
A fast quasi-Newton-type method for
large-scale stochastic optimisation ?

Adrian Wills ∗ Thomas B. Schön ∗∗ Carl Jidling ∗∗

∗ School of Engineering, University of Newcastle, Australia, (e-mail:
adrian.wills@newcastle.edu.au).

∗∗Department of Information Technology, Uppsala University, Sweden,
(e-mail: {thomas.schon, carl.jidling}@it.uu.se)

Abstract: In recent years there has been an increased interest in stochastic adaptations of
limited memory quasi-Newton methods, which compared to pure gradient-based routines can
improve the convergence by incorporating second-order information. In this work we propose
a direct least-squares approach conceptually similar to the limited memory quasi-Newton
methods, but that computes the search direction in a slightly different way. This is achieved in
a fast and numerically robust manner by maintaining a Cholesky factor of low dimension. The
performance is demonstrated on real-world benchmark problems which shows improved results
in comparison with already established methods.

Keywords: Optimisation problems, Large-scale problems, Stochastic systems, Cholesky
factorisation, Neural networks

1. INTRODUCTION

In learning algorithms we often face the classical and
hard problem of stochastic optimisation where we need
to minimise some non-convex cost function f(x)

min
x∈Rd

f(x), (1)

when we only have access to noisy evaluations of the cost
function and its gradients. We take a particular interest in
situations where the number of data and/or the number
of unknowns d is very large.

The importance of this problem has been increasing for
quite some time now. The reason is simple: many im-
portant applied problems ask for its solution, including
most of the supervised machine learning algorithms when
applied to large-scale settings. There are two important
situations where the non-convex stochastic optimisation
problem arise. Firstly, for large-scale problems it is often
prohibitive to evaluate the cost function and its gradient
on the entire dataset. Instead, it is divided into sev-
eral mini-batches via subsampling, making the problem
stochastic. This situation arise in most applications of
deep learning. Secondly, when randomised algorithms are
used to approximately compute the cost function and
its gradients the result is always stochastic. This occurs
for example in nonlinear system identification using the
maximum likelihood method when particle filters are used
to compute the intractable cost function and its gradients.

Our contributions are: 1. A new and efficient way of
incorporating second-order (curvature) information into
the stochastic optimiser via a direct least-squares approach
conceptually similar to the popular limited memory quasi-
Newton methods. 2. To facilitate a fast and numerically ro-
bust implementation we have derived tailored updating of

? This research was financially supported by the Swedish Foundation
for Strategic Research (SSF) via the project ASSEMBLE (contract
number: RIT15-0012) and by the Swedish Research Council via the
project Learning flexible models for nonlinear dynamics (contract
number: 2017-03807).

a small dimension Cholesky factor given the new measure-
ment pair (with dimension equal to the memory length).
3. The performance is also demonstrated on real-world
benchmark problems which shows improved convergence
properties over current state-of-the-art methods.

2. RELATED WORK

Due to its importance, the stochastic optimisation prob-
lem is rather well studied by now. The first stochastic
optimisation algorithm was introduced by Robbins and
Monro (1951). It makes use of first-order information only,
motivating the name stochastic gradient (SG), which is the
contemporary term (Bottou et al., 2018) for these algo-
rithms, originally referred to as stochastic approximation.
Interestingly most SG algorithms are not descent methods
since the stochastic nature of the update can easily pro-
duce a new iterate corresponding to an increase in the cost
function. Instead, they are Markov chain methods in that
their update rule defines a Markov chain.

The basic first-order SG algorithms have recently been
significantly improved by the introduction of various noise
reduction techniques, see e.g. (Johnson and Zhang, 2013;
Schmidt et al., 2013; Konečný and Richtárik, 2017; Defazio
et al., 2014).

