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Abstract: A two-phase model predictive controller (MPC) is proposed for underactuated
surface vessel operation in confined environments. For general driving maneuvers (phase one)
the ship’s geometry is not considered explicitly while in more restricted areas (stage two) which
occur, e.g., in mooring maneuvers, the ship’s geometry is approximated to ensure collision
avoidance. To remove the dynamical constraint in the problem setup, the differential flatness
of the fully actuated system is exploited and the flat outputs are parameterized using B-
spline functions. Underactuated behavior is retained by means of inequality constraints that
are imposed on the non-controllable input. In an effort to solve the MPC, a static nonlinear
optimization problem is formulated and feasibility w.r.t. obstacles and actuator constraints is
ensured at collocation points. Static obstacles are considered as constructive solid geometry
functions in the MPC which also takes into account disturbances induced by wind.

Keywords: Surface vessel, optimal control, flatness, model predictive control, constrained
environment, ship motion control, autonomous vehicle, docking.

1. INTRODUCTION

Recent years show an advancing interest in the field
of autonomous vessels. This is due to the variety of
challenging applications where autonomous systems can
be advantageous to humanly-operated vessels but also
because of the task to solve the arising complex problems
that involve environmental disturbances and nonlinear
vessel dynamics, see Streng and Kuipers (2020).

Along with classical path-following scenarios using PID
controllers as shown in B̊arslett et al. (2018), more ad-
vanced approaches such as Lyapunov-based methods in-
volving, e.g., passivity and backstepping techniques were
applied in Fossen et al. (2002); Breivik and Fossen (2004);
Do and Pan (2006, 2009); Fossen (2011). Furthermore,
exact feedback linearization and differential flatness were
exploited in Agrawal and Sira-Ramirez (2004); de Aquino
Limaverde Filho and Fortaleza (2013); Paliotta et al.
(2018). In general, the mentioned approaches are not
able to handle input and state constraints. To deal with
such issues, a third branch has emerged which utilizes
optimization-based techniques, see, e.g., Bitar et al. (2018,
2019); Lekkas et al. (2016). Essentially, optimization-based
methods aim to minimize a cost functional depending on
the control inputs subject to the system dynamics and
additional equality and inequality constraints. Methods to
solve this optimal control problem (OCP) can be charac-
terized as indirect or direct, where the former leads to a
two-point boundary value problem and the latter directly
minimizes the cost functional by suitable discretization.

While nonlinear and optimization-based techniques con-
stitute independent methods, their combination can lead
to increased performance and reduced complexity. This
combined approach goes back to Agrawal and Faiz (1998)

and was further extended to the class of differentially
flat systems, e.g. in Milam et al. (2000). Herein, the so-
called flat outputs are parameterized with B-spline func-
tions to obtain an OCP, where the constraint imposed by
the system dynamics is implicitly fulfilled. Therefore, this
constraint can be omitted in the problem setup. Subse-
quent discretization in time transfers the OCP to a static
optimization problem (direct method). This approach has
already been used for fuel optimization in hybrid electric
drives and trajectory generation for quadrocopters, see
Abel and Joševski (2015) and Abel et al. (2016), respec-
tively.

In this contribution, the combined flatness and optimiza-
tion approach is extended and applied to an underactu-
ated surface vessel model. In Agrawal and Sira-Ramirez
(2004) the flatness of the considered model is verified
under restrictive assumptions on the model parameters.
Moreover, the resulting flat state and input parameteriza-
tions contain several singularities, which severely restrict
its applicability. To address this in the following the so-
called defect elimination method is used as suggested, e.g.,
in Oldenburg and Marquardt (2002). Utilizing this ap-
proach, the underactuated dynamics is achieved by means
of the singularity free flat parameterization obtained for
a fully actuated vessel model. This comes at the cost of
an additional equality constraint that must be imposed on
the parameterized, non-controllable input. For practical
reasons, however, this equality constraint is replaced by
two inequality constraints. This approach is evaluated
for driving maneuvers in confined environments including
mooring based on closed-loop MPC involving disturbances
induced by wind. Herein, the maneuver is separated into
two phases. The first phase will be referred to as the
driving phase where the ship geometry is not explicitly
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Fig. 1. Vessel position and orientation in NED frame and
velocities in body-fixed frame for 3DOF surface vessel.

considered to evaluate obstacle collisions. Subsequently,
the second phase will be referred to as the mooring phase,
where the ship geometry is approximated to ensure obsta-
cle avoidance for the entire ship hull.

