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Abstract: This paper presents an algorithm for estimating the parameters of a biased sinusoidal
signal. The proposed method uses the output signals of a second order generalized integrator
without adaptation on its resonant frequency to derive a linear regression equation where the
unknown parameters are a nonlinear combination of bias and frequency of the input signal.
The global stability of the method is proven. Remarkably, the proposed method represents the
minimum-order estimator known for the problem under consideration, being implementable by
a 4th-order adaptive system. Simulation results and comparisons with existing methods show
the accurate estimation capability of the proposed approach.
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1. INTRODUCTION

The estimation of parameters of a biased sinusoid has
always been a topic of considerable research interest in the
field of signal processing, mechanical vibrations, control
applications. An interesting application is the active noise
control Bobtsov and Pyrkin (2012); Fedele and Ferrise
(2013, 2014b, 2015); Fedele (2017) in which the objective
is to eliminate or significantly reduce the instantaneous
noise level, at some location to be made quiet, through
destructive interference. Since its key role, the problem
of the frequency estimation for a pure sinusoid signal with
possibly non-zero mean value, has been widely investigated
and many algorithms have been proposed to accomplish
this task.

Several studies have explored this topic in depth with the
aim of designing both accurate and simple algorithms to
be implemented in hardware for real applications. The
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problem is relevant in the power systems area where
a correct synchronization requires the estimation of all
parameters of the voltage grid in terms of bias, amplitude
and phase angle Fedele et al. (2009); Rodŕıguez et al.
(2007); Liserre et al. (2006); Ghartemani et al. (2011).

The Phase-Locked-Loop (PLL) is a common method to
estimate the entire set of parameters. The structure of the
main PLL topology is a feedback control system that au-
tomatically adjusts the phase of a locally generated signal
to match the phase of the input signal. However there is
a major inherent issue in the conventional PLL structure.
Typically the frequency to be estimated is not constant
and when there is frequency fluctuation, the traditional
PLL fails to estimate the correct frequency or it exhibits a
longer transient time than some fast digital algorithms for
instance those based on Fast Fourier Transform. Moreover
PLL requires an initial condition, relative to the starting
frequency, which has to be close enough to the real one,
in order to lock the signal in a fast way. The main dif-
ference among single-phase PLL topologies consists in the
orthogonal signals generation (OSG) subsystem. Typically,
the orthogonal signal generation block is implemented by
using Hilbert transform, inverse Park transform, adaptive
notch filter, second order generalized integrator (SOGI)
Karimi-Ghartemani (2014). In order to deal with the case
of biased sinusoid signals, in Ciobotaru et al. (2010) an
effective method is used to create orthogonal reference
signals based on SOGI according to the information about
the signal frequency that can be obtained by using a PLL
system in a feedback closed-loop. The reliability of such a
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method has been tested in a wide range of practical scenar-
ios but the dependence on initial conditions of the estimate
may limit its use. The algorithm presented in Pigg and
Bodson (2009) is based on an enriched PLL scheme that is
able to estimate all the parameters of an unbiased periodic
signal. In particular, the estimator requires two separate
dynamics for the estimation of frequency and amplitude of
the signals (plus an additional dynamics for the estimation
of the phase angle) with a further parameter designed to
adjust the transient of the method, resulting in a more
complex scheme to be tuned. Moreover, it is required the
generation of explicit sin/cos waves. A modified version
of the Enhanced PLL (EPLL) is discussed in Karimi-
Ghartemani et al. (2011). EPLL is a special OSG-PLL
structure with a high degree of immunity to harmonic and
unbalance conditions over conventional PLLs. Moreover it
may adapt to frequency variations.

