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Abstract: In this work, a repetitive control approach for the tracking of harmonic reference
trajectories in the presence of actuator backlash and sticking friction is presented. A spatial
Fourier series formulation is utilized to obtain a learning law which is independent of the desired
reference frequency. Subsequently, discrete-time averaging is employed, which results in a simple
convergence criterion for the closed-loop system. Furthermore, all updates are calculated in
a time-recursive manner, which avoids the necessity of large data windows and allows for a
discrete-time implementation with a uniform sampling time. Finally, experimental results of a
fully assembled spindle drive are presented. This demonstrates the effectiveness of the proposed
control scheme as well as its suitability as an add-on strategy in existing positioning devices.
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1. INTRODUCTION

In many applications of motion control it is necessary to
generate accurate translational harmonic motions. Herein,
the reference frequency is typically user-defined and time-
variant. One possibility to realize such harmonic motions
is the use of spindle drives. These drives are typically
actuated by a stepper motor. This allows to realize tra-
jectories with arbitrary low reference frequencies and a
large range of motion. However, spindle drives typically
exhibit backlash and static friction, which can significantly
degrade the tracking performance, see, e.g., (Nordin and
Gutman, 2002; Jukić and Perić, 2003).

To minimize tracking control errors due to backlash and
frictional forces, different strategies have been pursued in
the literature. A straightforward approach is to utilize a
model-based compensation in the controller design. In this
case, an appropriate backlash model is parametrized in
advance or can even be adapted online, see (Cho et al.,
2018; Mora et al., 2018; Lai et al., 2018). While these
approaches can be used for arbitrary reference trajectories,
their parametrization typically requires detailed knowl-
edge of the internal states of the drive system. Thus, these
methods are of limited use for commercially available spin-
dle drive systems where only the input-output behavior is
known based on measurements.
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the National Foundation for Research, Technology and Development,
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For periodic reference trajectories, repetitive control can
be employed (Huang et al., 1998; Qin and Cai, 2001).
Repetitive controllers iteratively learn the necessary con-
trol input to compensate for backlash solely based on the
measured system output. Moreover, repetitive control can
be easily added to existing drive control systems. Thus,
this approach will be utilized in the current work.

Repetitive control is based on the internal model prin-
ciple and proved effective in reducing the tracking error
in the case of periodic reference trajectories (Li et al.,
2004; Wang et al., 2009). However, as discussed by Ramos
et al. (2011), the performance of conventional repetitive
control degrades significantly if there is a mismatch be-
tween the characteristic frequency of the internal model
and the frequency of the desired reference trajectory. Such
a mismatch can occur if the reference frequency is changed
during operation or, since most repetitive control schemes
are implemented in discrete-time, if the period of the
reference signal is not a multiple of the sampling time.
In the past, different approaches have been proposed to
deal with this problem of frequency mismatch. (Yu and
Hu, 2000) suggested a method to redesign the control law
online if the reference frequency changes. Steinbuch (2002)
introduced additional memory elements to increase the
robustness of repetitive control against uncertain reference
frequencies. Olm et al. (2010) used non-uniform sampling
of the time domain to keep the internal structure of the
repetitive controller constant, even in case of varying refer-
ence frequencies. However, in general, these approaches are
tied to a significant computational burden during online
operation.
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To gain additional flexibility in case of time-variant refer-
ence frequencies, spatial repetitive control has been pro-
posed by several authors. Here, the time t is mapped to
the angular coordinate θ via the transformation

θ (t) =

∫ t

0

2πfr(τ)dτ, (1)

with the time-varying reference frequency fr(t). For
fr(t) > 0 this transformation is one-to-one and thus has an
inverse t = t(θ). The main challenge in spatial repetitive
control lies in its discrete-time implementation. To over-
come this problem, (Abidi, 2014; Yao, 2015; Ramos et al.,
2015) proposed uniform sampling over the spatial domain.
In contrast, Yao et al. (2013) employed a period-based
interpolation scheme over a non-uniform spatial grid. Huo
et al. (2016) used a finite number of resonant filters, where
the arbitrary reference frequency is regarded as a gain-
scheduling parameter. While the method of Huo et al.
(2016) can be easily implemented with uniform temporal
sampling, controller tuning can be quite cumbersome if a
high number of resonance filters is used. Furthermore, due
to the purely time-recursive formulation, it is not clear how
an appropriate anti-windup scheme can be realized with
this approach.