The paper is organized as follows. The vessel model is
introduced in Section 2 together with its flat state and
input parameterization. Section 3 describes the general
form of an OCP and introduces the used approach for
obstacle modeling with constructive solid geometry (CSG)
functions. Additionally, the flatness-based direct solution
method is described by briefly introducing the main prop-
erties of B-spline functions and formulating their connec-
tion to flat outputs. To account for wind-induced distur-
bances, the extension to MPC is proposed in Section 4.
Subsequently, a two-phase MPC is presented together with
short remarks on the used disturbance model which is
assumed to be unknown to the MPC. Finally, Section 5
shows simulation results and the paper closes with some
conclusions in Section 6.

2. SURFACE VESSEL MODEL

Assuming that the vessel operates in calm sea conditions,
e.g., in harbor areas or near shore shipping applications,
roll, pitch and heave velocities can be neglected. This
results in a three degrees of freedom (3DOF) description
of a surface vessel for which two sets of coordinates are
required. The first set η = [x y ψ]T describes the vessel
location and pose in the North-East-Down (NED) frame
with origin 0r, where x corresponds to the north and y
to the east coordinate. The third component ψ describes
the vessel orientation w.r.t. the north axis. This set of
coordinates is a reference frame for the second set of
coordinates ν = [u v r]T which represents the vessels
surge and sway velocities as well as its yaw rate in a body-
fixed coordinate frame, respectively. These relations can
be observed in Fig. 1.

2.1 Vessel dynamics

By applying Newton’s second law the equations of motion
for a surface vessel can be described using matrix-vector
notation, see Fossen et al. (2002), in the form

η̇ = R(ψ)ν (1a)

M ν̇ = −
(
C(ν) +D(ν)

)
ν +Bττ c + τw (1b)

where

R(ψ) =

[
cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

]
(2)

is the rotation matrix and

M=

[
m11 0 0

0 m22 m23

0 m32 m33

]
=

[
m−Xu̇ 0 0

0 m−Yv̇ mxg−Yṙ
0 mxg−Nv̇ Izz−Nṙ

]
(3)

describes the mass matrix with vessel mass m, hydrody-
namic derivatives in SNAME notation Xu̇, Yv̇, Yṙ, Nv̇, Nṙ,
distance xg of the origin 0b to the center of gravity on the
xb-axis, and moment of inertia Izz. Coriolis and centripetal
effects are included in the matrix

C(ν) = −C(ν)T =

[
0 0 c13
0 0 c23
−c13 −c23 0

]
, (4)

where

c13 = −m22v −
m23 +m32

2
r, c23 = m11u.

The damping matrix

D(ν) = −

Xu+X|u|u|u| 0 0
0 Yv+Y|v|v|v| Yr
0 Nv Nr+N|r|r|r|

 (5)

combines linear damping terms Xu, Yv, Yr, Nv, Nr and
nonlinear second order modulus model terms X|u|u, Y|v|v,
N|r|r. For an underactuated surface vessel it holds that the

effect of the control input τ c = [τu τr]
T is applied with the

actuator configuration matrix

Bτ =

[
1 0
0 0
0 1

]
. (6)

The vector τw describes wind-induced disturbances. For a
compact notation, the state vector x = [ηT νT]T ∈ Rn,
where n = 6 is the number of states, and input vector
u = τ c ∈ Rm, where m = 2 is the number of inputs, are
defined such that (1) can be rewritten in nonlinear input-
affine form

ẋ = f(x) +Bu+ τw, t > 0, x(0) = x0 (7a)

where

f(x) =

[
R(ψ)ν

−M−1
(
C(ν) +D(ν)

)
ν

]
, (7b)

B =

[
0(3×m)

M−1Bτ

]
, (7c)

τw =

[
0(3×1)

M−1τw

]
. (7d)

2.2 Differential flatness

In the following, the differential flatness of the vessel model
is shown. Theoretical background concerning differential
flatness is provided in, e.g., Fliess et al. (1995); Rothfuß
(1997); Fliess et al. (1999). The flat parameterization of
the underactuated vessel model shows several singularities,
see Agrawal and Sira-Ramirez (2004). Therefore, a fully
actuated model with u = τ ′c = [τu τv τr]

