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Abstract: This paper discusses the Proportional Integral (PI) regulation control of the left
Neumann trace of a one-dimensional reaction-diffusion equation with a delayed right Dirichlet
boundary control. Specifically, a PI controller is designed based on a finite-dimensional truncated
model that captures the unstable dynamics of the original infinite-dimensional system. In this
setting, the control input delay is handled by resorting to the Artstein transformation. The
stability of the resulting infinite-dimensional system, as well as the tracking of a constant
reference signal in the presence of a constant distributed perturbation, is assessed based on
the introduction of an adequate Lyapunov function. The theoretical results are illustrated with
numerical simulations.
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1. INTRODUCTION

1.1 State of the art

Proportional-Integral (PI) regulation control of infinite-
dimensional systems is an active topic of research. While
early works in this area were reported in the 80’s for
bounded control operators (Pohjolainen, 1982, 1985; Xu
and Jerbi, 1995), the PI boundary regulation of infinite-
dimensional systems is more recent. This includes linear
hyperbolic systems (Dos Santos et al., 2008; Xu and
Sallet, 2014; Bastin et al., 2015; Lamare and Bekiaris-
Liberis, 2015), 1-D nonlinear transport equation (Coron
and Hayat, 2019; Trinh et al., 2017), regulation of the
downside angular velocity of a drilling string (Terrand-
Jeanne et al., 2018b), and the regulation of a drilling
pipe under friction (Barreau et al., 2019). The PI regu-
lation of open-loop exponentially stable semigroups with
unbounded control operators were reported in (Terrand-
Jeanne et al., 2018a, 2019) via a Lyapunov functional-
based design procedure.

This paper is focused on the PI regulation control of the
left Neumann trace of a one-dimensional reaction-diffusion
equation, which might be either open-loop stable or un-
stable, with a delayed right Dirichlet boundary control.
Specifically, we aim at achieving the Neumann trace track-

? This publication has emanated from research supported in part by
a research grant from Science Foundation Ireland (SFI) under grant
number 16/RC/3872 and is co-funded under the European Regional
Development Fund and by I-Form industry partners.

ing of a constant reference input in spite of the presence of
an arbitrarily large constant input delay and a stationary
distributed disturbance. It was shown in (Krstic, 2009)
that backstepping-based control design can be used to
achieve the feedback stabilization of a reaction-diffusion
equation in the presence of an arbitrarily large input delay.
In this paper, we adopt the approach reported in (Prieur
and Trélat, 2019) which takes advantage of the following
design procedure initially reported in (Russell, 1978): 1)
design of the controller on a finite-dimensional model
capturing the unstable modes of the original infinite-
dimensional system; 2) use of a suitable Lyapunov func-
tional to guarantee the stability of the resulting closed-
loop infinite-dimensional system. This control design pro-
cedure, which was used in (Coron and Trélat, 2004, 2006;
Schmidt and Trélat, 2006) to stabilize semilinear heat,
wave or fluid equations via (undelayed) boundary feedback
control, was extended in (Prieur and Trélat, 2019) to
the case of delay boundary control of a one-dimensional
reaction-diffusion equation in which the contribution of the
input-delay was managed by the synthesis of a predictor
feedback via the classical Artstein transformation (Art-
stein, 1982; Richard, 2003; Bresch-Pietri et al., 2018). This
control strategy was first reused in (Guzmán et al., 2019)
for the delay boundary feedback stabilization of a linear
Kuramoto-Sivashinsky equation and then generalized to
the delay boundary feedback stabilization of a class of
diagonal infinite-dimensional systems for either a constant
(Lhachemi and Prieur, 2020; Lhachemi et al., 2019c) or a
time-varying (Lhachemi et al., 2019a, 2020) input delay.
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1.2 Investigated control problem

Let L > 0, let c ∈ L∞(0, L), and letD > 0 be arbitrary. We
consider the one-dimensional reaction-diffusion equation
over (0, L) with delayed Dirichlet boundary control:

yt = yxx + c(x)y + d(x), (t, x) ∈ R∗+ × (0, L) (1a)

y(t, 0) = 0, t ≥ 0 (1b)

y(t, L) = uD(t) , u(t−D), t ≥ 0 (1c)

y(0, x) = y0(x), x ∈ (0, L) (1d)

where y(t, ·) ∈ L2(0, L) is the state at time t, u(t) ∈ R is
the control input, D > 0 is the (constant) control input
delay, d ∈ L2(0, L) is a stationary distributed disturbance,
and y0 ∈ H2(0, L) with y0(0) = 0 and y0(L) = u(−D) is
the initial condition.