To overcome PLL’s drawbacks, frequency-locked-loop (FLL)
methods have been introduced as very effective synchro-
nization techniques to be implemented. In addition to the
PLL that estimates the phase of the input signal, the FLL
estimates also its frequency. FLL techniques have gained
much more attention in microgrid control applications
motivated by the presence of only one loop for frequency
estimation instead of the two loops required by the PLL
structures Kherbachi et al. (2019). Moreover FLL systems
are less sensitive to phase angle jumps and this is one of the
features that make them widely used in real applications.
In Rodŕıguez et al. (2010), for example, a new technique
is proposed for detecting frequency harmonics in three-
phase systems by using multiple SOGI working together a
harmonic decoupling network adapted in frequency thanks
to the use of an FLL. A frequency adapted third order
generalized integrator (TOGI) is presented in Fedele and
Ferrise (2014a); Du et al. (2019) to eliminate the zero drift
of the input signal and to achieve frequency adaptive track-
ing in the case of frequency fluctuations. Unfortunately
the formal stability proofs of these methods are based on
small-signal analysis or averaging theory. This fact limits
the application in real contexts since an unfair choice of
the adaptation gains can result in large deviation from the
true parameters or may cause instability of the estimator.

Conversely global stability is provided in adaptive ob-
servers or nonlinear adaptive systems based method (see
Pin et al. (2019) and Pin et al. (2017), respectively with
references therein) even if their complexity limits the use
in real scenarios.

In order to face with global stability properties of the
algorithms based on SOGI, a non-adaptive approach that
does not require the continuous adaptation of its resonant
frequency is proposed in Fedele and Ferrise (2011); Fedele
(2012). Specifically a continuous-time least-squares algo-
rithm is used to estimate both bias and frequency. The
remaining parameters are then obtained via simple rela-
tionships between the OSG-SOGI output signals. As far
as estimator dimension is concerned, the method in Fedele
et al. (2009) requires a 7th-order estimation algorithm.

The aim of this paper is to design a parsimonious non-
adaptive SOGI filter for the estimation of the entire
set of a biased sinusoidal signal parameters. The term
parsimonious is related to the complexity of the algorithm

that requires a number of differential equations equal to
the number of parameters to be estimated (this represents
in our opinion a low-order algorithm in the plethora of
non-adaptive methods based on SOGI). Moreover the
global stability properties of the method are discussed
by using simple arguments and without invoking complex
Lyapunov-based analyses.

The problem is then formulated as follows.

Design a fourth-order algorithm for the estimation
of the biased sinusoidal signal

v(t) = A0 +Ac sin(ρc(t))

where ρc(t) = ωct + φc is the phase angle and
{A0, Ac, ωc, φc} are the unknown parameters to be
estimated.

The paper is organized as follows: Section 2 presents the
SOGI scheme and its main properties; the estimation
methods is proposed in Section 3; Section 4 contains some
simulated results and comparison with existing methods;
the last section is devoted to conclusions.

2. PROPERTIES OF THE SOGI SYSTEM

The method proposed in this note makes use of an orthog-
onal signals generator based on a second order generalized
integrator (OSG-SOGI), see Fig. 1. OSG-SOGI is able to
generate the in-phase and the in-quadrature signals, v1(t)
and v2(t), respectively, when driven by the reference signal
v(t) and the parameter α. The SOGI system is governed
by the following set of differential equations

v̇1(t) = −αy(t), v̇2(t) = αv1(t) (1)

where
y(t) = v1(t) + v2(t)− v(t).

The closed-loop transfer functions F1 and F2 of the output
signal components are given by