The well-known drawback of all first-order methods is the
lack of curvature information. Analogously to the deter-
ministic setting, there is a lot to be gained in extracting
and using second-order information that is maintained
in the form of the Hessian matrix. The standard quasi-
Newton method is the BFGS method, named after its
inventors (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970). In its basic form, this algorithm does not
scale to the large-scale settings we are interested in. The
idea of only making use of the most recent iterates and gra-
dients in forming the inverse Hessian approximation was
suggested by Nocedal (1980) and Liu and Nocedal (1989).
The resulting L-BFGS method is computationally cheaper
with a significantly reduced memory footprint. Due to its
simplicity and good performance, this has become one of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1271



the most commonly used second-order methods for large-
scale problems. Our developments makes use of the same
trick underlying L-BFGS, but it is carefully tailored to the
stochastic setting.

Over the past decade we have witnessed increasing capa-
bilities of these so-called stochastic quasi-Newton methods,
the category to which our developments belong. The work
by Schraudolph et al. (2007) developed modifications of
BFGS and its limited memory version. There has also been
a series of papers approximating the inverse Hessian with
a diagonal matrix, see e.g. Bordes et al. (2009) and Duchi
et al. (2011). The idea of exploiting regularisation together
with BFGS was successfully introduced by Mokhtari and
Ribeiro (2014). Later Mokhtari and Ribeiro (2015) also
developed a stochastic L-BFGS algorithm without regu-
larisation. The idea of replacing the stochastic gradient
difference in the BFGS update with a subsampled Hessian-
vector product was recently introduced by Byrd et al.
(2016), and Wang et al. (2017) derived a damped L-BFGS
method.

Over the past five years we have also seen quite a lot
of fruitful activity in combining the stochastic quasi-
Newton algorithms with various first-order noise reduction
methods (Moritz et al., 2016; Gower et al., 2016). A
thorough and forward-looking overview of SG and its use
within a modern machine learning context is provided by
Bottou et al. (2018). It also includes interesting accounts
of possible improvements along the lines of first-order noise
reduction and second-order methods.

3. COMPUTING THE QUASI-NEWTON SEARCH
DIRECTION

A quasi-Newton method consists of two steps. In the first
step, we compute a search direction pk that specifies in
which direction of the input space we should move at
iteration k. The second step computes a step length αk
that determines how far we should move in this direction.
We then obtain the next iterate as

xk+1 = xk + αkpk. (2)
In this work we focus on the first step, and compute the
step length using the line search described by Wills and
Schön (2019).

We address the problem of computing a search direction
based on having a limited memory available for storing
previous gradients and associated iterates. The approach
we adopt is similar to limited memory quasi-Newton meth-
ods, but here we employ a direct least-squares estimate of
the inverse Hessian matrix rather than more well-known
methods such as damped L-BFGS and L-SR1. In contrast
to traditional quasi-Newton methods, this approach does
not strictly require the Hessian matrix to be symmetric,
not does it require the secant condition to be exactly
fulfilled.

It may appear peculiar to relax these requirements. How-
ever, in this setting it is not obvious that enforced symme-
try necessarily produces a better search direction. Further-
more, the secant condition relies upon the rather strong
approximation that the Hessian matrix is constant be-
tween two subsequent iterations. Treating the condition
less strictly might be helpful when that approximation is
poor, perhaps especially in a stochastic environment. We
construct a limited-memory inverse Hessian approxima-
tion in Section 3.1 and show how to update this represen-
tation in Section 3.2. Section 3.3 provides a means to en-
sure that a descent direction is calculated and Section 3.4
summarises the final algorithm.

3.1 Quasi-Newton Inverse Hessian Approximations

According to the secant condition (see e.g. Fletcher
(1987)), the inverse Hessian matrix Hk should satisfy

Hkyk = sk, (3)
where sk = xk − xk−1 and yk = gk − gk−1 with the
gradient gk , ∇f(x)|x=xk

. Since there are generally more
unknown values in Hk than can be determined from yk
and sk alone, quasi-Newton methods update Hk from a
previous estimate Hk−1 by solving regularised problems
of the type

Hk = arg min
H

‖H −Hk−1‖2F,W

s.t. H = HT, Hyk = sk,
(4)

where ‖X‖2F,W = ‖XW‖2F = trace(WTXTXW ) and the
choice of weighting matrix W results in different algo-
rithms (see Hennig (2015) for an interesting perspective
on this).