To avoid such difficulties, the current work combines a
Fourier series repetitive control approach with spatial
repetitive control. In contrast to (Huang et al., 1998; Qin
and Cai, 2001; Cheung and Hung, 2009), a time-recursive
formulation is used in this work for the calculation of
the Fourier coefficients. This approach requires neither
the use of data windows nor an interpolation between
temporal and spatial grids. This results in an efficient
implementation with a uniform sampling time, even for
very low reference frequencies.

The paper is organized as follows: The concept of spatial
Fourier series repetitive control is introduced in Section
2. The resulting error dynamics of the closed-loop system
is discussed in Section 2.1. In Section 2.2, a discrete-time
averaging analysis of this error dynamics is carried out,
which serves as a basis for a closed-loop stability criterion
and for the tuning of the system. The implementation
of the proposed algorithm is discussed in Section 2.3
and actuator constraints are considered in Section 2.4.
The effectiveness of the proposed repetitive controller is
demonstrated in Section 3 using the experimental setup
shown in Fig. 1. Conclusions are given in Section 4.

Load mass (14 kg)

Slide

Laser distance
sensor

Spindle drive

Stepper
motor

Fig. 1. Experimental setup.

2. SPATIAL FOURIER SERIES REPETITIVE
CONTROL

In the following, the exponentially stable system

ẋ(t) = Ax(t) + buu(θ(t)) + bww(θ(t)) (2a)

y(t) = cTx(t), (2b)

with the state x ∈ Rm, the initial condition x(0) = x0,
the inputs u,w ∈ R, the output y ∈ R, and the angular
coordinate θ(t), as defined in (1), is considered. The
disturbance input w describes a periodic perturbation and
is represented by a Fourier series with N components in
the form of

w(θ) =

N∑
n=1

σT
n (θ)wn, (3)

with the coefficients wn ∈ R2, and the harmonic functions

σT
n (θ) = [cos(nθ) sin(nθ)] . (4)

To compensate the effect of the disturbance w on the
output y and to realize a desired reference trajectory

r(θ) =

N∑
n=1

σT
n (θ)rn, (5)

with rn ∈ R2, the control input u is parametrized in the
form

u(θ) =

N∑
n=1

σT
n (θ)Qnupn, (6)

with the input parameters un ∈ R2. The superscript
p indicates the respective period, which is defined by
2πp ≤ θ ≤ 2π(p + 1), with p = 0, 1, 2, . . . . The period-
based learning law for un, with n = 1, . . . , N , is defined
as

up+1
n = upn + Ln∆ypn (7)

with the spectral errors

∆ypn =
1

π

∫ 2π(p+1)

2πp

σn(θ)
(
r(θ)− y(t(θ))

)
dθ. (8)

The performance of the closed-loop system is tuned by the
gain matrices

Ln = ln

[
cos(αn) sin(αn)
− sin(αn) cos(αn)

]
(9a)

Qn = qn

[
cos(βn) sin(βn)
− sin(βn) cos(βn)

]
, (9b)

with the gains ln, qn > 0 and the angles αn and βn.

Remark 1. Constant perturbations can be efficiently re-
jected by integral feedback and are therefore not further
considered in the proposed control scheme. However, a cor-
responding extension of the algorithm is straightforward
and thus, is omitted for the sake of brevity.

2.1 Error dynamics

As a preparation for formulating the closed-loop error
dynamics, the steady-state of the system is computed.
Herein, steady-states are indicated by the superscript s.
In the following, an arbitrary constant reference frequency
f sr , with a corresponding period T s

r = 1/f sr , and constant
reference parameters rsn and disturbance parameters ws

n
are assumed. Thus, (1) reduces to

θs(t) = 2πf sr t. (10)
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From (7), the steady-state values for the spectral errors
result in ∆ys

n = 0, if a steady-state control input up+1
n =

upn = us
n is applied. Consequently, (2)-(6) and the transfer

functions

Gu(s) = cT (sI−A)
−1

bu (11a)

Gw(s) = cT (sI−A)
−1

bw (11b)

with the Laplace variable s, yield the steady-state condi-
tion

rsn =

[
Re(Gu(jnωs

r)) Im(Gu(jnωs
r))

−Im(Gu(jnωs
r)) Re(Gu(jnωs

r))

]
Qnus

n

+

[
Re(Gw(jnωs

r)) Im(Gw(jnωs
r))

−Im(Gw(jnωs
r)) Re(Gw(jnωs

r))

]
ws
n,

(12)

with ωs
r = 2πf sr for the steady-state input parameters us

n,
n = 1, . . . , N . Based on (2), the stationary state trajectory
xs(t) is thus given by

ẋs(t) = Axs(t) + bu

N∑
n=1

σT
n (t)Qnusn + bww(θs(t)) (13a)

r(θs(t)) = cTxs(t), (13b)

with the abbreviation σn(t) = σn(θs(t)).

