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Abstract: In this paper, an efficient controller design method is proposed based on active
disturbance rejection control (ADRC) scheme for stabilization problem of wheeled mobile
robots with parametric uncertainties, which can make the system converge quickly. By using
the extended state observer (ESO), both the system states and the unknown parametric
uncertainties could be estimated. In addition, the input-state scaling technique is used to
transform the system into two decoupled subsystems. Based on the decoupled subsystems, a
switching controller and ADRC are designed. Simulation results show that the proposed scheme
can stabilize the wheeled mobile robot system asymptotically despite the presence of parametric
uncertainties.
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1. INTRODUCTION

Wheeled mobile robots can move autonomously in a com-
plex environment and complete many difficult tasks [Hua
and Min (2001); Su et al. (2004)]. Thus, it has been
widely used in many fields [Hua (2013)]. However, the
motion is under the non-holonomic constraint of pure
rolling between the wheels and the ground, which brings
challenges to the stabilization problem of wheeled mobile
robots [Goldstein et al. (2002)].

The stabilization problem of non-holonomic mobile robots
has been widely studied since the seminal work of [Brock-
ett et al. (1983)], which establishes the non existence of
any continuous state feedback control law that can make
system asymptotically stable in the sense of Lyapunov.
Therefore, many classical control methods used in holo-
nomic systems fail to deal with non-holonomic systems,
which makes the stabilization control of non-holonomic
systems very difficult. In order to solve this problem,
there are already some existing methods, for example,
time-varying continuous controllers [Jiang (1996); Morin
and Samson (1997)], and discontinuous controllers [Astolfi
(1999); Gao et al. (2015)].

Most of the above studies focus on the deterministic sys-
tems. However, a wheeled mobile robot is a complex sys-
tem with many uncertainties. Due to the existence of these
uncertainties, it is usually difficult to obtain the accurate
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model of the system, which may provoke performance
deterioration even instability of the control system, in
particular for the presence of parametric uncertainties [Su
et al. (2008)]. Thus, to reduce the influence of uncertainty
is a key point of controller design. Jiang combines σ trans-
formation and backstepping method to design a robust
exponential stabilization controller, in which the higher-
order derivations need to be figured out [Jiang (2000)].
A robust stabilization control strategy is proposed by
Lucibello to deal with the uncertain wheeled mobile robots
with the cost of poor dynamic performance [Lucibello and
Oriolo (2001)]. Model reference adaptive control scheme is
proposed in [Ashoorirad et al. (2006)] for wheeled mobile
robots with bounded parametric uncertainties, where the
bound is too small. Guechi designes a stabilizing controller
using differential flatness based on the sliding mode tech-
nology, in which the design of sliding surface is complicated
[Guechi et al. (2012)].

Therefore, to enhance the response speed and uncertainty-
rejecting performance of a class of wheeled mobile robot-
s with parametric uncertainties, a new control strategy
based on active disturbance rejection control scheme is
proposed in this paper. The idea of a controller with the
capacity of compensation of internal and external distur-
bances by means of an extended state observer (ESO)
was proposed by Han, and sequentially introduced the
concept of active disturbance rejection control (ADRC)
[Han (1998)]. ADRC has led to a new paradigmatic view of
traditional nonlinear control problems where disturbances,
internal and external, are actively estimated and rejected.
Furthermore, it has small overshoot, fast response speed,
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Fig. 1. A two-wheeled mobile robot whose center of mass
coincides with the geometric center

high accuracy, and strong disturbance-rejection capabil-
ities, having aroused extensive researches [Chen et al.
(2013); Huang and Xue (2014); Li et al. (2017); Xue
and Huang (2016)]. Up to now, ADRC has been suc-
cessfully applied to power system, flight control, machine
processing, and other fields [Wu et al. (2013); Dong et al.
(2012); Zhao and Gao (2013)]. Hence it is natural to resort
to ADRC to deal with the parametric uncertainties in
wheeled robots [Huang and Su (2019)]. In our method,
the system is decoupled to two decoupled subsystems by
using input-state scaling technique. After that, the ADRC
algorithm is deduced and ESO is used to estimate and
compensate for total disturbance. Simulation results show
that the proposed controller can stabilize the wheeled
mobile robot system quickly and reject uncertainties.

