L2

r(0,1) =

(
1∫
0

r(z)|f(s)|2 ds)1/2. For a Banach space X and the subset

M ⊂ R by C(M,X ) we denote the space of continuous
functions R → X and by C1(R,X ) the space of contin-
uously differential functions with values in X . L∞(R+)
denotes the space of essentially bounded Lebesgue mea-
surable functions with the norm ‖f‖∞ = ess supt≥0 |f(t)|.
In many definitions and estimates we will use the classes
of comparison functions K,L,KL as usually in the ISS
framework, see Sontag (1989) and Liu et al. (2017).

Rn denotes the n-dimensional space with the euclidean
norm ‖ · ‖, Rn×m is the linear space of n × m-matrices,
which forms a Banach algebra in case m = n. Let the
norm in Rn×n be induced by the norm in Rn, that is ‖A‖ =

sup‖x‖=1 ‖Ax‖ = λ
1/2
max(ATA). In case of the norm ‖x‖1 =
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∑n
l=1 |xl| for x = (x1, . . . , xn)T ∈ Rn, the noinduced norm

in Rn×n is given by ‖A‖1 = sup‖x‖1=1 ‖Ax‖1. By Sn we
denote the set of square symmetric matrices of the size n.
The partial order in Sn is given as follows: for P,Q ∈ Sn we
say that P � Q meaning that P−Q is positive definite. For
A ∈ Sn by λmin(A) and λmax(A) we denote the minimal
and maximal eigenvalue of A. For A ∈ Rn×n by rσ(A) we
denote the spectral radius of A.

2. PRELIMINARIES

The following notation and notions that we will use
throughout the paper are borrowed from Magnus (1954).
The commutator of matrices A,B ∈ Rn×n given by

[A,B] = AB −BA
defines the Lie-Algebra structure in Rn×n.

For matrix variables X, Y and Z let F (X,Y ) be some
formal series of the variables X, Y and for λ ∈ R the
polarization identity

F (X+λZ, Y ) = F (X,Y )+λF1(X,Y, Z)+λ2F2(X,Y, Z)+...,

where F1(X,Y, Z) and F2(X,Y, Z) are certain formal
series of the variables X, Y , Z defines the Hausdorff

derivative
(
Z ∂
∂X

)
F (X,Y ) := F1(X,Y, Z).

The Lie-polynomials of matrix variables X, Y are defined
recursively as follows (see Magnus (1954) for more details
on Lie-elements)

{Y,X0} = Y, {Y,X l+1} = [{Y,X l}, X], l ∈ Z+.

The following Hausdorff equalities will play an important
role in the sequel(

Y
∂

∂X

)
eX = eX

(
Y +

∞∑
k=1

1

(k + 1)!
{Y,Xk}

)
,

(
Y

∂

∂X

)
eX =

(
Y +

∞∑
k=1

(−1)k

(k + 1)!
{Y,Xk}

)
eX .

(1)

As well we will need the chain rule for the differentiation of
compositions: Let p(X) be a series of the matrix variable
X and A : (a, b) → Rn×n be a mapping differentiable
at the point t0 ∈ (a, b) such that B(t) := P (A(t)) is well
defined in a neighborhood of t0, then

dB

dt

∣∣∣
t=t0

:=
(
Y

∂

∂X

)
P (X), Y :=

dA

dt

∣∣∣
t=t0

, X = A(t0).

(2)

3. PROBLEM STATEMENT

Let us consider the following system of differential equa-
tions

ut(z, t) = Au(z, t) +B(z, t)x(t),

ẋ(t) = C(t)x(t) +

l∫
0

D(z, t)u(z, t) dz,
(3)

with initial
x(0) = x0 ∈ Rn, u(z, 0) = ϕ(z), ϕ(0) = 0

ϕ ∈ L2
r([0, l]), z ∈ (0, l),

(4)

and boundary conditions

u(0, t) = d1(t), u(l, t) = d2(t),

di ∈ C1(R) ∩ L∞(R), t ∈ (0,+∞),
(5)

where A is the linear Sturm-Liouville operator given by

Af =
1

r(z)

d

dz

(
r(z)

df

dz

)
+
q(z)

r(z)
f,

D(A) = {f : f ∈ C2((0, l);R), f(0) = f(l) = 0},
(6)

where r ∈ C([0, l],R+), r(z) > 0, q ∈ C([0, l],R), B ∈
C([0, l]× R+,R1×n) and ‖B(·, t)‖L2

r[0,l] ∈ L∞.