Remark 2. From (12), it becomes clear that Gu(jnωs
r) 6= 0

must hold for all n to obtain a unique solution for us
n. As

will be demonstrated by the analysis in Section 2.2, this
is a necessary condition for convergence of the proposed
learning law.

Let the difference between current values and steady-state

values be indicated by (̃·), i.e., ũpn = upn−us
n, x̃(t) = x(t)−

xs(t) and ỹ(t) = y(t)− r(t). Hence, the error dynamics in
terms of (2) and (7) can be written as

˙̃x(t) = Ax̃(t) + bu

N∑
n=1

σT
n (t)Qnũpn (14a)

ỹ(t) = cTx̃(t), (14b)

and

ũp+1
n = ũpn + Ln∆ypn, (15)

respectively.

Combining (15) with (14) results in a system which evolves
on two time axes given by the continuous time t and
the period index p, respectively. To analyze the system
behavior in a systematic way, the state error dynamics is
formulated in a period-based description. To this end, the
discrete-time value of x̃(t) at the start of period p is defined
by x̃p = x̃(pT s

r ) and its evolution is governed by

x̃p+1 = Φxxx̃
p +

N∑
n=1

Φxnũpn, (16)

with

Φxx = eAT
s
r , Φxn =

∫ T s
r

0

eA(T s
r−t)buσ

T
n (t)dtQn. (17)

Furthermore, the time-dependent output error ỹ(t) during
the interval t ∈ [pT s

r , (p+ 1)T s
r ] can be written as

ỹ(t) = cTeA(t−pT s
r )x̃p

+

N∑
n=1

(∫ t−pT s
r

0

cTeA(t−pT s
r−τ)buσ

T
n (τ)dτ

)
Qnũpn. (18)

With (10) and (18), the spectral errors ∆ypn according to
(8) follow in the form

∆ypn = Φnxx̃
p +

N∑
m=1

Φnmũpm, (19)

with the abbreviations

Φnx = − 2

T s
r

∫ T s
r

0

σn(t)cTeAtdt (20a)

Φnm = − 2

T s
r

∫ T s
r

0

σn(t)

∫ t

0

cTeA(t−τ)buσ
T
m(τ)dτdtQm.

(20b)

Combining (15), (16) and (19) results in the period-based
closed-loop error dynamics

x̃p+1

ũp+1
1
...

ũp+1
N

 =


Φxx Φx1 . . . ΦxN

L1Φ1x I + L1Φ11 . . . L1Φ1N

...
...

. . .
...

LNΦNx LNΦN1 . . . I + LNΦNN




x̃p

ũp1
...

ũpN

 ,
(21)

where I ∈ R2×2 is the identity matrix. Although (21)
is a discrete-time linear time-invariant system, a general
stability analysis would be rather involved due to the
fully occupied dynamic matrix as well as the possibly
high number of states. However, additional insights can be
gained by the discrete-time averaging analysis described in
the following section.

2.2 Averaging analysis

The averaging analysis of the error dynamics starts with a
reformulation of the gain matrices in (9) as Ln = εL̄n, with
a small perturbation parameter ε > 0. The combination of
(15), (16) and (18) can thus be rewritten in the form of

x̃p+1 = Φxxx̃
p + Hzp (22a)

zp+1 = zp + εf (x̃p, zp) , (22b)

with zp =
[
(ũp1)

T
. . . (ũpN )

T
]T

, H = [Φx1 . . . ΦxN ] and

f (x̃p, zp) =

 L̄1∆yp1
...

L̄N∆ypN

 . (23)

The period-based error dynamics (22) is in standard
form for discrete-time mixed-timescale averaging analysis
according to Theorem 2.2.3 in (Bai et al., 1988). Given
that ε is sufficiently small, the objective of the averaging
analysis is to find an averaged representation of (22) in
the form

zp+1
av = zpav + εfav (zpav) , (24)

with the averaged state zpav and the averaged function fav.
The averaged system (24) is easier to analyze than the
error dynamics in (22). Furthermore, if Φxx is exponen-
tially stable, Theorem 2.2.4 in (Bai et al., 1988) guarantees
the exponential stability of (22) and thus (21), if (24) is
exponentially stable and if ε is chosen sufficiently small.