Our objective is to achieve the PI regulation control of the
left Neumann trace yx(t, 0) to some prescribed constant
reference input r ∈ R in spite of the stationary distributed
disturbance d, i.e., yx(t, 0) → r as t → +∞. Note that
an exponentially stabilizing controller for (1a-1d) was
reported in (Prieur and Trélat, 2019) in the disturbance-
free case (d = 0) for a system trajectory evaluated in H1

0 -
norm. The control strategy that we develop in the present
paper elaborates on the one of (Prieur and Trélat, 2019),
adequately combined with a PI procedure.

2. CONTROL DESIGN STRATEGY

The sets of nonnegative integers, positive integers, real,
nonnegative real, and positive real are denoted by N, N∗,
R, R+, and R∗+, respectively. All the finite-dimensional
spaces Rp are endowed with the usual Euclidean inner
product 〈x, y〉 = x>y and the associated 2-norm ‖x‖ =√
〈x, x〉 =

√
x>x. For any matrix M ∈ Rp×q, ‖M‖ stands

for the induced norm of M associated with the above 2-
norms. For a given symmetric matrix P ∈ Rp×p, λm(P )
and λM (P ) denote its smallest and largest eigenvalues,
respectively. In the sequel, the time derivative ∂f/∂t is

either denoted by ft or ḟ while the spatial derivative
∂f/∂x is either denoted by fx or f ′.

2.1 Augmented system for PI feedback control

The control design objective is: 1) to stabilize the reaction-
diffusion system (1a-1d); 2) to ensure the tracking of the
constant reference input r ∈ R by the left Neumann
trace yx(t, 0). We address this problem by designing a PI
controller. Following the general PI scheme, we introduce
a new state z(t) ∈ R taking the form of the integral of the
tracking error yx(t, 0)− r:
yt = yxx + c(x)y + d(x), (t, x) ∈ R∗+ × (0, L) (2a)

ż(t) = yx(t, 0)− r, t ≥ 0 (2b)

y(t, 0) = 0, t ≥ 0 (2c)

y(t, L) = uD(t) , u(t−D), t ≥ 0 (2d)

y(0, x) = y0(x), x ∈ (0, L) (2e)

z(0) = z0 (2f)

with z0 ∈ R the initial condition of the integral component.
As we are only concerned in prescribing the future of the
system, we assume that the system is uncontrolled for
t < 0, i.e. u(t) = 0 for t < 0. Thus, we assume in the
rest of the paper that y0 ∈ H2(0, L) ∩H1

0 (0, L).

2.2 Spectral reduction

We rewrite (2) as an equivalent homogeneous Dirichlet
problem. Assuming 1 that u is continuously differentiable
and setting w(t, x) = y(t, x)− x

LuD(t), we have

wt = wxx + c(x)w +
x

L
c(x)uD −

x

L
u̇D(t) + d(x) (3a)

ż(t) = wx(t, 0) +
1

L
uD(t)− r (3b)

w(t, 0) = w(t, L) = 0 (3c)

w(0, x) = y0(x)− x

L
uD(0) = y0(x) (3d)

z(0) = z0 (3e)

for t > 0 and x ∈ (0, 1). Introducing the real state-space
L2(0, 1) endowed with its usual inner product 〈f, g〉 =∫ L
0
f(x)g(x) dx and the operator A = ∂xx + c id : D(A) ⊂

L2(0, L) → L2(0, L) defined on the domain D(A) =
H2(0, L) ∩H1

0 (0, L), (3a-3c) can be rewritten as

wt(t, ·) = Aw(t, ·) + a(·)uD(t) + b(·)u̇D(t) + d(·) (4a)

ż(t) = wx(t, 0) +
1

L
uD(t)− r (4b)

with a(x) = x
Lc(x) and b(x) = − x

L for every x ∈ (0, L),
with initial conditions (3d-3e). Since A is self-adjoint and
has compact resolvent, we consider a Hilbert basis (ej)j≥1
of L2(0, L) consisting of eigenfunctions of A associated
with the sequence of simple real eigenvalues

−∞ < · · · < λj < · · · < λ1 with λj −→
j→+∞

−∞.