The mapping C : R→ Rn×n is piece-wise continuous and
periodic with period θ > 0 and assumed to be such that
the linear ODE

ξ̇ = C(t)ξ (7)
is asymptotically stable. Moreover it is assumed that for
any N ∈ N there exist positive constants am, bm, cm,
m = 0, . . . , N − 1 such that for t ∈ (mh, (m + 1)h] and
h = θ

N the following holds

sup
t∈(mh,(m+1)h]

‖C(t)‖ ≤ am,
∥∥∥ t∫
mh

C(s) ds
∥∥∥ ≤ cm(t−mh),

∥∥∥[C(t),

t∫
mh

C(τ) dτ
]∥∥∥ ≤ bm(t−mh).

The function D ∈ C([0, l] × R+,Rn×1) is assumed to be
uniformly bounded, that is ‖D(·, t)‖L2

r[0,l] ∈ L∞.

In this work we consider only such initial conditions
and disturbances that the problem (3)-(5) has classical
solutions (u, x) ∈ C2,1([0, l] × R+,R) × C1(R+,Rn). The
questions of existence and uniqueness of such solutions
were studied in Slyn’ko (2006); Karafyllis and Krstic
(2019).

Definition The linear system (3)-(5) is called ISS, if there
exist functions βi ∈ KL, γi ∈ K, i = 1, 2 such that for any
initial state in (4) and any input functions d1, d2 ∈ C1(R)∩
L∞(R) the corresponding solution satisfies

‖u(·, t, ϕ0, x0)‖L2
r[0,l] ≤ β1(‖ϕ0‖L2

r[0,l], ‖x0‖, t) + γ1(d∞),

‖x(t, ϕ0, x0)‖ ≤ β2(‖ϕ0‖L2
r[0,l], ‖x0‖, t) + γ2(d∞),

(8)
where d∞ = max(‖d1‖L∞ , ‖d2‖L∞).

4. AUXILIARY RESULTS

Lemma 1. Let (u(t, z), x(t)) be a pair of functions satis-
fying (3), then

u(z, t) = w(z, t) + v(z, t), (9)

where (v(z, t), x(t)) is the solution to the system

vt(z, t) = Av(z, t) +B(z, t)x(t),

ẋ(t) = C(t)x(t) +

l∫
0

D(z, t)v(z, t) dz +

l∫
0

D(z, t)w(z, t) dz

(10)
with initial conditions

x(0) = x0, v(z, 0) = ϕ(z), ϕ(0) = 0, (11)

and boundary conditions

v(0, t) = 0, v(l, t) = 0, (12)

and function w(z, t) satisfies the following estimation

sup
(z,t)∈[0,l]×(0,∞)

|w(z, t)| ≤ max{‖d1‖∞, ‖d2‖∞} = d∞.

(13)
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Proof. Let us substitute u(z, t) = w(z, t) + v(z, t) to the
equations (3), then we get

vt(z, t) = Av(z, t) +B(z, t)x(t) +Aw(z, t)− wt(z, t),

ẋ(t) = C(t)x(t) +

l∫
0

D(z, t)v(z, t) dz +

l∫
0

D(z, t)w(z, t) dz.

(14)
Let function w(z, t) satisfy the following equations:

wt(z, t)−Aw(z, t) = 0,

w(0, t) = d1(t), w(l, t) = d2(t), w(z, 0) = 0.

Then function v(z, t) needs to satisfy the following initial
and boundary conditions

v(0, t) = 0, v(l, t) = 0, v(z, 0) = ϕ(z).

By the maximum principle applied to the function w(z, t)
we obtain the desired estimation (13). Then from (14)
it follows that the function v(z, t) satisfies the system of
linear differential equations (10) subject to (11) and (12),
which completes the proof of the lemma.

Next, we are going to derive estimates for the solution to
(10) by means of the direct Lyapunov method. The Lya-
punov function will be constructed by the discretization
method as follows: Let

V (t, v(·, t), x) = p(t)V1(v(·, t)) + V2(t, x), (15)

with

V1(v(·, t)) =

l∫
0

r(z)v2(z, t) dz = ‖v(·, t)‖2L2
r[0,l],

V2(t, x) = xTP (t)x

(16)

where p : R → R+ and P : R → Sn are left continuous
periodic functions with period θ.