We employ a similar approach and determine Hk as the
solution to the following regularised least-squares problem

Hk = arg min
H
‖HYk − Sk‖2F + λ‖H − H̄k‖2F , (5)

where Yk and Sk hold a limited number of past ŷk’s and
sk’s according to

Yk , [ŷk−m+1, . . . , ŷk] , Sk , [sk−m+1, . . . , sk] . (6)
Here, m << d is the memory limit and ŷk = ĝk − ĝk−1
where ĝk is an estimate of gk. The regulator matrix H̄k
acts as a prior on H and can be modified at each iteration
k; for computational efficiency we choose it as a diagonal
matrix, as discussed in Section 3.4. The parameter λ > 0
is used to control the relative cost of the two terms in
equation 5. It can be verified that the solution to the above
least-squares problem (equation 5) is given by

Hk =
(
λH̄k + SkY

T
k

) (
λI + YkY

T
k

)−1
, (7)

where I denotes the identity matrix. The above inverse
Hessian estimate can be used to generate a search direction
in the standard manner by scaling the negative gradient,
that is

p̂k = −Hkĝk. (8)
We use p̂k to distinguish the search direction computed in
the stochastic setting from its deterministic counterpart.
For large-scale problems, the computation in equation 8
is not practical since it involves the inverse of a large
matrix. To ameliorate this difficulty, we adopt the standard
approach by storing only a minimal (limited memory)
representation of the inverse Hessian estimate Hk. To
describe this, note that the dimensions of the matrices
involved are

Hk ∈ Rd×d, Yk ∈ Rd×m, Sk ∈ Rd×m. (9)
We can employ the Sherman–Morrison–Woodbury formula
to arrive at the following equivalent expression for Hk

Hk =
(
H̄k + λ−1SkY

T
k

) [
I − Yk

(
λI + Y T

k Yk
)−1

Y T
k

]
.

Importantly, the matrix inverse
(
λI + Y T

k Yk
)−1 is now

by construction a positive definite matrix of size m ×m.
Therefore, we construct and maintain a Cholesky factor
of λI + Y T

k Yk since this leads to efficient computations.
In particular, if we express this matrix via a Cholesky
decomposition

RT
kRk = λI + Y T

k Yk, (10)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1272



where Rk ∈ Rm×m is an upper triangular matrix, then the
search direction p̂k = −Hkĝk can be computed via

p̂k = −H̄kzk − λ−1Sk(Y T
k zk), (11a)

zk = ĝk − Ykwk, (11b)
wk = R−1k

(
R−Tk

(
Y T
k ĝk

))
. (11c)

Note that the above expressions for p̂k involve first com-
puting wk, which itself involves a computationally efficient
forward-backward substitution (recalling that Rk is an
m×m upper triangular matrix and the memory length m
is typically 10–50). Furthermore, H̄k is typically diagonal
so that H̄kzk is also efficient to compute. The remaining
operations involve four matrix-vector products and two
vector additions. Therefore, for problems where d >> m
the matrix-vector products will dominate the computa-
tional cost.

Constructing Rk can be achieved in several ways. The
so-called normal-equation method constructs the (upper
triangular) part of λI+Y T

k Yk and then employs a Cholesky
routine, which produces Rk in O(nm(m+1)

2 + m3/3) op-
erations. Alternatively, we can compute Rk by applying
Givens rotations or Householder reflections to the matrix
Mk =

[√
λI Y T

k

]T
. This costs O(2m2((n + m) − m/3))

operations, and is therefore more expensive, but typically
offers better numerical accuracy (Golub and Van Loan,
2012).