The rest of the paper is organized as follows. Section 2
gives the mathematical model of a kind of wheeled mobile
robot with parametric uncertainty. Then the controller
design process is given in Section 3. Section 4 presents
the qualitative and quantitative simulation results of the
controller. Conclusions are drawn in Section 5.

2. PROBLEM DESCRIPTION

A kind of wheeled mobile robots is shown in Fig. 1. It is
assumed that there is no sliding between the wheels and
the ground. So the constraint can be written as

ẋc sin θ − ẏc cos θ = 0, (1)

where [xc, yc]
T ∈ R2 represents the position of the robot,

and θ ∈ (−π, π] is the angle between the velocity direction
of the mobile robot and the x-axis.

Therefore, the kinematic model of the wheeled mobile
robot can be written as ẋc = v cos θ

ẏc = v sin θ

θ̇ = ω
, (2)

where v ∈ R and ω ∈ R are the linear velocity and angular
velocity of the robot respectively.

Equation (2) belongs to a non-holonomic system model
without drift. When parameters are uncertain, the wheeled
mobile robot model of (2) becomes ẋc = d1v cos θ

ẏc = d1v sin θ

θ̇ = d2ω
, (3)

where d1, d2 ∈ R+ are uncertain parameters determined
by the radius of the wheels and the distance between the
wheels. Thus, (3) represents a class of typical wheeled
mobile robot model with parametric uncertainties.

Problem description: For the uncertain wheeled mobile
robot shown in (3), a controller is designed to stabilize
the system to the origin with any non-zero initial value.

3. THE CONTROLLER DESIGN

Assumption 1. The uncertain parameters of the system are
bounded, that is, ∃c11, c12, c21, c22 ≥ 0 such that{

c11 ≤ d1 ≤ c12
c21 ≤ d2 ≤ c22 . (4)

Remark 1. Since d1, d2 ∈ R+ are determined by the radius
of the wheels and the distance between the wheels, the
assumption in (4) is reasonable.

According to our method, the original system (3) is trans-
formed into two decoupled subsystems through two steps.

Step 1: Convert to a chain system

For the uncertain wheeled mobile robot system represent-
ed by (3), the following state transformation is introduced

x0 = θ
x1 = xc sin θ − yc cos θ
x2 = xc cos θ + yc sin θ
u0 = ω
u1 = v

, (5)

then, (3) can be transformed into a third-order uncertain
non-holonomic chain system, that is{

ẋ0 = d2u0
ẋ1 = d2x2u0
ẋ2 = d1u1 − d2x1u0

. (6)

Step 2: Input-state transformation

The chain system (6) has a potential linear structure. x0-
subsystem is only controlled by u0, while the controllabil-
ity of x-subsystem is determined by u1 [Zhu et al. (2006)],
so the controllers of x0-subsystem and x-subsystem can be
designed respectively. In order to realize the decoupling of
the two subsystems, the following input-state transforma-
tion is carried out for x-subsystem:{

z1 =
x1
u0

z2 = d2x2
. (7)

Take the derivative of the system states z1, z2, we can get ż1 = z2 −
u̇0
u0
z1

ż2 = d1d2u1 − d22u02z1
. (8)

The x-subsystem can be rewritten as a matrix{
ż = Az + b0u1 +Bff
y = CT z

, (9)

where, z =

[
z1
z2

]
, A =

[
− u̇0
u0

1

0 0

]
, Bf =

[
1 0
0 1

]
, f =[

0
−d22u20z1

]
, b0=d1d2. It can be found that, through the
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discontinuous transformation of (7), u0 is no longer cou-
pled with state x, and x-subsystem is transformed into a
second-order nonlinear integral system with disturbance
term f . Obviously, in order to ensure the validity of
discontinuous transformation (7), u0 should satisfy the
constraint of u0 6= 0.