Due to the periodicity it is enough to define the function
P (t) on the interval (0, θ]. Let N be a natural number
and h = θ

N be the discretization step. First we define the
following matrices

Ĉm(t) =

t∫
mh

C(s) ds,

C̃m =
1

h
Ĉm((m+ 1)h) =

1

h

(m+1)h∫
mh

C(s) ds,

Φ = ehC̃N−1 . . . ehC̃0 .

By the asymptotic stability of the linear periodic system
(7) we can choose the number N such that rσ(Φ) < 1.
Hence we can choose a positive definite matrix P0 such
that the following inequality is satisfied

ΦTP0Φ− P0 ≺ 0. (17)

Further we define the following positive definite matrices

Pm+1 = e−hC̃
T
mPme

−hC̃m , m = 0, . . . , N − 1

and finally the function P (t) is defined by

P (t) = e−Ĉ
T
m(t)Pme

−Ĉm(t), t ∈ (mh, (m+ 1)h].

Note that from P0 � 0 follows that P (t) � 0 for t ≥ 0.

Now let us estimate the derivative of V1(v(·, t)) along
solutions of the system (10) for t ∈ (kθ+mh, kθ+(m+1)h],
k ∈ Z+, m = 0, . . . , N − 1.

Let us denote for short rmin = minz∈[0,l] r(z), rmax =

maxz∈[0,l] r(z), qmax = maxz∈[0,l] q(z), ρ = rminπ
2

l2 − qmax.
Now we can state our second technical lemma as follows.

Lemma 2. Let ρ > 0 and

Bm := sup
k∈Z+

sup
t∈[kθ+mh,kθ+(m+1)h]

‖B(·, t)‖L2
r[0,l].

Then for t ∈ (kθ+mh, kθ+(m+1)h] the following estimate
holds

dV1(v(·, t))
dt

≤ − 2ρ

rmax
V1(v(·, t))+

2Bm‖P−1/2(t)‖p−1/2(t)
√
p(t)V1(v(·, t))V2(t, x(t)).

Proof. The time derivative of the function V1(v(·, t)) along
solutions of the auxiliary equation (14) is

dV1(v(·, t))
dt

= 2

l∫
0

r(z)v(z, t)vt(z, t) dz

= 2

l∫
0

r(z)v(z, t)Av(z, t) dz + 2

l∫
0

r(z)v(z, t)B(z, t) dzx(t)

The first integral in last line can be estimated as follows
l∫

0

r(z)v(z, t)Av(z, t) dz =

l∫
0

v(z, t)
∂

∂z

(
r(z)

∂v

∂z
(z, t)

)
dz

+

l∫
0

q(z)v2(z, t) dz

= −
l∫

0

r(z)v2
z(z, t) dz +

l∫
0

q(z)v2(z, t) dz

≤ −rmin

l∫
0

v2
z(z, t) dz + qmax

l∫
0

v2(z, t) dz.

With help of the Friedrichs inequality
l∫

0

v2(z, t) dz ≤ l2

π2

l∫
0

v2
z(z, t) dz

we get
l∫

0

r(z)v(z, t)Av(z, t) dz

≤
(
− rminπ

2

l2
+ qmax

) l∫
0

v2(z, t) dz.

From the obvious estimation

V1(v(·, t)) =

l∫
0

r(z)v2(z, t) dz ≤ rmax

l∫
0

v2(z, t) dz

we get the inequality

dV1(v(·, t))
dt

≤ − 2ρ

rmax
V1(v(·, t)) + 2

l∫
0

r(z)v(z, t)B(z, t) dzx(t).
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And finally by the Cauchy inequality we arrive at the
desired estimate

dV1(v(·, t))
dt

≤ − 2ρ

rmax
V1(v(·, t))

+2‖v(·, t)‖L2
r[0,l]Bm‖P−1/2(t)‖

√
V2(t, x(t))

≤ − 2ρ

rmax
V1(v(·, t))

+2Bm‖P−1/2(t)‖p−1/2(t)
√
p(t)V1(v(·, t))V2(t, x(t)),

which proves the lemma.

And the last lemma that we need for the estimation of the
time derivative of the function V2 is as follows.

Lemma 3. Let

Dm = sup
k∈Z+

sup
t∈[kθ+mh,kθ+(m+1)h]

∥∥∥D(·, t)
r(·)

∥∥∥
L2
r[0,l]

,

ηm = bm

∞∑
k=1

(2cmh)k−1

(k + 1)!
.