T and B =

[0(m×3) (M−1B′τ )T]T where B′τ = I(3×3) = diag{1, 1, 1}
is assumed. Furthermore, the disturbance term in (7a) is
neglected so that τw = 0. Choosing the flat output z =
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η = [x y ψ]T, the states and inputs can be differentially
parametrized in the form

x=θx
(
z, ż, . . . ,z(β−1)

)
=


z1
z2
z3

sin(z3)ż2 + cos(z3)ż1
cos(z3)ż2 − sin(z3)ż1

ż3

 (8a)

u=θu
(
z, ż, . . . ,z(β)

)
=

[
θτu
θτv
θτr

]
, (8b)

with β = (2 2 2). The terms θτu , θτv , and θτr are provided
in Appendix A. It becomes apparent that no singularities
arise in (8).

To recover the original underactuated vessel dynamics
from the flat parameterization of the fully actuated vessel
it is necessary to impose the constraint

θτv = 0, (9)

which induces an ODE in the components of z. In princi-
ple, this ODE can be interpreted as the internal dynamics,
see, e.g., the analysis in Rothfuss et al. (1996). For the
considered OCP (9) is included by means of two inequality
constraints to be fulfilled in terms of the decision variables.

2.3 Model parameters

The vessel parameters are taken from Do and Pan (2006)
for a model ship and are summarized in Tab. 1. Therein,
LS and WS are the vessel length and width, respectively.
The inputs are constrained according to

−5 N ≤ τu ≤ 5 N, (10a)

−0.2 N m ≤ τr ≤ 0.2 N m. (10b)

Table 1. Vessel parameters

Mass matrix
Damping matrix

Vessel
linear nonlinear

M11 25.80 Xu −12.0 X|u|u −2.1 LS 1.20 m

M22 33.80 Yv −17.0 Y|v|v −4.5 WS 0.35 m

M23 6.20 Yr −0.2 N|r|r −0.1 m 17.00 kg

M32 6.20 Nv −0.5

M33 2.76 Nr −0.5

3. FLATNESS-BASED OPTIMAL CONTROL

The aim for the desired approach is to generate tra-
jectories while also considering actuator constraints. In
other words, a combined trajectory-generation and motion
control of the vessel is required while also taking into
account confined environments for mooring maneuvers.
In the following, CSG functions are discussed which can
represent arbitrary shapes. These can be included to an
OCP formulation. Furthermore, a flatness-based solution
method for the OCP using B-splines is discussed.

3.1 Obstacle modeling

For obstacles of arbitrary shapes, CSG functions are used,
see Ricci (1973). These are based on geometric primitive

functions fpr(x) such as ellipsoids, lines, and triangles. In
order to describe the surface S of a shape mathematically,
a function of the form

fS(x) ≤ 1 (11)

can be formulated which combines several primitive shapes
using the maximum operator, i.e.

fS(x) = max {fpr1 (x), . . . , fprl (x)} , (12)

where l is the number of primitive functions used to define
the shape. Since the gradient of the maximum operator is
not smooth the approximation

max{fpr1 (x), . . . , fprl (x)} ≈
[
(fpr1 (x))p + . . .

+ (fprl (x))p
] 1

p
(13)

is used, where the approximation quality increases with
increasing p ∈ N. In the following scenarios, rectangles
are used to reflect confined areas. A rectangle can be
constructed from two shifted and rotated parabolas, so
that

fSrect(x|r) =

[(
cos(α)(x− x̃0) + sin(α)(y − ỹ0)

dx

)2p

+

(
− sin(α)(x− x̃0) + cos(α)(y − ỹ0)

dy

)2p
] 1

p

,

(14)

where the elements of r = [x̃0 ỹ0 dx dy α p]
T describe the

center position, length, width, orientation, and approxi-
mation quality parameter in the reference frame.

3.2 Problem formulation

In the following, the OCP for the considered system is
expressed with

min
u

J(u) = ϕ(tf,x(tf)) (15a)

s.t.