Since f is linear in the spectral errors ∆ypn, the calculation
of fav can be simplified by evaluating the average spectral
errors according to

∆ypav,n = − lim
M→∞

2

MT s
r

∫ MT s
r

0

σn(t)ỹ(t)dt, (25)
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where zp in (23) is replaced by zpav, which is kept constant
for the limit case M → ∞. To evaluate (25), ỹ(t) is split
in to a transient component ỹtr(t) and the steady state
component ỹss(t) according to ỹ(t) = ỹtr(t) + ỹss(t) with

ỹss(t) =

N∑
n=1

σT
n (t)GnQnũpav,n, (26)

ũpav,n as the n-th entry in zpav and the abbreviation

Gn =

[
Re(Gu(jnωs

r)) Im(Gu(jnωs
r))

−Im(Gu(jnωs
r)) Re(Gu(jnωs

r))

]
. (27)

Due to the exponential stability of (2), ytr(t) is bounded
and vanishes for t→∞. Thus, (25) reduces to

∆ypav,n = − 2

T s
r

N∑
m=1

(∫ T s
r

0

σn(t)σT
m(t)dt

)
GmQmupav,m,

(28)

and with ∫ T s
r

0

σn(t)σT
m(t)dt =

{
I, n = m

0, else
(29)

this results in

∆ypav,n = −GnQnũpav,n. (30)

Based on (15) and (30), the components of (24) follow as

ũp+1
av,n = (I− LnGnQn) ũpav,n, (31)

which are exponentially stable iff

ρ (I− LnGnQn) < 1. (32)

Here, ρ(M) denotes the spectral radius of the matrix M.
Due to the duality between complex numbers and 2 × 2
matrices with the shape of (9) and (27), the stability
condition (32) can be formulated in the complex plane
as

|1− λnGu(jnωs
r)κn| < 1, (33)

with

λn = ln (cos(αn) + j sin(αn)) (34a)

κn = qn (cos(βn) + j sin(βn)) (34b)

for all n = 1, 2, . . . , N .

The stability criterion (33) for the closed-loop system
resembles the monotonic convergence criterion in optimal
iterative learning control, see (Ge et al., 2018). Thus, λnκn
can be interpreted as a non-causal filter evaluated at the
frequency nωs

r . Based on (33), the optimal choice for the
tuning gains is λnκn = G−1u (jnωs

r). The specific choice
of λn and κn depends on the structure of the considered
plant (2). For the experimental setup in Fig. 1, this will
be discussed in detail in Section 3.

2.3 Discrete-time implementation

To implement the proposed algorithm on a discrete-time
grid tk = Tsk with a constant sampling time Ts and
k = 0, 1, . . . , (1) and (8) have to be discretized in time.
Using the explicit Euler scheme, the discrete-time version
of (1) follows in the form

θk+1 =
(
θk + 2πTsfr(tk)

)
mod 2π. (35)

Herein, the modulo operation is used to avoid an overflow
during online operation. Furthermore, with fr(t) > 0, it
allows to easily determine the first time index k of each
period p by checking for θk − θk−1 ≤ 0.

With the the use of (35), and the explicit Euler scheme, the
discrete-time version of (8) can be written in the recursive
form

∆yn,k+1 = ∆yn,k − 2Tsfr(tk)σn(θk)ỹk. (36)

Herein, ∆yn,k is recursively updated on a sample-to-
sample basis until θk+1 − θk ≤ 0 is fulfilled. In this case,
∆yn,k+1 is used as the period-based spectral error ∆ypn in
the learning law (7), which is executed once per reference
period p. Thereafter, ∆yn,k+1 is reset to zero to start the
recursive integration for the next period.

The described recursive computation distributes the com-
putational load of evaluating (8) equally over all sampling
instances. Thus, the presented implementation is indepen-
dent of the number of samples per period and avoids the
computation of the fast Fourier transform for a high and
possibly varying number of samples. Compared to (Huang
et al., 1998; Cheung and Hung, 2009; Esṕındola-López
et al., 2016), this results in an implementation which also
allows for very long reference periods with a high number
of samples.