Then for t ∈ (kθ + mh, kθ + (m + 1)h] the following
inequality holds

dV2(t, x(t))

dt
≤ 2e2cmh

√
λmax(Pm)

λmin(Pm)
hηmV2(t, x)

+2p−1/2(t)Dm‖P 1/2(t)‖
√
p(t)V1(v(·, t))V2(t, x(t))

+2
√
lrmaxd∞Dm‖P 1/2(t)‖

√
V2(t, x(t)).

Proof. Let us first consider the expression Ṗ (t)+CT (t)P (t)+

P (t)C(t). To calculate the derivative Ṗ (t) we first derive

an expression for the derivative d
dte
−Ĉm(t). By the chain

rule we have

d

dt
e−Ĉm(t) = −

(dĈm(t)

dt

∂

∂X

)
eX
∣∣∣
X=−Ĉm(t)

= −
(
C(t)

∂

∂X

)
eX
∣∣∣
X=−Ĉm(t)

.

Then by the Hausdorff equality we get

d

dt
e−Ĉm(t) = −e−Ĉm(t)

(
C(t) +

∞∑
k=1

(−1)k

(k + 1)!
{C(t), Ĉkm(t)}

)
.

Hence we can write

d

dt
e−Ĉ

T
m(t) = −

(
C(t) +

∞∑
k=1

(−1)k

(k + 1)!
{C(t), Ĉkm(t)}

)T

e−Ĉ
T
m(t)

Finally we obtain

Ṗ (t) + CT (t)P (t) + P (t)C(t)

= −
( ∞∑
k=1

(−1)k

(k + 1)!
{C(t), Ĉkm(t)}

)T

P (t)

−P (t)
( ∞∑
k=1

(−1)k

(k + 1)!
{C(t), Ĉkm(t)}

)
Taking into account that for all t ∈ (kθ+mh, kθ+(m+1)h]
we have

‖{C(t), Ĉkm(t)}‖ ≤ bm(2cm)k−1(t− kθ −mh)k,∥∥∥ ∞∑
k=1

(−1)k

(k + 1)!
{C(t), Ĉkm(t)}

∥∥∥
≤ bm

∞∑
k=1

(2cm)k−1(t− kθ −mh)k

(k + 1)!
≤ ηmh,

we can estimate
xT (Ṗ (t) + CT (t)P (t) + P (t)C(t))x

≤ 2‖P−1/2(t)‖‖P 1/2(t)‖hηmxTP (t)x(t).

Then from the inequalities

‖P 1/2(t)‖ = λ1/2
max(P (t)) = ‖P (t)‖1/2

= ‖e−Ĉ
T
m(t)Pme

−Ĉm(t)‖1/2 ≤ ecm(t−kθ−mh)‖Pm‖1/2,
λmin(P (t)) = min

‖x‖=1
xTP (t)x

= min
‖x‖=1

(e−Ĉm(t)x)TPme
−Ĉm(t)x

≥ λmin(Pm) min
‖x‖=1

‖e−Ĉm(t)x‖2

≥ min
‖x‖=1

λmin(Pm)e−2cm(t−kθ−mh)‖x‖2

= λmin(Pm)e−2cm(t−kθ−mh)

(18)

and

‖P−1/2(t)‖ = λ1/2
max(P−1(t)) = λ

−1/2
min (P (t))

≤ λ−1/2
min (Pm)ecm(t−kθ−mh),

it follows that
xT (Ṗ (t) + CT (t)P (t) + P (t)C(t))x

≤ 2e2cmh

√
λmax(Pm)

λmin(Pm)
hηmV2(t, x).

for all t ∈ (kθ +mh, kθ + (m+ 1)h].

Now let us estimate the time derivative of V2(t, x(t)) along
solutions of the system (10) for t ∈ [kθ+mh, kθ+(m+1)h].
First we calculate that
dV2(t, x(t))

dt
= xT (t)(Ṗ (t) + CT (t)P (t) + P (t)C(t))x(t)

+2

l∫
0

v(z, t)DT (t, z) dzP (t)x(t)

+2

l∫
0

w(z, t)DT (t, z) dzP (t)x(t).