3.2 Fast and robust inclusion of new measurements

In order to maximise the speed, we have developed a
method for updating a Cholesky factor given the new
measurement pair (sk+1, ŷk+1). Suppose we start with a
Cholesky factor Rk at iteration k such that

RT
kRk = λI + Y T

k Yk. (12)
Assume, without loss of generality, that Yk and Sk are
ordered in the following manner

Yk , [Y1, ŷk−m+1,Y2] , Sk , [S1, sk−m+1,S2] , (13)
where Y1, Y2, S1 and S2 are defined as

Y1 , [ŷk−m+`+1, . . . , ŷk] , Y2 , [ŷk−m+2, . . . , ŷk−m+`] ,
(14a)

S1 , [sk−m+`+1, . . . , sk] , S2 , [sk−m+2, . . . , sk−m+`] ,
(14b)

and ` is an appropriate integer so that Yk and Sk have
m columns. The above ordering arises from “wrapping-
around” the index when storing the measurements. We cre-
ate the new Yk+1 and Sk+1 by replacing the oldest column
entries, ŷk−m+1 and sk−m+1, with the latest measurements
ŷk+1 and sk+1, respectively, so that

Yk+1 , [Y1, ŷk+1,Y2] , Sk+1 , [S1, sk+1,S2] . (15)
The aim is to generate a new Cholesky factor Rk+1 such
that

RT
k+1Rk+1 = λI + Y T

k+1Yk+1. (16)
To this end, let the upper triangular matrix Rk be written
conformally with the columns of Yk as

Rk =

[R1 r1 R2
· r2 r3
· · R4

]
, (17)

so thatR1 andR2 have the same number of columns as Y1
and Y2, respectively. Furthermore, r1 is a column vector,
r2 is a scalar and r3 is a row vector. Therefore,

RT
kRk =

RT
1R1 RT

1 r1 RT
1R2

· r22 + rT1 r1 rT1R2 + r2r3
· · RT

4R4 +RT
2R2 + rT3 r3


=

λI + YT
1 Y1 YT

1 ŷk−m+1 YT
1 Y2

· λ+ ŷTk−m+1ŷk−m+1 ŷTk−m+1Y2
· · λI + YT

2 Y2

 .
(18)

By observing a common structure for the update λI +
Y T
k+1Yk+1 it is possible to write

λI+Y T
k+1Yk+1 =

=

λI + YT
1 Y1 YT

1 ŷk+1 YT
1 Y2

· λ+ ŷTk+1ŷk−m+1 ŷTk+1Y2
· · λI + YT

2 Y2


=

RT
1R1 RT

1 r4 RT
1R2

· r25 + rT4 r4 rT4R2 + r5r6
· · RT

6R6 +RT
2R2 + rT6 r6

 , (19)

where r4, r5 and r6 are determined by
r4 = R−T1 (YT

1 ŷk+1), (20a)

r5 =
(
λ+ ŷTk+1ŷk+1 − rT4 r4

)1/2
, (20b)

r6 =
1

r5

(
ŷTk+1Y2 − rT4R2

)
. (20c)

The final term R6 can be obtained by noticing that
RT

6R6 +RT
2R2 + rT6 r6 = RT

4R4 +RT
2R2 + rT3 r3, (21)

which implies
RT

6R6 = RT
4R4 − rT6 r6 + rT3 r3. (22)

ThereforeR6 can be obtained in a computationally very ef-
ficient manner by down-dating and updating the Cholesky
factor R4 with the rank-1 matrices rT6 r6 and rT3 r3, re-
spectively (see e.g. Section 12.5.3 in Golub and Van Loan
(2012)).

3.3 Ensuring a descent direction

In deterministic quasi-Newton methods, the search direc-
tion pk must be chosen to ensure a descent direction such
that pTkgk < 0, since this guarantees reduction in the
cost function for sufficiently small step lengths αk. Since
pk = −Hgk, we have that pTkgk = −gTkHkgk which is
always negative if the approximation Hk of the inverse
Hessian is positive definite. Otherwise, we can modify the
search direction by subtracting a multiple of the gradient
pk ← pk − βkgk. This is motivated by noticing that

(pk − βgk)Tgk = pTkgk − βkgTk gk, (23)
which always can be made negative by selecting βk large
enough, i.e. if

βk >
pTkgk
gTk gk

. (24)

In the stochastic setting, the condition above does not
strictly enforce a descent direction. Hence, the search
direction p̂k as determined by equation 8 is not a descent
direction in general. Nevertheless, picking βk sufficiently
large ensures that