F1(s) =
αs

s2 + αs+ α2
, F2(s) =

α2

s2 + αs+ α2

such that vi(s) = Fi(s)v(s), for i ∈ {1, 2}.
In contrast to usual frequency-adaptive SOGI methods,
where the filter parameter α corresponds to the estimated
frequency adapted by using frequency-locked-loop blocks
Fedele et al. (2009), in this case α is kept constant
and equal to a user-defined value. In this setting, the
SOGI system (1) can be seen as a pre-filter producing
auxiliary signals v1(t) and v2(t), that will be used later
for adaptation. This structure of the estimator is also
known as ’prefiltering-based’ (see Chen et al. (2015),
Pin et al. (2013)), in view of the fact that a linear
time-invariant filter is applied the measured signal to
derive useful auxiliary signals that allow to streamline the
design of the adaptive estimator. Compared to the pre-
filtering methods Chen et al. (2015), Pin et al. (2013),
the proposed algorithm uses a SOGI prefiltering stage
that yields a reduced-order filter. Nonetheless, the tunable
adaptation law described later will permit to tune the noise
sensitivity, thus achieving a noise-immunity comparable
to the aforementioned methods despite the complexity
reduction.
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It is straightforward to note that F1 is a second-order
band-pass filter with the cut-off frequency α. At the
resonant frequency there is no attenuation and the phase
is equal to zero; instead there is a quite large attenuation
outside the resonant frequency. Moreover F2(s) represents
a second-order low-pass filter so it has no attenuation
and phase equal to −π/2 at the resonant frequency. High
values of α will provide to quickly reach the steady-state
conditions for the output signals v1(t) and v2(t). As it
is evident, the output v2(t) is affected by the presence
of the offset which does not appear in v1(t) because of
the derivative action on the input signal v(t). Therefore,
the generated signal v1(t) and the input v(t) are in-phase
and with the same amplitude when the SOGI resonant
frequency is equal to frequency of the input signal.

As a consequence, if the frequency ωc of the input signal
v(t) is equal to the resonant frequency α of the OSG-SOGI,
the signal v1(t) tends to the unbiased signal

lim
t→∞

v1(t) = v(t)−A0

while the signal v2(t) tends to the input signal v(t) with a
phase shift of π/2:

lim
t→∞

v2(t) = v
(
t− π

2

)
.

It is worth pointing out that when the input voltage
is corrupted by disturbances such as harmonics below
the cut-off frequency or a DC-offset, the low-pass filter
F2 does not reject them sufficiently. As a result, the
orthogonal component v2(t) may contain part of these
disturbances and will be shifted by an amount of the input
DC-offset. Consequently, a trade-off between frequency
selectivity and response speed should be adopted. The
use of the OSG-SOGI as sinusoid signal tracking strongly
depends on the frequency input α, thus problems can occur
when signal frequency has fluctuations. In order to adjust
the OSG-SOGI resonance frequency, in many cases its
structure is coupled with an adaptive tuning algorithm
Fedele and Ferrise (2014a).

The idea exploited in the next section is to design a
parsimonious method (in terms of the minimum-order es-
timator known for the considered problem) to estimate the
unknown parameters of the biased sinusoid independently
by the choice of the resonant frequency α.

3. ESTIMATION METHOD

The proposed FLL filter representing the OSG-SOGI and
the adapting strategy for parameters estimation is de-
picted in Fig. 1. The input signal v(t) is the biased sinusoid

v(t) = A0 +Ac sin(ωct+ φc)

where θ = {A0, Ac, ωc, φc} is the set of unknown parame-
ters to be estimated. It is effortless to show that v1(t) and
v2(t) converge to the following steady-state signals Fedele
(2012):

v1∞(t) =m1Ac sin(ωct+ φc + φ), (2)

v2∞(t) =A0 −m2Ac cos(ωct+ φc + φ) (3)

where

m1 =
αωc√

(α2 − ω2
c )2 + α2ω2

c

, m2 = m1
α

ωc

v(t)

+
α

∫
v1(t)

−

α
∫

v2(t)

−

Σ

γ β

θ̂(t)

Fig. 1. Frequency-Locked-Loop filter based on a non-
adaptive SOGI prefiltering stage.

and

φ = sgn(α− ωc)
π

2
− arctan

(
αωc

α2 − ω2
c

)
.

Therefore, ignoring the transient terms that converge
to zero exponentially fast, at steady state the following
relation holds

h(t) = φ(t)T θ∗

with
h(t) = α2y(t),

φ(t) =

[
−1
v2(t)

]
and

θ∗ =

[
A0ω

2
c

ω2
c

]
. (4)

One way to generate an estimate θ̂(t) of θ∗ is to minimize
the instantaneous cost criterion

J(θ̂) =
1

2

(
α2y(t)− φ(t)T θ̂(t)

)2
by using the gradient descent method

˙̂
θ = −γ∇J(θ̂)

where γ > 0 is the adaptive gain and ∇J(θ̂) is the gradient

of J with respect to θ̂ =

[
ĝ1
ĝ2

]T
.