Then by the Cauchy inequality we get that for t ∈ (kθ +
mh, kθ + (m+ 1)h]

l∫
0

v(z, t)DT (t, z) dzP (t)x(t)

≤ ‖v(·, t)‖L2
r[0,l]Dm‖P 1/2(t)‖

√
V2(t, x(t))

≤ p−1/2(t)Dm‖P 1/2(t)‖
√
p(t)V1(v(·, t))V2(t, x(t))

and hence from the inequality (9),
l∫

0

w(z, t)DT (t, z) dzP (t)x(t)

≤
√
lrmaxd∞Dm‖P 1/2(t)‖

√
V2(t, x(t))

≤
√
lrmaxd∞Dm‖P 1/2(t)‖

√
V (t, v(·, t), x(t))

the statement of the lemma follows.

5. MAIN RESULTS

Let us introduce the following matrices Γm = (γ
(m)
ij )i,j=1,2,

m = 0, . . . , N − 1
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γ
(m)
11 = 0, γ

(m)
22 = 2e2cmh

√
λmax(Pm)

λmin(Pm)
hηm,

γ12 = γ21 = ecmh(Bmλ
−1/2
min (Pm)e−

ρ
2rmax

(N−2m−2)h

+e
ρ

2rmax
(N−2m)hDmλ

1/2
max(Pm)).

and constants

δm =
√
lrmaxDme

cmhλ1/2
max(Pm),

Qm = e

h
2

m∑
j=0

λmax(Γj)

, ζm =
2δm(e

hλmax(Γm)
2 − 1)

λmax(Γm)
,

m = 0, . . . , N − 1.

q0 = max{e−
2ρθ
rmax , λmax(P0P

−1
N )}, α =

√
q0QN−1,

β =
√
q0QN−1

N−1∑
l=0

Q−1
l ζl, λ∗ = maxm=0,N−1 λmax(Γm),

ζ∗ = max
m=0,N−1

ζm, K =
αβeλ

∗h/2

√
q0(1− α)

+
βeλ

∗h/2

√
q0

+ ζ∗,

λ∗ = min
m=0,N−1

λ
−1/2
min (Pm)e−cmh.

Then we can state our first main result as follows.

Theorem 1. Let P0 be positive definite and satisfy the

linear matrix inequality (17). If α ∈ (0, 1) and ρ = rminπ
2

l2 −
qmax > 0, then the linear system (3)-(5) satisfies the ISS
property and, in particular, the following estimations for
its solution are valid

‖x(t)‖ ≤ eλ
∗h/2

λ∗
√
q
e

lnα
θ t
√
e−

ρ
rmax

θ‖ϕ0‖2L2
r[0,l] + λmax(P0)‖x0‖2

+
K

λ∗
d∞.

‖u(·, t)‖L2
r[0,l]

≤ eλ
∗h/2

√
q
e

lnα
θ t
√
‖ϕ0‖2L2

r[0,l] + e
ρ

2rmax
θλmax(P0)‖x0‖2

+
(√

lrmax +Ke
ρ

2rmax
θ
)
d∞.

Proof. For the calculation of the time derivative of the
Lyapunov function V̇ (t, v(·, t), x(t)) along solutions of the
system (9) the Lemmas 2 and 3 can be applied, which
imply that the following inequality holds

V̇ (t, v(·, t), x(t)) ≤ (ṗ(t)− 2ρ

rmax
p(t))V1(v(·, t))

+2ecmh(Bmλ
−1/2
min (Pm)p1/2(t)

+p−1/2(t)Dmλ
1/2
max(Pm))

√
p(t)V1(v(·, t))V2(t, x(t))

+2e2cmh

√
λmax(Pm)

λmin(Pm)
hηmV2(t, x)

+2
√
lrmaxDm‖P 1/2(t)‖

√
V (t, v(·, t), x(t))d∞

for all t ∈ (kθ + mh, kθ + (m + 1)h]. Let us choose the
function p(t) so that

ṗ(t)− 2ρ

rmax
p(t) = 0,

p(kθ +mh+ 0) = pm.

Then p(t) = e
2ρ
rmax

(t−mh−kθ)pm for t ∈ (kθ+mh, kθ+(m+

1)h], where pm = p0e
2ρ
rmax

mh. The constant p0 we choose

as follows: p0 = e−
ρ

rmax
Nh = e−

ρ
rmax

θ. Then

V̇ (t, v(·, t), x(t))

≤ 2γ
(m)
12

√
p(t)V1(v(·, t))V2(t, x(t)) + γ

(m)
22 V2(t, x)

+2δmd∞
√
V (t, v(·, t), x(t))

≤ λmax(Γm)V (t, v(·, t), x(t)) + 2δmd∞
√
V (t, v(·, t), x(t)).