E
[
(p̂k − βkĝk)Tĝk

]
< 0, (25)

i.e. the condition is fulfilled in expectation. In practise, we
use a heuristic approach where the deterministic quantities
in equation 24 are replaced by their stochastic counter-
parts. We should perhaps stress that the need for this mod-
ification occurred very infrequently in the experiments.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1273



3.4 Resulting algorithm

We summarise the ideas from this section in Algorithm 1.
The if-statement on line 5 is included to provide a safe-
guard against numerical instability. Note that the method
relies on a user supplied H̄k, a choice that is by no means
obvious. However, in practise it has proven very useful to
employ a simple strategy of choosing H̄k , γkI, where
the positive scalar γk > 0 is adaptively chosen in each
iteration. Recall that αk is the step length at iteration k,
then as a crude measure of progress we adopt the following
rule

γk =

{
κγk−1, if αk−1 = 1,
γk−1/κ, if αk−1 < 1/ρq,
γk−1, otherwise,

(26)

where ρ ∈ (0, 1) is a scale factor used in the line search.
Moreover, κ ≥ 1 is a scale parameter, and q corresponds
to the number of backtracking loops in the line search;
the values κ = 1.3 and q = 3 were found to work well
in practise. The intuition behind equation 26 is that if no
modification of the step length αk is made, we can allow
for a more "aggressive" regularisation. Note that a low γk
is favouring small elements in Hk. Since p̂k = −Hkĝk, this
limits the magnitude of p̂k and the change ‖xk+1 − xk‖
is kept small. Hence, it is good practice to set the initial
scaling γ0 relatively small and then let it scale up as the
optimisation progresses. Furthermore, we should point out
that a diagonal H̄k comes with an efficiency benefit, since
the product H̄kzk in equation 11a then is obtained as the
element-wise product between two vectors.

Algorithm 1 Limited memory least-squares (LMLS)
Require: An initial estimate x1, a maximum number of iterations

kmax, memory limit m, regularisation parameter λ, scale factor
ρ ∈ (0, 1).

1: Set k = 1
2: while k < kmax do
3: Obtain a measurement of the cost function and its gradient

f̂k = f(xk) + ek, ĝk = gk + vk.

4: Set H̄k = γkI where

γk =

{
κγk−1, if αk−1 = 1,
γk−1/κ, if αk−1 < 1/ρq ,
γk−1, otherwise.

5: if ŷTksk > ε‖sk‖22 then
6: if k > m then
7: Replace oldest vector in Yk−1 with ŷk to form Yk.
8: Replace oldest vector Sk−1 with sk to form Sk.
9: else

10: Form Yk by adding ŷk to Yk−1.
11: Form Sk by adding sk to Sk−1.
12: end if
13: else
14: Set Yk = Yk−1 and Sk = Sk−1

15: end if
16: Select p̂k as (see Section 3.2)

p̂k = −H̄kzk − λ−1Sk(Y T
k zk),

zk = ĝk − Ykwk,

wk = R−1
k

(
R−T
k

(
Y T
k ĝk
))
.

17: if p̂Tk ĝk > 0 then

18: Set p̂k ← p̂k − βk ĝk where βk >
p̂T
k
ĝk

ĝT
k
ĝk

.

19: end if
20: Select αk via line search by Wills and Schön (2019).
21: Update xk+1 = xk + αkp̂k
22: Set k ← k + 1

23: end while

4. NUMERICAL EXPERIMENTS

Let us now put our new developments to the test on
a suite of problems from different categories to exhibit
different properties and challenges. In Section 4.1 we study
a commonly used benchmark, namely the collection of
logistic classification problems described by Chang and
Lin (2011) in the form of their library for support vector
machines (LIBSVM). In Section 4.2 we consider an opti-
misation problem arising from the use of deep learning to
solve the classical machine learning benchmark MNIST 1 ,
where the task is to classify images of handwritten digits.
Also, we test our method on training a neural network on
the CIFAR-10 dataset (Krizhevsky, 2009). Finally, in Sec-
tion 4.3 we consider parameter optimisation in a nonlinear
state space model.