2.4 Actuator constraints

So far the repetitive control scheme was discussed without
any restrictions on the control input. An advantage of
utilizing a period-based update law is that the control
input over the next reference period is known in advance.
Thus, it is possible to look ahead and check for violations
of actuator constraints, like the box constraints

−ū ≤ u(t) ≤ ū, (37)

with the maximum control input ū. Consider the predic-
tion of the unconstrained spectral components according
to

ûp+1
n = upn + Ln∆ypn. (38)

Before the learning update according to (7) is carried out,
the corresponding input trajectory for the next period is
predicted in the form

ûp+1
i =

N∑
n=1

σT
n (iδθ)Qnûp+1

n (39)

on a suitably chosen angular grid {δθ, 2δθ, . . . , 2π} with P
points, the step size δθ = 2π/P and the index i = 1, . . . , P .
Based on this prediction, the Fourier coefficients for the
next period are scaled in the form

up+1
n = ηp+1ûp+1

n , (40)

with the reduction factor

ηp+1 = min
(

1, ū/max
i

(
|ûp+1
i |

))
. (41)

Remark 3. If the actuator constraints are active, i.e.
|u(t)| = ū for some t, perfect output tracking characterized
by y(t) = r(t) is no longer possible. However, since u(t)
is bounded, and because (2) is exponentially stable, all
system states are guaranteed to be bounded even in this
case.

3. EXPERIMENTAL RESULTS

The effectiveness of the proposed control scheme is demon-
strated by measurements carried out on the experimental
rig shown in Fig. 1. The setup consists of a 14 kg mass
mounted on a slide which is moved by the commercially
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Fig. 2. Control structure in the experiment.

Table 1. Numerical values of the controller
parameters used in experiments.

λ1 = (15 + 15j) · 10−6 λ5 = (1 + 10j) · 10−6 λ9 = 1 · 10−6

λ2 = (5 + 20j) · 10−6 λ6 = (1 + 12j) · 10−6 λ10 = 1 · 10−6

λ3 = (5 + 15j) · 10−6 λ7 = (1 + 14j) · 10−6 P = 200
λ4 = (2 + 12j) · 10−6 λ8 = (1 + 16j) · 10−6 kp = 50/s

available spindle drive Gunda Colibri-L KE17. The spindle
drive accepts velocity commands (steps per sample time)
and allows linear motions in the range −5 . . . 5 mm. The
position of the mass y is measured by a laser displace-
ment sensor Welotec OWLE 5060 S1. A dSPACE real-
time platform DS1103 is utilized to execute the control
algorithm within a sampling time of Ts = 1 ms.

Since the spindle drive is used as an off-the-shelf compo-
nent, internal signals like motor currents or voltages can
not be accessed. Moreover, there is a significant backlash
in the spindle drive. In the following, the system behavior
is described by the simple model

ẏ(t) = vr(t) + w(θ(t)), (42)

with the reference speed vr(t). This plant model is not
exponentially stable as required for the stability analysis
in Section 2. Thus, a proportional feedback controller with
the gain kp is used to obtain an exponentially stable
system. Together with u(θ) according to (6) this results
in the control input

vr(t) = u
(
θ(t)

)
+ kp(r(t)− y(t)). (43)

The resulting control structure is shown in Fig. 2.

Due to the integrating behavior of (42), the gain matrix
in (6) is chosen as

Qn = 2πnfr(t)I (44)

for n = 1, . . . , N . With this choice, the output u(θ)
scales with the reference frequency. Thus, according to
(42), the coefficients un remain approximately constant
for small changes of the reference frequency. This leads
to a better tracking performance in the case of a time-
varying frequency. Following the discussion after (32), the
optimal choice for Ln would be Ln = εQ−1n G−1n , with a
sufficiently small gain parameter ε > 0. However, since
(42) is only a simple model of the real plant behavior, Gn

is not accurately known and a better performance can be
achieved by manual tuning of Ln during the experiments.
The resulting values for Ln are summarized in Table 1
in the form (34a). The repetitive controller is first tuned
for N = 1 by increasing l1 and α1 until a suitable
convergence speed is observed. Then, the order of the
repetitive controller is successively increased by one and
the additional gain matrix LN is tuned analogous to L1.