Hence our Lyapunov function satisfies the following differ-
ential inequality for all t ∈ (kθ +mh, kθ + (m+ 1)h]

V̇ (t, v(·, t), x(t)) ≤ λmax(Γm)V (t, v(·, t), x(t))

+2δmd∞
√
V (t, v(·, t), x(t)).

Hence by the comparison principle we get the following
estimate for t ∈ (kθ +mh, kθ + (m+ 1)h]

V (t, v(·, t), x(t)) ≤ u(t,mh+ kθ, Vmk), (19)

where
Vmk = V (kθ +mh+ 0, v(·, kθ +mh+ 0), x(kθ +mh+ 0))

= V (kθ +mh− 0, v(·, kθ +mh− 0), x(kθ +mh− 0)),

for m = 1, . . . , N − 1,

V0k = V (kθ + 0, v(·, kθ + 0), x(kθ + 0)),

VNk = V ((k + 1)θ − 0, v(·, (k + 1)θ − 0), x((k + 1)θ − 0)),

and u(t, kθ +mh, u0), t ∈ (kθ +mh, kθ + (m+ 1)h] is the
solution to the initial value problem

u̇(t) = λmax(Γm)u(t) + 2δmd∞
√
u(t),

u(kθ +mh+ 0) = u0.

Solving this initial value problem we get√
Vm+1,k ≤ e

hλmax(Γm)
2

√
Vmk +

2δm(e
hλmax(Γm)

2 − 1)

λmax(Γm)
d∞,

m = 0, . . . , N − 1
(20)

And in particular√
VNk ≤ QN−1

√
V0k +QN−1

N−1∑
l=0

Q−1
l ζld∞.

Or equivalently√
V ((k + 1)θ, v(·, (k + 1)θ), x((k + 1)θ))

≤ QN−1

√
V (kθ + 0, v(·, kθ + 0), x(kθ + 0))

+QN−1

N−1∑
k=0

Q−1
l ζld∞.

Since functions p(t) are P (t) are θ-periodic we can write

V ((k + 1)θ + 0, v(·, (k + 1)θ + 0), x((k + 1)θ + 0))
= p((k + 1)θ + 0)V1(v(·, (k + 1)θ + 0))
+xT ((k + 1)θ + 0)P ((k + 1)θ + 0)x((k + 1)θ + 0)
= p(0+0)V1(v(·, (k+1)θ))+xT ((k+1)θ)P (0+0)x((k+1)θ)

= e−
2ρθ
rmax p(θ)V1(v(·, (k + 1)θ))

+(P
1/2
N x((k + 1)θ))TP

−1/2
N P0P

−1/2
N P

1/2
N x((k + 1)θ)

≤ e−
2ρθ
rmax p(θ)V1(v(·, (k + 1)θ)) + λmax(P0P

−1
N )V2((k +

1)θ, x((k + 1)θ))
≤ q0(p(θ)V1(v(·, (k + 1)θ)) + V2((k + 1)θ, x((k + 1)θ)))
= q0V ((k + 1)θ, v(·, (k + 1)θ), x((k + 1)θ)).

From the last estimate it follows that√
V ((k + 1)θ + 0, v(·, (k + 1)θ + 0), x((k + 1)θ + 0))

≤ √q0QN−1

√
V (kθ + 0, v(·, kθ + 0), x(kθ + 0))

+
√
q0QN−1

N−1∑
l=0

Q−1
l ζld∞.
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and √
V (kθ + 0, v(·, kθ + 0), x(kθ + 0))

≤ αk
√
V (0 + 0, v(·, 0 + 0), x(0 + 0)) +

β

1− α
d∞.

(21)

Let us denote k0 =
[
t
θ

]
and m0 =

[
t−[t/θ]k0

h

]
, then

t = k0θ +m0h+ t1, t1 ∈ [0, h).