ẋ = f(x) +Bu, t > 0, x(0) = x0 (15b)

g
(
tf,x(tf)

)
= 0 (15c)

h(x) ≤ 0 (15d)

u− ≤ u ≤ u+, (15e)

where J(u) represents the cost functional in Mayer form
that is to be minimized, tf is the final time, (15b) denotes
the ODE constraint imposed by the system dynamics with
initial condition x(0) = x0. Furthermore, terminal path
constraints are included with (15c), and state constraints
imposed by obstacles are formulated with (15d). Herein,
h(x) is obtained by rearranging (11) and including (14)
which yields hi(x) = 1 − fSrect,i(x), i = 1, . . . , q, where q
is the number of rectangular obstacles. Input constraints
are expressed using (15e), where u−, and u+ denote the
lower and upper input bounds, respectively.

3.3 Flatness-based solution using B-splines

The ODE constraint (15b) is implicitly fullfilled by the
flat parameterization (8) of the system. Therefore, the
differential flatness of the vessel system can be exploited
when the OCP is formulated in flat coordinates thereby
eliminating the ODE constraint. Since the problem is still
an infinite-dimensional it is convenient to parameterize the
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flat outputs using B-spline functions which are unions of
curve segements. For this, consider the expansion

zj(t) ≈ ẑj(t,pj) =

Nj∑
i=0

Bi,Dj (t)pi,j ,
t ∈ [0, tf],

j = 1, . . . ,m
(16)

for the jth component of the flat output z. Herein, Bi,Dj
(t)

are basis functions of order Dj and the vector pj =

[p0,j . . . pNj ,j ]
T summarizes the individual Nj weights.

In general, the ability to approximate complex function
behavior is improved as Nj is increased. Using B-spline
functions the basis functions can be calculated recursively
using the Cox-DeBoor scheme, see Piegl and Tiller (2013),
i.e.

Bi,0(t) =

{
1, for t ∈ [ui, ui+1)

0, else
, (17a)

Bi,j(t) =
t− ui

ui+j − ui
Bi,j−1(t)

+
ui+j+1 − t

ui+j+1 − ui+j
Bi+1,j−1(t).

(17b)

In the recursion formula it can be seen that the time
horizon t ∈ [0, tf] is separated using a so-called knot vector

ûj = [u0,j . . . uMj ,j ]
T j = 1, . . . ,m. (18)

At the knot points, the curve segments are joined to form
the B-spline function. As can be seen from the recursion,
the ith basis function Bi,Dj (t) that is weighted with pi,j
for the jth flat output is nonzero on the interval t ∈
[ui,j , uDj+1,j). Thus, choosing

ûj = [0 . . . 0︸ ︷︷ ︸
Dj

0 . . . tf tf . . . tf︸ ︷︷ ︸
Dj

]T, (19)

results in Bk,0(0) = 0 for k < Dj and only BDj ,0(0) = 1,
so that

ẑj(0,pj) = p0,j . (20)

Similarly, this choice of the knot vector yields ẑj(tf,pj) =
pNj ,j . In this way, initial and final values (of the flat
outputs) are parameterized using the control points p0,j
and pNj ,j , respectively. The parameter Mj in û can be
determined with Mj = Dj +Nj + 1. The flat parameteri-
zation requires derivatives of the flat outputs up to order
β. The kth order derivative of a B-spline function is given
by

ẑ
(k)
j (t,pj) =

Nj∑
i=0

B
(k)
i,Dj

(t)pi,j ,
t ∈ [0, tf],

j = 1, . . . ,m,
(21)

where

B
(k)
i,l (t) =

l

ui+l − ui
B

(k−1)
i,l−1 (t)

− l

ui+l+1 − ui+1
B

(k−1)
i+1,l−1(t),

k = 1, . . . , Dj − 1

l = 0, . . . , Dj
.

(22)

This means that the derivative of a B-spline function is
again a B-spline function but of lower degree. Each B-
spline function is Dj − 2 times continuously differentiable.
To avoid numerical difficulties, Dj should be chosen as
small as possible, i.e. Dj = βj+2. For further properties of
B-spline functions, see Piegl and Tiller (2013). Substitut-
ing (16), (21) together with (8) into the OCP formulation
(15) yields an equivalent problem with the new (constant)
decision variables

p =
[
pT1 . . . pTm

]T ∈ Rnp , (23)

where np =
∑m
j=1Nj is the number of decision variables.