The following is the design of controllers for x0-subsystem
and x-subsystem to stabilize the system. Since it is neces-
sary to ensure the validity of discontinuous transformation
(7), when x0 = 0, switching control is adopted for x0-
subsystem.

3.1 Controller design of x0-subsystem

Theorem 1. For x0-subsystem, the following controller is
designed,

u0 =


−λ0x0, x0(0) 6= 0{
α, t ≤ ts

−λ0x0, t > ts
, x0(0) = 0

, (10)

where, ts > 0 is the switching time of the controller,
λ0 > 0, α > 0. Then, x0-subsystem can be globally
exponentially regulated at the origin.

Proof. The theorem is proven in two cases.

(1) x0(0) 6= 0

Since ẋ0 = d2u0, u0 = −λ0x0, c21 ≤ d2 ≤ c22, it can
be concluded as follows according to Gronwall-Belolman.
[Khalil (2002)]

When x0(0) > 0,

x0(0)e−λ0c22t ≤ x0(t) ≤ x0(0)e−λ0c21t. (11)

When x0(0) < 0,

x0(0)e−λ0c21t ≤ x0(t) ≤ x0(0)e−λ0c22t. (12)

In this case, x0-subsystem is globally exponentially regu-
lated at the origin.

(2) x0(0) = 0

When 0 ≤ t ≤ ts, there is u0 = α, we have

0 ≤ x0(t) ≤ αc22t, (13)

thus, x0(ts) ≤ αc22ts is a bounded positive number.

When t > ts, similar to case (1), we have

x0(ts)e
−λ0c22(t−ts) ≤ x0(t) ≤ x0(ts)e

−λ0c21(t−ts). (14)

In this case, x0-subsystem is globally exponentially regu-
lated at the origin.

In combination of the above two cases, theorem 1 is
proven. 2

Remark 2. From the proof of theorem 1, it can be seen
that x0(t) 6= 0, thus u0(t) 6= 0, and x0(t) will keep its
sign invariance, thus ensuring the validity of discontinuous
transformation (7).

3.2 Controller design of x-subsystem

For x-subsystem, we propose a controller design method
based on ADRC. It is composed of ESO and the state
error feedback control law. The structure of the controller
is shown in Fig. 2.
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Fig. 2. Structure of ADRC

We transform the system into an integral chain nominal
type, then treat the parts different from the nominal type
as the total disturbance. The details are as follows.

Let {
ξ1 = y = z1
ξ2 = ẏ = ż1

, (15)

then
ξ̇1 = ż1 = z2 −

u̇0
u0
z1

ξ̇2 = z̈1 = d1d2u1 − d22z1u02 − ż1
u̇0
u0
− z1

ü0u0 − u̇20
u02

.

(16)
Through the above transformation, the original system can
be transformed into an integral chain type including the
total disturbance as follows{

ξ̇1 = ξ2
ξ̇2 = b̂0u1 + ftotal

, (17)

where ftotal = (b0 − b̂0)u1 − d22z1u02 − ż1 u̇0

u0
− z1 ü0u0−u̇2

0

u0
2

is the total disturbance of the system, b0 = d1d2 is the

control gain, b̂0 is an estimate of b0. Next, we introduce the
design process from two parts: the extended state observer
and the state error feedback control law.

Extended state observer The state of the system and
the total disturbance can be observed by the ESO, then
a third-order full-dimensional extended state observer is
designed as (17),

˙̂
ξ1 = ξ̂2 − β1(ξ̂1 − ξ1)
˙̂
ξ2 = ξ̂3 − β2(ξ̂1 − ξ1) + b̂0u1
˙̂
ξ3 = −β3(ξ̂1 − ξ1)

, (18)

where, ξ̂1 and ξ̂2 are the estimated values of state ξ1 and

ξ2 respectively, and ξ̂3 is the estimated value of the total
disturbance ftotal. β1, β2, β3 are the parameters of ESO
to be adjusted. The bandwidth method proposed by [Gao
(2006)] is adopted to place the observer pole at −ωo, i.e.