From the inequality (20) we get√
Vm0,k0

≤ QN−1

√
V0k0

+QN−1

N−1∑
l=0

Q−1
l ζld∞

=
1
√
q0

(α
√
V0,k0

+ βd∞),

and from the inequality (19) we get√
V (t, v(·, t), x(t)) ≤ eλmax(Γm0 )h/2

√
Vm0,k0

+ ζm0
d∞

Hence √
V (t, v(·, t), x(t)) ≤ eλ

∗h/2
√
Vm0,k0 + ζ∗d∞

≤ αeλ
∗h/2

√
q0

√
V0,k0 +

(βeλ∗h/2
√
q0

+ ζ∗
)
d∞.

Then from (21) we obtain√
V (t, v(·, t), x(t))

≤ αeλ
∗h/2

√
q0

(αk0
√
V (0 + 0, v(·, 0 + 0), x(0 + 0))

+
β

1− α
d∞) +

(βeλ∗h/2
√
q0

+ ζ∗
)
d∞

=
αeλ

∗h/2

√
q0

ek0 lnα
√
V (0 + 0, v(·, 0 + 0), x(0 + 0))

+(
αβeλ

∗h/2

√
q0(1− α)

+
βeλ

∗h/2

√
q0

+ ζ∗)d∞

≤ eλ
∗h/2

√
q0

e
lnα
θ t
√
V (0 + 0, v(·, 0 + 0), x(0 + 0)) +Kd∞.

Hence,

p1/2(t)‖v(·, t)‖L2
r[0,l]

≤ eλ
∗h/2

√
q0

e
lnα
θ t
√
p0‖ϕ0‖2L2

r[0,l] + λmax(P0)‖x0‖2 +Kd∞.

Since p(t) ≥ p0 for all t ≥ 0, then

‖v(·, t)‖L2
r[0,l]

≤ eλ
∗h/2

√
q0

e
lnα
θ t
√
‖ϕ0‖2L2

r[0,l] + e
ρ

rmax
θλmax(P0)‖x0‖2

+Ke
ρ

2rmax
θd∞,

and as well

λ
1/2
min(P (t))‖x(t)‖

≤ eλ
∗h/2

√
q0

e
lnα
θ t
√
p0‖ϕ0‖2L2

r[0,l] + λmax(P0)‖x0‖2 +Kd∞.

Now from (18) we obtain the estimate

‖x(t)‖ ≤ eλ
∗h/2

λ∗
√
q0
e

lnα
θ t

×
√
e−

ρ
rmax

θ‖ϕ0‖2L2
r[0,l] + λmax(P0)‖x0‖2 +

K

λ∗
d∞

and the statement of the theorem follows immediately
from Lemma 1.

6. CONCLUSION

We have established ISS properties for classical solutions
for a feedback connection of an ODE with a parabolic
PDE and provided explicit ISS estimates for the solutions.
Connections of the considered class of systems was not
discussed in the ISS framework to the best of authors
knowledge. It should be mentioned that the ISS property
can be rather restrictive in some applications. The study
of such couplings can be performed similarly under such
weaker properties as integral ISS or local ISS.
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Dachkovski, S. and Böhm, M. (2004). Finite thermo-
plasticity with phase changes based on isomorphisms.
International Journal of Plasticity, (2), 323–334.

Dashkovskiy, S. and Narimanyan, A. (2007). Thermal
plasma cutting. I. Modified mathematical model. Math.
Model. Anal., 12(4), 441–458.

Kang, W. and Fridman, E. (2017). Boundary control of
delayed ODE-heat cascade under actuator saturation.
Automatica J. IFAC, 83, 252–261.

Karafyllis, I. and Krstic, M. (2019). Input-to-state stability
for PDEs. Communications and Control Engineering
Series. Springer, Cham.

Kedyk, T.V. (1991). Invariant manifolds of hybrid quasi-
monotone extensions. Dokl. Akad. Nauk Ukrain. SSR,
(10), 8–11, 179.

Lakshmikantham, V., Matrosov, V.M., and Sivasundaram,
S. (1991). Vector Lyapunov functions and stability
analysis of nonlinear systems. 63.

Liu, B., Dam, H.H.H., Teo, K.L., and Hill, D.J. (2017).
KL∗-stability for a class of hybrid dynamical systems.
IMA J. Appl. Math., 82(5), 1043–1060.

Magnus, W. (1954). On the exponential solution of
differential equations for a linear operator. Comm. Pure
Appl. Math., 7, 649–673.

Martynyuk, A.A. and Slyn’ko, V.I. (2008). On the stability
of linear hybrid mechanical systems with a distributed
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