Feasibility w.r.t. obstacle and input constraints (15d) and
(15e), respectively, is checked at collocation points, tk =
kh, k = 0, . . . , N , where N+1 is the number of collocation
points and t0 = 0, tN = tf. Consequently, a NLP is
obtained.

4. MODEL PREDICTIVE CONTROL

In the following, the flatness-based OCP approach is ex-
tended to a MPC to compensate for wind-induced distur-
bances. This is done by repeatedly solving OCPs at dis-
crete points in time with a step time of ∆t = tMPC = const.
As a scenario, a combined driving and mooring maneuver
is considered, each resulting in a different OCP formula-
tion.

4.1 Driving phase

In the first phase, the distance to a desired terminal
position (xf, yf) is minimized within the fixed MPC time
horizon tf = thor, i.e.,

J(u) = ϕ(tf,x(tf)) = (x(tf)− xf)2 + (y(tf)− yf)2, (24)

with

g(tf,x(tf)) = ∅, (25)

such that no terminal condition is imposed on the problem.
In this way, the closest point w.r.t. the terminal position
is the solution to the OCP. It can be assumed that while
driving no confined areas are passed by the vessel so that it
is sufficient to adduce the origin 0b of the body-fixed frame,
i.e. (x, y), in order to evaluate the obstacle functions (15d).

4.2 Mooring phase

If the vessel origin is within a defined radius Rs (switching
point) of the desired terminal position after an arbitrary
iteration, the cost functional is altered to minimize the
transition time, i.e.

J(u) = ϕ(tf,x(tf)) = tf. (26)

This requires the formulation of a terminal condition

g(tf,x(tf)) = x(tf)− xf, (27)

where xf is the arbitrary but fixed final state. In this phase,
the vessel geometry is approximated as a rectangle and
feasibility w.r.t. obstacles is ensured using four edge points
of the rectangle.

4.3 Wind-induced disturbances

The disturbances induced by wind τw or τw, respectively,
are calculated according to Fossen (2011) using a normally
distributed wind direction βw ∼ N (µβ , σβ) and an abso-
lute wind velocity Vw,abs ∼ W(kV , λV ), where kV and λV
are shape and scale parameters of the Weibull distribution.
With this, the forces and torque applied to the vessel can
be calculated with

τw =
1

2
ρ
(
Vw, rel

)2 [ CXAf
CYAl

CNAlLS

]
, (28)

where ρ is the air density, Vw,rel is the relative wind
velocity which, together with the coefficients CX , CY , and
CN , depends on the absolute wind direction βw and speed
Vw,abs. The parameters LS , Af and Al are vessel length,
projected frontal and lateral areas, respectively.
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Table 2. Obstacle and wind parameters.

Obstacles
Wind

r1 r2 r3 r4

x̃0 2 2 0.5 3 Af 0.35 m2 µβ 0 rad

ỹ0 17.575 18.575 16.325 10 Al 1.2 m2 σβ 0.06 rad

dx 2 2 1 1.5 LS 1.2 m λV 0.194

dy 0.5 0.5 6 1.5 kV 2

α 0 0 0 π
4

ρ 1.205 kg

m3

p 12 12 12 12

5. SIMULATION RESULTS

Simulation results are generated in MATLAB using CasADi
with IPOPT as NLP solver, see Andersson et al. (2018) and
Wächter (2002), respectively. The underactuated vessel
dynamics using the flat parameterization of the fully
actuated system is retained by taking into account (9)
which for numerical purposes is approximated by

−ε ≤ θτv ≤ ε, (29)

for ε � 1. For the simulation, only the solutions of θτu ,
and θτr are applied to the underactuated model.

Remark 1. Setting ε = 0 would result in N + 1 equality
constraints which reduces the number of free decision
variables in the NLP potentially rendering it unsolvable.
Choosing ε > 0 avoids this issue.