In our experiments we compare against relevant state-of-
the-art methods. All experiments were run on a MacBook
Pro 2.8GHz laptop with 16GB of RAM using Matlab
2018b. All routines where programmed in C and compiled
via Matlab’s mex command and linked against Matlab’s
Level-1,2 BLAS libraries. The chosen algorithm parame-
ters are given in Table 1.

4.1 Logistic loss and a 2-norm regulariser

The task here is to solve eight different empirical risk
minimisation problems using a logistic loss function with
an L2 regulariser. The data is taken from Chang and Lin
(2011). These problems are commonly used for profiling
optimisation algorithms of the kind introduced in this
paper, facilitating comparison with existing state-of-the-
art algorithms. More specifically, we have used a similar
set-up as Gower et al. (2016), which inspired this study.

We compared our limited memory least-squares approach
(denoted as LMLS) against two existing methods from
the literature, namely, the limited memory stochastic
BFGS method after Bollapragada et al. (2018) (denoted
as LBFGS) and the stochastic variance reduced gradient
descent (SVRG) by Johnson and Zhang (2013) (denoted
SVRG). Figures 1a to 1h show the cost versus time for 50
Monte-Carlo experiments. Our LMLSmethod demonstrates
a fast convergence and outperforms the other methods
across all the eight problems.

4.2 Deep learning

Deep convolutional neural networks (CNNs) with multiple
layers of convolution, pooling and nonlinear activation
functions are delivering state-of-the-art results on many
tasks in computer vision. We are here borrowing the
stochastic optimisation problems arising in using such a
deep CNN to solve the MNIST and CIFAR-10 bench-
marks. The particular CNN structure used for the MNIST
example employs 5× 5 convolution kernels, pooling layers
and a fully connected layer at the end. We made use of the
publicly available code provided by Zhang (2016), which
contains all the implementation details. For the CIFAR-
10 example, the network includes 13 layers with more
than 150,000 weights. The Matlab toolbox MatConvNet
(Vedaldi and Lenc, 2015) was used in the implementation.
Figures 1i and 1j show the average cost versus time for
10 Monte-Carlo trials with four different algorithms: 1.
the method developed here (LMLS), 2. a stochastic limited
memory BFGS method after Bollapragada et al. (2018)
(denoted LBFGS), 3. Adam developed by Kingma and Ba
1 yann.lecun.com/exdb/mnist/

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1274



(a) gisette (b) covtype (c) HIGGS (d) SUSY (e) epsilon

(f) RCV1 (g) URL (h) spam (i) MNIST (j) CIFAR

Fig. 1. Performance on two classification tasks using a logistic loss with a two-norm regulariser ((a)-(h)), and two deep
convolutional neural networks (CNNs) used for recognising images of handwritten digits from the MNIST data (i),
and classification of the images in the CIFAR-10 data (j). Lighter shaded lines indicate individual runs, whereas
the darker shaded line indicates the average.

(2015), and 4. stochastic gradient (denoted SG). Note that
all algorithms make use of the same gradient code. Also
for these problems, our LMLS method performs well – apart
from in the initial phases, it converges faster than the
remaining methods.

Table 1. Datasets used in experiments; n:
dataset size; d: number of variables; remaining
columns list design parameters, including the

mini-batch size b.

Dataset n d b m λ γ0

gisette 6 000 5 000 770 20 10−4 10

covtype 581 012 54 7 620 55 10−4 100

HIGGS 11 000 000 28 66 340 28 10−4 100

SUSY 3 548 466 18 5 000 18 10−4 100

epsilon 400 000 2 000 1 000 20 10−4 100

rcv1 20 242 47 236 710 10 10−4 600

URL 2 396 130 3 231 961 1548 5 10−4 100

spam 82 970 823 470 2048 2 10−4 200

MNIST 60 000 3898 1000 50 8 · 10−4 1

CIFAR 50 000 150 000 200 20 10−2 0.5

4.3 A nonlinear state-space model

In this subsection, we consider Algorithm 1 (LMLS) as
applied to maximum-likelihood parameter estimation for a
nonlinear state-space model (see e.g. Schön et al. (2011)).
In particular, a commonly employed nonlinear benchmark
problem involves the following system