β1 = 3ωo, β2 = 3ω2
o , β3 = ω3

o , (19)

where, ωo represents the bandwidth of the observer. The
ESO is converged under this parameter configuration [Guo
and Zhao (2011)], i.e.

ξ̂1 → ξ1, ξ̂2 → ξ2, ξ̂3 → ftotal. (20)

Remark 3. Since the uncertainty or disturbance that affect
the output can be observed from the output, they are
observable, thus such uncertainty or disturbance can be
extracted from the output.

State error feedback control law Since ESO estimates
the total disturbance in real time, then we choose the
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control law u1 to compensate it, so as to achieve good
performance. The expression for u1 is as follows

u1 =
u− ξ̂3
b̂0

, (21)

where u is some form of control component. Since ξ̂3 →
ftotal, substituting (21) into (17) we can get,

ξ̈1 = b̂0u1 + ftotal = u− ξ̂3 + ftotal ≈ u. (22)

In this way, the system with uncertainty is reduced to a
second-order integral system. Then, the control component
u is designed as

u = k1(r − ξ̂1)− k2ξ̂2. (23)

According to (20), (22), and (23), the closed loop differen-
tial equation of the system can be written as

ξ̈1 + k2ξ̇1 + k1ξ1 = k1r. (24)

For the stabilization problem in this paper, we have r = 0,
then the differential equation of the closed loop system
is ξ̈1 + k2ξ̇1 + k1ξ1 = 0. Obviously, the system states
ξ1, ξ2(ξ2 = ξ̇1) are asymptotically stabilized. Thus, it can
be concluded that the original system is asymptotically
stabilized by combining (7), (9), and (15).

Since Peaking will occur in the initial stage of ESO
[Esfandiari and Khalil (1992)], this paper adopts the
strategy of not controlling in the initial stage, that is

u1 =


0, t ≤ tu

−k1ξ̂1 − k2ξ̂2 − ξ̂3
b̂0

, t > tu
, (25)

where, tu > 0 is the switching time of the controller. Sim-
ilarly, according to the bandwidth method, the controller
parameters are written as,

k1 = ω2
c , k2 = 2ζωc, (26)

where, ωc is the bandwidth of the controller and ζ is the
damping ratio.

Based on the above design process, we can get the con-
troller based on ESO (refer to (18))

u0 =


−λ0x0, x0(0) 6= 0{
α, t ≤ ts

−λ0x0, t > ts
, x0(0) = 0

u1 =




0, t ≤ tu

−k1ξ̂1 − k2ξ̂2 − ξ̂3
b̂0

, t > tu
, x0(0) 6= 0

0, t ≤ ts + tu
−k1ξ̂1 − k2ξ̂2 − ξ̂3

b̂0
, t > ts + tu

, x0(0) = 0

,

(27)
which enables the system to have a good ability of rejecting
uncertainty and quick stabilization performance.

4. SIMULATION COMPARISON AND ANALYSIS

4.1 Parameters tuning of ADRC

In general, we have the following experience of parameter
tuning.

(1) The larger ωo is, the more accurately the ESO can
observe the extended state, but this will increase the

sensitivity to noise at the same time. Therefore, ωo should
be gradually increased from a smaller value until the good
performance is achieved.
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method
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Fig. 3. Stabilization control of uncertain wheeled mobile
robot based on Jiang’s method with initial conditions
θ(0) = 1, xc(0) = 1, yc(0) = 1.

(2) The larger ωc is and the smaller b̂0 and ζ are, the faster
the response of the system will be. However, the control
value will become larger and the overshoot will become
more serious simultaneously. Therefore, ωc should not be

too small, b̂0 and ζ should not be too large. In general, ζ

is taken as 1, then ωc and b̂0 are adjusted gradually.
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(b) The curve of mobile
robot’s trajectory by our
method
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Fig. 4. Stabilization control of uncertain non-holonomic
mobile robot based on our method with initial condi-
tions θ(0) = 1, xc(0) = 1, yc(0) = 1.
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4.2 Simulation