Initial and terminal (desired) states are chosen to be

x0 =
[
3.5 2

π

2
0 0 0

]T
, (30a)

xf = [2.4 18 0 0 0 0]
T
. (30b)

Further, the switching point is chosen to be

Rs = thor
√
u2max + v2max, (31)

where umax = 0.38 m/s, vmax ≈ 0 m/s describe the max-
imum surge and sway velocity of the vessel, respectively.
The fixed time horizon is set to thor = 15 s in the driving
phase. The MPC horizon is shifted each iteration for
tMPC = 1 s. Additionally, four obstacles are considered
where hi(x), i = 1, 2, 3 are relevant for the mooring ma-
neuver and h4(x) affects the driving maneuver. Feasibility
w.r.t. constraints is ensured at N + 1 = 200 collocation
points. Additional scenario parameters are summarized in
Tab. 2. The top view of the path, orientation, initial and
final position, as well as the switching point are shown
in Fig. 2a. It can be seen that there is no collision with
any obstacle. Figure 2b shows the inputs with constraints
marked using dashed-red lines which are satisfied for all
times. The remainder of states is shown in Fig. 2c to-
gether with the switching time ts = 31 s. Sudden changes
in the inputs can be explained by numerical issues and
disturbances which could push the vessel into the obstacles
resulting in feasibility issues for the NLP solver. This could
be avoided using soft constraints as described in Scokaert
and Rawlings (1999).

6. CONCLUSION

In this paper a flatness-based MPC for an underactuated
nonlinear surface vessel model is introduced. The fully
actuated system is shown to be differentially flat so that
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(a) Simulated path with wind direction βw, absolute wind
speed Vw,abs, switching radius Rd, initial and final positions,
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Fig. 2. Simulation results with optimal path (top), inputs
(middle), and states (bottom) each with (blue) and
without (black dotted) disturbances considering four
rectangular obstacles.

the ODE constraint in the OCP can be removed. The
flat outputs are parameterized using B-spline functions. A
discretization in time of the OCP in flat coordinates allows
the formulation of a NLP which can be solved numerically.
Underactuated vessel dynamics are retained using inequal-
ity constraints imposed on the non-controllable input and
obstacles are included to the OCP using CSG functions
which can approximate arbitrary shapes. The concept is
evaluated in a two-phase simulation scenario resulting in
different OCP formulations. Future work focuses on real-
time feasibility which can be achieved by approximating
the highest-order derivative of each flat output and sub-
sequent integration thus avoiding recursive computation
of basis functions as shown in Oldenburg and Marquardt
(2002). Further work also focuses on soft constraints and
extending the concept to include collision avoidance regu-
lations (COLREGS).

Appendix A. INPUT PARAMETRIZATION

The terms arising in (8b) read
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θτu = −X|u|u
(

sin(z3)ż2 + cos(z3)ż1
)

· | sin(z3)ż2 + cos(z3)ż1|+m11 sin(z3)z̈2

−
[
(m22 −m11) cos(z3)ż3 +Xu sin(z3)

]
ż2

−
[
(m11 −m22) sin(z3)ż3 +Xu cos(z3)

]
ż1

− 1

2
(m23 +m32)ż23 +m11 cos(z3)z̈1,

(A.1a)

θτv = Y|v|v
(

sin(z3)ż1 − cos(z3)ż2
)

· | cos(z3)ż2 − sin(z3)ż1|+M22 cos(z3)z̈2

+
[
(m11 −m22) sin(z3)ż3 − Yv cos(z3)

]
ż2

+
[
(m11 −m22) cos(z3)ż3 + Yv sin(z3)

]
ż1

+m23z̈3 − Yr ż3 −m22 sin(z3)z̈1,

(A.1b)

θτr = m32 cos(z3)z̈2 +m33z̈3 −N|r|r ż3|ż3| −Nr ż3
+
[
(m22 −m11) sin(z3) cos(z3)

]
ż22

+
[(

(m11 −m22)(sin2(z3)− cos2(z3))
)
ż1

+
1

2
(m23 −m32) sin(z3)ż3 −Nv cos(z3)

]
ż2

+
[
(m11 −m22) sin(z3) cos(z3)

]
ż21

+
[1
2

(m23 −m32) cos(z3)ż3 +Nv sin(z3)
]
ż1

−m32 sin(z3)z̈1.
(A.1c)
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Wächter, A. (2002). An Interior Point Algorithm for
Large-Scale Nonlinear Optimization with Applications
in Process Engineering. Ph.D. thesis, Carnegie Mellon
University.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14892