xt+1 = axt + b
xt

1 + x2t
+ c cos(1.2t) + vt, (28a)

yt = dx2t + et, (28b)[
vt
et

]
∼ N

([
0
0

]
,

[
q 0
0 r

])
, (28c)

where the true parameters are θ? = [a?, b?, c?, d?, q?, r?] =
[0.5, 25, 8, 0.05, 0, 0.1] . We repeat the simulation experi-
ment from Schön et al. (2011), where a Monte Carlo study
was performed using 100 different data realisations y1:N
of length N = 100. For each of these cases, an estimate
θ̂ was computed using 100 iterations of Algorithm 1. The
algorithm was initialised with the i’th element of θ0 chosen
via θ0(i) ∼ U

(
1
2θ

?(i), 3
2θ

?(i)
)
. In all cases M = 50

particles were used in order to compute the log-likelihood
cost function and its associated gradient vector.

Figure 2 shows the parameter iterates (for a, b, c, d). This
shows all Monte Carlo runs (note that none were trapped
in a local minima). By way of comparison, the method
presented in this paper is compared with the EM approach
from Schön et al. (2011) (denoted PSEM). The results are
provided in Table 2, where the values are the sample mean
of the parameter estimate across the Monte Carlo trials
plus/minus the sample standard deviation. For the EM
approach, 8/100 simulations were trapped in minima that
were far from the global minimum and these results have
been removed from the calculations in Table 2.

Fig. 2. Parameter iterations for nonlinear benchmark prob-
lem. True value (solid blue line), parameter evolution
(one red line per simulation).

Table 2. True and estimated parameter values
for LMLS and PSEM algorithms; mean value
and standard deviations are shown for the
estimates based on 100 Monte Carlo runs.

θ θ? LMLS PSEM

a 0.5 0.50 ± 0.0011 0.50 ± 0.0019
b 25.0 25.1 ± 0.43 25.0 ± 0.99
c 8.0 8.0 ± 0.06 7.99 ± 0.13
d 0.05 0.05 ± 0.001 0.05 ± 0.0026

q 0 1 × 10−4 ± 6 × 10−4 7.78 × 10−5 ± 7.6 × 10−5

r 0.1 0.1 ± 0.015 0.106 ± 0.015

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1275



5. CONCLUSION AND FUTURE WORK

In this work we have presented a least-squares based
limited memory optimisation routine that benefits from
second order information by approximating the inverse
Hessian matrix. The procedure is conceptually similar
to quasi-Newton methods, although we do not explicitly
enforce symmetry or satisfaction of the secant condition.
By regularising with respect to an inverse Hessian prior, we
allow for an adaptive aggressiveness in the search direction
update. We have shown that the computations can be
made robust and efficient using tailored Cholesky decom-
positions, with a cost that scales linearly in the problem
dimension. The method shows improved convergence prop-
erties over existing algorithms when applied to benchmark
problems of various size and complexity.

REFERENCES

Bollapragada, R., Mudigere, D., Nocedal, J., Shi, H.J.M.,
and Tang, P.T.P. (2018). A progressive batching L-
BFGS method for machine learning. In Proceedings of
the 35th International Conference on Machine Learning
(ICML). Stockholm, Sweden.

Bordes, A., Bottou, L., and Gallinari, P. (2009). SGD-
QN: Careful quasi-Newton stochastic gradient descent.
Journal of Machine Learning Research (JMLR), 10,
1737–1754.

Bottou, L., Curtis, F.E., and Nocedal, J. (2018). Optimiza-
tion methods for large-scale machine learning. SIAM
Review, 60(2), 223–311.

Broyden, C.G. (1967). Quasi-Newton methods and their
application to function minimization. Mathematics of
Computation, 21, 368–381.

Byrd, R.H., Hansen, S.L., Nocedal, J., and Singer, Y.
(2016). A stochastic quasi-Newton method for large-
scale optimization. SIAM Journal on Optimization,
26(2), 1008–1031.