The objective of the following experiments was to realize
a sinusoidal reference trajectory

r(t) = R sin(θ(t)) = σT
1 (θ(t))r1, (45)

0 2 4 6 8 10
−1.2
−0.6

0

0.6

1.2

time in s

y
in

m
m

Feedforward

Repetitive control

Desired

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

frequency in Hz

|y
−

r
|i
n
m
m Feedforward

Repetitive control

Fig. 3. Steady-state results for a sinusoidal reference with
R = 1 mm, fr = 0.1 Hz and N = 10 in the repetitive
controller.

with r1 = [0 R]
T

and θ(t) according to (1). Thus, based
on (42), the first spectral component of the input is

initialized as u0
1 = [R 0]

T
. All other components u0

n, with
n = 2, . . . , N , are set to zero. This initial values may be
considered as ideal model-based feedforward input and will
be compared to the proposed repetitive control scheme.

A reference trajectory with R = 1 mm and fr = 0.1 Hz is
considered in the first experiment. Although this results in
104 samples per reference period, this high number of sam-
ples does not constitute a problem regarding real-time exe-
cution due to the time recursive implementation discussed
in Section 2.3. Fig. 3 shows the steady-state results for
the first experiment. The combination of the feedforward
controller and the proportional feedback controller results
in a reasonable tracking performance over large portions
of the reference trajectory. However, when the direction of
movement changes, the tracking performance significantly
deteriorates due to backlash. This deviation is also visible
in the error spectrum shown in Fig. 3. In comparison, the
proposed repetitive controller with N = 10 components
achieves an almost perfect rejection of all spectral error
components up to 1 Hz.

To demonstrate the effects of actuator constraints, Fig. 4
shows results from a second experiment with different
values for R and fr = 10 Hz. In this experiment, N = 3
already leads to a sufficiently good tracking performance,
at least for a reference trajectory with R = 1 mm. For
R = 1.5 mm, the control input u(θ) would violate the
box constraints (37) with ū = 75 mm/s. In this case,
the control input is restricted to |u| ≤ 75 mm/s, cf.
Fig. 4. However, due to the active input constraint, perfect
tracking of the reference trajectory is no longer possible.

Results from a third experiment with R = 1 mm and a
time-varying reference frequency fr are shown in Fig. 5.
The control starts at the corresponding steady-state with
fr = 1 Hz. It should be noted that the time-varying
reference frequency is also considered in the feedforward
control via (1) and the frequency dependent choice of Qn

according to (44). Nonetheless, the proposed repetitive
controller still leads to a significant reduction of the
tracking error compared to the combination of feedforward
and proportional control.
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Fig. 5. Output error for a time-varying reference frequency
fr with N = 3 in the repetitive controller.

4. CONCLUSIONS

This work presented a backlash and friction compensation
scheme for periodic reference trajectories with arbitrary
reference frequency based on spatial Fourier series repeti-
tive control. Discrete-time averaging analysis was applied
to obtain a simple stability criterion that can assist in
the parametrization of the proposed algorithm. Due to
the time-recursive calculation of the update law, the algo-
rithm can be easily realized with a constant sampling time
even for reference periods with a high number of samples
per period. Finally, the presented experimental results
demonstrate the effectiveness of the proposed repetitive
controller, even if the control input is constrained.
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Esṕındola-López, E., Gómez-Espinosa, A., Carrillo-Serrano, R. V.,
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Investigación 31, 29–37.

Ramos, G. A., Cortés-Romero, J., Coral-Enriquez, H., 2015. Spatial
observer-based repetitive controller: An active disturbance rejec-
tion approach. Control Engineering Practice 42, 1–11.

Steinbuch, M., 2002. Repetitive control for systems with uncertain
period-time. Automatica 38 (12), 2103–2109.

Wang, Y., Gao, F., Doyle, F. J., 2009. Survey on iterative learning
control, repetitive control, and run-to-run control. Journal of
Process Control 19 (10), 1589–1600.

Yao, W.-S., 2015. Adaptive repetitive control with two nonsynchro-
nized sampling. Journal of Dynamic Systems, Measurement, and
Control 137 (6), 061003/1–061003/8.

Yao, W.-S., Tsai, M.-C., Yamamoto, Y., 2013. Implementation
of repetitive controller for rejection of position-based periodic
disturbances. Control Engineering Practice 21 (9), 1226–1237.

Yu, S.-H., Hu, J.-S., 2000. Asymptotic rejection of periodic distur-
bances with fixed or varying period. Journal of Dynamic Systems,
Measurement, and Control 123 (3), 324–329.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1677