In order to verify the effectiveness of the proposed scheme,
system (3) is simulated numerically. The sampling time is
0.02s, and the parameters of the system are as follows:
d1 = d2 = 1.5, refer to [Jiang (2000)]. After parameters
tuning, the parameters of the extended state observer and
controller are selected as λ0 = 0.6, α = 0.7, ts = 1, ωo =

60, ωc = 5, ζ = 1, b̂0 = 2, tu = 0.12. Then we compare
our method with the method proposed by Jiang in two
different initial conditions.
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Fig. 5. Stabilization control of uncertain non-holonomic
mobile robot based on Jiang’s method with initial
conditions θ(0) = 0, xc(0) = 1, yc(0) = 1.

The initial conditions are θ(0) = 1, xc(0) = 1, yc(0) = 1
The curve of state, mobile robot’s trajectory, and control
input by Jiang’s method are shown in Fig. 3. The curve of
state, mobile robot’s trajectory, and control input by our
method are shown in Fig. 4.

It can be seen from Fig. 3 and Fig. 4 that the method
proposed in this paper has good dynamic performance and
steady-state performance, and the convergence speed is
obviously better than Jiang’s method.

The initial conditions are θ(0) = 0, xc(0) = 1, yc(0) = 1
The curve of state, mobile robot’s trajectory, and control
input by Jiang’s method are shown in Fig. 5. The curve of
state, mobile robot’s trajectory, and control input by our
method are shown in Fig. 6.

It can be seen from the Fig. 5 and Fig. 6 that although
the method proposed by Jiang could finally stabilize the
system to the origin, however, in the beginning, x and y
have large overshoot and there is a large value of control
input, which makes it difficult to apply in practice. The
method proposed in this paper has no overshoot and a
faster convergence speed, and the value of control input is
also within the allowable range.
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Fig. 6. Stabilization control of uncertain non-holonomic
mobile robot based on our method with initial condi-
tions θ(0) = 0, xc(0) = 1, yc(0) = 1.

4.3 Quantitative analysis

Table 1 and Table 2 show the performance comparison of

Table 1. Performance comparison of the two
methods with the initial condition θ(0) =

1, xc(0) = 1, yc(0) = 1

Index Jiang’s method Our method

Settling time of xc (s) 1.73 0.75
Settling time of yc (s) 1.07 0.61
Settling time of ω (s) 4.00 3.33
Steady state error(m) 0 0
Is there an overshoot no no

Maximum ωmax (rad/s) -0.50 -0.60
Maximum vmax (m/s) -7.17 -11.92

the two control methods under different initial conditions.

As can be seen from Table 1 and Table 2, the settling
time of the method proposed in this paper is obviously
better than that of Jiang’s method. More importantly, the

Table 2. Performance comparison of the two
methods with the initial condition θ(0) =

0, xc(0) = 1, yc(0) = 1

Index Jiang’s method Our method

Settling time of xc (s) 3.66 1.95
Settling time of yc (s) 2.22 1.76
Settling time of ω (s) 3.40 4.38
Steady state error(m) 0 0
Is there an overshoot yes no

Maximum ωmax (rad/s) 0.20 0.70
Maximum vmax (m/s) 99.80 -11.11

method proposed in this paper is simple in design, does
not have overshoot, and has a reasonable control value,
which is of more practical application value.
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5. CONCLUSIONS

This paper proposes a controller design method for the
stabilization problem of wheeled mobile robot with para-
metric uncertainties based on ADRC scheme. The whole
design is divided into two parts, the switching controller
for x0-subsystem and the ADRC scheme for x-subsystem.
The switching controller is designed to stabilize the x0-
subsystem exponentially and ensure the validity of input-
state transformation. Besides, the ADRC scheme provides
accurate estimation of the total disturbance and rejects
the uncertainties well. Therefore, the whole controller is
capable of making the system converge asymptotically
while effectively reject the uncertainty. According to the
simulation results, it is shown that the system designed
with the proposed controller achieves the excellent steady-
state and dynamic performance even in the face of the
severe challenge of parametric uncertainties.
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