This procedure leads to the adaptive law

˙̂g1(t) =−γ
(
α2y(t)− v2(t)ĝ2(t) + ĝ1(t)

)
˙̂g2(t) =− ˙̂g1(t)v2(t) (5)

implemented in the block Σ.

Lemma 1. The vector of regressors

φ(t) =

[
A0 +A1 sin(ωt+ φ)

A2

]
with Ai ∈ R, i = 0, 1, 2 and A1, A2 6= 0 is persistently
exciting.

Proof. Note that

H =

∫ t0+
2π
ω

t0

φ(τ)φ(τ)T dτ =
2π

ω

A2
0 +

A2
1

2
A0A2

A0A2 A2
2

 .
It follows that H = HT > 0 and H ≥ λmin(H)I2, where
λmin(H) is the minimum eigenvalue of H and I2 is the
2-dimension identity matrix.
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By invoking Theorem 3.6.1 of Ioannou and Fidan (2006)
and thanks to the persistent exciting property of the
regressors stated by Lemma 1, it is straightforward to
prove that the algorithm based on (1) and (5) enjoys
global-exponential convergence to θ∗.

Therefore, the unknown parameters A0 and ωc can be
estimated by (4) as

ω̂c(t) =
√
ĝ2(t),

Â0(t) =
ĝ1(t)

ĝ2(t)
, if ĝ2(t) > δ

where δ > 0 is a user-defined threshold constant used to
avoid divisions by zero in the algorithm.

Given the estimate of A0 and ωc, the amplitude Ac is
estimated as

Âc =

√
v1∞(t)2 + ω̂c(t)2

α2 ζ(t)2

m2
1

where

ζ(t) = v2∞(t)− Â0(t).

Moreover the phase angle of the sinusoidal signal can be
estimated as

ρ̂c(t) = arg η(t)− φ
with

η = − ω̂c(t)
2

α2
ζ(t) + j

ω̂c(t)

α
v1∞(t).

A slight modification of the adaptive law (5) is here
proposed. Let us consider

ḡ2(t) =
1

β
ĝ2(t) (6)

with β ∈ (0, 1).

Therefore the cost criterion (3) is rewritten as

J(θ̄) =
1

2

(
α2y(t) + ĝ1 − βḡ2(t)v2(t)

)2
(7)

and the adaptive law becomes

˙̂g1(t) =−γ
(
α2y(t)− βv2(t)ḡ2(t) + ĝ1(t)

)
˙̄g2(t) =−β ˙̂g1(t)v2(t). (8)

The use of the adaptive law (8) instead of (5) is instru-
mental in reducing the noise on the estimated frequency,
as it will be clear in the simulated experiments.

4. NUMERICAL SIMULATIONS

In this section some numerical simulations are reported
to highlight the characteristics of the proposed methods.
Comparisons with existing techniques are conducted ac-
cording to the following criteria: the considered methods
and the proposed one are firstly tuned up in order to
present similar convergence rates and then tested, with
the same parameter settings, introducing variations on
the input signal. Input signals, sampled with a period of
Ts = 3×10−4s are affected by a zero mean Gaussian noise
with a signal-to-noise ratio (SNR) equal to 10. The SNR
is measured in decibels as the logarithm of the average

power of the reference signal samples and the noise ones,
i.e. w(·), over the experiment time as

SNR , 10 log10

(
n−1∑
k=0

v(kTs)/

n−1∑
k=0

w(kTs)

)
where n is the number of samples.

Example 1. In this example, the considered input signal
is v(t) = 2 + 10 sin

(∫
ωc(τ)dτ + π

3

)
where

ωc(t) =

{
4, 0 ≤ t < 30,
6, 30 ≤ t < 60,
2, 60 ≤ t < 90.