Chang, C.C. and Lin, C.J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3), 27:1–27:27.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014).
SAGA: a fast incremental gradient method with sup-
port for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems
(NIPS). Montréal, Canada.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research
(JMLR), 12, 2121–2159.

Fletcher, R. (1970). A new approach to variable metric
algorithms. The computer journal, 13(3), 317–322.

Fletcher, R. (1987). Practical methods of optimization.
John Wiley & Sons, Chichester, UK, second edition.

Goldfarb, D. (1970). A family of variable metric updates
derived by variational means. Mathematics of Compu-
tation, 24(109), 23–26.

Golub, G.H. and Van Loan, C.F. (2012). Matrix Computa-
tions. John Hopkins University Press, Baltimore, fourth
edition.

Gower, R.M., Goldfarb, D., and Richtarik, P. (2016).
Stochastic block BFGS: squeezing more curvature out
of data. In Proceedings of the 33rd International Con-
ference on Machine Learning (ICML). New York, NY,
USA.

Hennig, P. (2015). Probabilistic interpretation of linear
solvers. SIAM Journal on Optimization, 25(1), 234–260.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic
gradient descent using predictive variance reduction.

In Advances in Neural Information Processing Systems
(NIPS). Lake Tahoe, NV, USA.

Kingma, D.P. and Ba, J. (2015). Adam: a method for
stochastic optimization. In Proceedings of the 3rd inter-
national conference on learning representations (ICLR).
San Diego, CA, USA.

Konečný, J. and Richtárik, P. (2017). Semi-stochastic
gradient descent methods. Frontiers in Applied Mathe-
matics and Statistics, 3(9).

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical report.

Liu, D.C. and Nocedal, J. (1989). On the limited memory
BFGS method for large scale optimization. Mathemati-
cal Programming, 45(3), 503–528.

Mokhtari, A. and Ribeiro, A. (2014). RES: regularized
stochastic BFGS algorithm. IEEE Transactions on
Signal Processing, 62(23), 6089–6104.

Mokhtari, A. and Ribeiro, A. (2015). Global convergence
of online limited memory BFGS. Journal of Machine
Learning Research (JMLR), 16, 3151–3181.

Moritz, P., Nishihara, R., and Jordan, M.I. (2016). A
linearly-convergent stochastic L-BFGS algorithm. In
The 19th International Conference on Artificial Intel-
ligence and Statistics (AISTATS). Cadiz, Spain.

Nocedal, J. (1980). Updating quasi-Newton matrices with
limited storage. Mathematics of Computation, 35(151),
773–782.

Robbins, H. and Monro, S. (1951). A stochastic approx-
imation method. Annals of Mathematical Statistics,
22(3), 400–407.

Schmidt, M., Le Roux, N., and Bach, F. (2013). Mini-
mizing finite sums with the stochastic average gradient.
Technical Report arXiv:1309.2388, arXiv preprint.

Schön, T.B., Wills, A., and Ninness, B. (2011). System
identification of nonlinear state-space models. Automat-
ica, 47(1), 39–49.

Schraudolph, N.N., Yu, J., and Günter, S. (2007). A
stochastic quasi-Newton method for online convex op-
timization. In Proceedings of the 11th international
conference on Artificial Intelligence and Statistics (AIS-
TATS).

Shanno, D.F. (1970). Conditioning of quasi-Newton meth-
ods for function minimization. Mathematics of Compu-
tation, 24(111), 647–656.

Vedaldi, A. and Lenc, K. (2015). Matconvnet – convolu-
tional neural networks for matlab. In Proceeding of the
ACM Int. Conf. on Multimedia.

Wang, X., Ma, S., Goldfarb, D., and Liu, W.
(2017). Stochastic quasi-Newton methods for nonconvex
stochastic optimization. SIAM Journal on Optimiza-
tion, 27(2), 927–956.

Wills, A. and Schön, T.B. (2019). Stochastic quasi-
newton with line-search regularization. Technical re-
port, arXiv:1909.01238.

Zhang, Z. (2016). Derivation of backpropagation in con-
volutional neural networks (CNN). github.com/ZZUTK/
An-Example-of-CNN-on-MNIST-dataset.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1276