Note that ej(·) ∈ H1
0 (0, L)∩C1([0, L]) for every j ≥ 1 and

e′j(0) ∼
√

2

L

√
|λj |, λj ∼ −

π2j2

L2
, (5)

when j → +∞. Since w(0, ·) = y0 ∈ H2(0, L) ∩H1
0 (0, L),

the classical solution w(t, ·) ∈ H2(0, L) ∩H1
0 (0, L) of (4a)

can be expanded as a series in the eigenfunctions ej(·),
convergent in H1

0 (0, L),

w(t, ·) =

+∞∑
j=1

wj(t)ej(·). (6)

Thus (4) is equivalent to the infinite-dimensional control
system:

ẇj(t) = λjwj(t) + ajuD(t) + bj u̇D(t) + dj (7a)

ż(t) =
∑
j≥1

wj(t)e
′
j(0) +

1

L
uD(t)− r (7b)

for j ∈ N∗, with wj(t) = 〈w(t, ·), ej〉, aj = 〈a, ej〉,
bj = 〈b, ej〉, and dj = 〈d, ej〉. Introducing the auxiliary

control input v , u̇, and denoting vD(t) , v(t − D), (7)
can be rewritten as

u̇D(t) = vD(t) (8a)

ẇj(t) = λjwj(t) + ajuD(t) + bjvD(t) + dj (8b)

ż(t) =
∑
j≥1

wj(t)e
′
j(0) +

1

L
uD(t)− r (8c)

for j ∈ N∗. As u(t) = 0 for t < 0, (8a) yields v(t) = 0 for
t < 0 and the initial condition uD(0) = 0.

1 This property will be ensured by the construction carried out in
the sequel.
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2.3 Finite-dimensional truncated model

In what follows, we fix the integer n ∈ N∗ such that
λn+1 < 0 ≤ λn. In particular, we have λj ≥ 0 when
1 ≤ j ≤ n and λj ≤ λn+1 < 0 when j ≥ n + 1. Then,
introducing as in (Prieur and Trélat, 2019):

X1(t) =


uD(t)
w1(t)

...
wn(t)

 , A1 =


0 0 · · · 0
a1 λ1 · · · 0
...

...
. . .

...
an 0 · · · λn

 ,

B1 = (1 b1 . . . bn)
>
,

D1 = (0 d1 . . . dn)
>
,

with X1(t) ∈ Rn+1, A1 ∈ R(n+1)×(n+1), B1 ∈ Rn+1,
D1 ∈ Rn+1, (8a) and the n first equations of (8b) yield
the truncated model:

Ẋ1(t) = A1X1(t) +B1vD(t) +D1. (9)

Now, as
∣∣∣ e′j(0)λj

∣∣∣2 ∼ 2L
π2j2 when j → +∞, we can introduce

the change of variable

ζ(t) , z(t)−
∑

j≥n+1

e′j(0)

λj
wj(t), (10)

whose time derivative is given by

ζ̇(t) = ż(t)−
∑

j≥n+1

e′j(0)

λj
ẇj(t)

= αuD(t) + βvD(t)− γ +

n∑
j=1

wj(t)e
′
j(0),

where we have used (8b-8c), with

α =
1

L
−
∑

j≥n+1

e′j(0)

λj
aj , β = −

∑
j≥n+1

e′j(0)

λj
bj , (11a)

γ = r +
∑

j≥n+1

e′j(0)

λj
dj . (11b)

Then we have

ζ̇(t) = L1X1(t) + βvD(t)− γ (12)

with L1 =
(
α e′1(0) . . . e′n(0)

)
∈ R1×(n+1). Now, defining

the augmented state-vector X(t) =
[
X1(t)> ζ(t)

]> ∈
Rn+2, the exogenous input Γ =

[
D>1 −γ

]> ∈ Rn+2 and
the matrices

A =

(
A1 0
L1 0

)
∈ R(n+2)×(n+2), B =

(
B1

β

)
∈ Rn+2,

(13)
we obtain from (9) and (12) the control system

Ẋ(t) = AX(t) +BvD(t) + Γ (14)

which is the finite-dimensional truncated model capturing
the unstable part of the infinite-dimensional system along
with the introduced integral component for PI regulation.
Putting together the truncated model (14) along with (8b)
for j ≥ n+1, we get the final representation used for both
control design and stability analyses:

Ẋ(t) = AX(t) +BvD(t) + Γ (15a)

ẇj(t) = λjwj(t) + ajuD(t) + bjvD(t) + dj (15b)

with j ≥ n+ 1.