The input frequency is then affected by two frequency
steps and the frequency estimated by the proposed
method, denoted by (FPP) in the figures, is compared
with the ones obtained by the modified PLL in Karimi-
Ghartemani et al. (2011) (GKJBM) and with the ac-
tive notch filter described in Aranovskiy et al. (2010)
(ABKNS) with a correction term that guarantees the
boundedness of the generated signals. All the considered
methods are firstly simulated with noise-free data to set
the free parameters. The GKJBM algorithm is set up with
k = 1.6, k0 = 0.1 and γg = 0.1 while ABKNS parameters
are k = 1, α = 1 and θ0 = 50. The FPP filter is tuned with
α = 8, β = 0.08 and γ = 1.8. The same initial frequency
condition for all methods is ω̂ = 3.2. The frequency estima-
tions performed by the considered algorithms are reported
in Fig. 2. All the methods deal with the first two steps
in a satisfactory manner but GKJBM presents oscillations
around the actual frequency in the third sweep. Moreover,
the proposed method presents a slowdown compared to the
tracking performances of the previous sweeps. It is worth
to underline that such a behavior is strictly related to
the choice of the parameter set {α, β, γ}. In particular the
larger the parameter β the faster is the transient response.
Unfortunately, the choice of the parameter β is a trade-
off between two opposing effects: a fast transient and the
sensitivity to noise affecting the signal; this behaviour will
be better highlighted in the following simulations.

Fig. 2. Example 1. Frequency estimation with no noisy
signal.

Fig. 3 shows the frequency estimations in the case of
noisy signal. As it can be noted the proposed method
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performs a satisfactory filtering action. ABKNS degrades
its performance in this case although it can be improved by
an accurate choice of the gain parameters at the expense
of longer transients. The performance of GKJBM is also
affected in terms of frequency deviation. Both GKJBM
and FPP are able to reconstruct the input signal, each
with its own peculiarities, as shown in Fig. 4. ABKNS is
able to estimate bias, amplitude and frequency only.

Fig. 3. Example 1. Frequency estimation with noisy signal.

Fig. 4. Example 1. Input signal reconstruction.

Example 2. In this example the following frequency sweep
is considered

ωc(t) =


2

45
t+ 4, 0 ≤ t < 45,

− 2

45
t+ 8, 45 ≤ t < 90.

All other settings are the same as in the previous ex-
periment. Fig. 5 show the frequency estimation of the
considered algorithms. A data window showing the recon-
struction of the input signal is reported in Fig. 6.

Example 3. This example aims at highlighting the prop-
erties of the frequency estimation related to the choice of
the parameter β in Eqs. (6)-(8). The proposed method is

Fig. 5. Example 2. Frequency estimation with noisy signal.

Fig. 6. Example 2. Input signal reconstruction.

applied to the estimation of the parameters of the biased
sinusoidal signal

v(t) = 2 + 10 sin
(

4t+
π

3

)
, 0 ≤ t < 90

corrupted with noise (SNR = 10). Three simulations
are conducted considering the same input signal with
different values of the parameter β. The other parameters
are the same of previous examples. Fig. 7 shows the
frequency estimations with β = 0.02, 0.05, 0.1. As expected
by increasing the value of β the convergence speed of the
method increases too, at the cost of an increased noise
sensitivity.

5. CONCLUSIONS

In this paper, a method for the on-line estimation of the
frequency, amplitude, phase and offset of a biased sinu-
soidal signal has been proposed. The discussed approach
is based on a non-adaptive second order generalized in-
tegrator, i.e. its resonant frequency is not adapted but a-
priori fixed in order to have an acceptably fast steady-state
response. The method is parsimonious in the sense that it
is able to estimate all the four parameters of a biased sinu-
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Fig. 7. Example 3. Frequency estimation varying the
parameter β.

soidal signal by a fourth order complexity. Simulations and
comparisons with existing methods have been conducted
in order to illustrate the reconstruction capability of the
method also in the case of typical time-varying frequency
such as frequency step and sweep variations.
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