2.4 Control design strategy

The adopted control design strategy relies on the use
of the classical predictor feedback to stabilize the finite-
dimensional truncated model (15a). Specifically, introduc-
ing the Artstein transformation (Artstein, 1982)

Z(t) = X(t) +

∫ t

t−D
eA(t−D−τ)Bv(τ) dτ, (16)

we have
Ż(t) = AZ(t) + e−DABv(t) + Γ.

Since (A,B) satisfies the Kalman condition (the proof
of this claim is omitted due to space limitation; details
can be found in (Lhachemi et al., 2019b)), the pair
(A, e−DAB) also satisfies the Kalman condition and we
infer the existence of a feedback gain K ∈ R1×(n+2) such
that AK , A + e−DABK is Hurwitz. Setting v(t) =
χ[0,+∞)(t)KZ(t) where χ[0,+∞) denotes the characteristic
function of the interval [0,+∞), we obtain the stable
closed-loop dynamics

Ż(t) = AKZ(t) + Γ.

Remark 1. In original coordinates, the control input v is
solution of the fixed point implicit equation

v(t) = χ[0,+∞)(t)KX(t)+K

∫ t

max(t−D,0)
eA(t−D−τ)Bv(τ) dτ.

Existence and uniqueness of the solution of the above
equation are reported in (Bresch-Pietri et al., 2018). ◦

2.5 Characterization of the equilibrium point

We characterize the equilibrium point of the closed-loop
system associated with a constant reference input r ∈ R
and a stationary distributed disturbance d ∈ L2(0, L). In
the sequel, we denote by a subscript “e” the equilibrium
value of the different quantities. Noting that uD,e = ue
and vD,e = ve, we have

0 = AKZe + Γ

0 = λjwj,e + ajue + bjve + dj , j ≥ n+ 1

In particular, from ve = KZe, we have AZe + e−DABve +
Γ = 0. As the first row of A and Γ are null and
[1 0 . . . 0] e−DAB = 1, we obtain that ve = 0. Moreover

we have Ze = −A−1K Γ. Then we can set Xe = Ze
because AXe + BvD,e + Γ = AKZe + Γ = 0, which is
compatible with the Artstein transformation since ve = 0

implies Ze = Xe +
∫ t
t−D e

(t−s−D)ABve ds. Then we have

ue = uD,e = [1 0 . . . 0]Ze = − [1 0 . . . 0]A−1K Γ, and

wj,e = −aj
λj
ue −

dj
λj

for j ≥ n+ 1. Now, noting that both

(wj,e)j and (λjwj,e)j are square-summable sequences, we
can define

we ,
∑
j≥1

wj,eej ∈ D(A) = H2(0, L) ∩H1
0 (0, L).

Expending the last row of AXe + Γ = 0, we obtain

that w′e(0) +
1

L
ue = r. Consequently, the introduction of

ye , we +
x

L
ue yields y′e(0) = r. Finally, from Awe =∑

j≥1
λjwj,eej we deduce that Awe + auD,e + bvD,e + d = 0.
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2.6 Dynamics of deviations

We now define the deviations of the various quantities
with respect to their equilibrium value: ∆X = X − Xe,
∆Z = Z −Ze, ∆w = w−we, ∆wj = wj −wj,e, ∆ζ = ζ −
ζe, ∆u = u − ue, ∆uD = uD − ue, ∆v = v − ve, and
∆vD = vD − vD,e. Then, in original coordinates:

∆wt = A∆w + a∆uD + b∆vD (17)

and

∆Ẋ(t) = A∆X(t) +B∆vD(t)

∆ẇj(t) = λj∆wj(t) + aj∆uD(t) + bj∆vD(t)

for j ≥ n + 1 with the auxiliary control input ∆v(t) =
χ[0,+∞)(t)K∆Z(t) (because ve = KZe = 0) where

∆Z(t) = ∆X(t) +

∫ t

t−D
e(t−s−D)AB∆v(s) ds. (18)

In Z coordinates, the closed-loop dynamics is given by

∆Ż(t) = AK∆Z(t) (19a)

∆ẇj(t) = λj∆wj(t) + aj∆uD(t) + bj∆vD(t) (19b)

for j ≥ n+ 1.

3. STABILITY ANALYSIS

The stability of the closed-loop infinite-dimensional system
is assessed by the following theorem.

Theorem 1. There exist κ,C1 > 0 such that

∆uD(t)2 + ∆ζ(t)2 + ‖∆w(t)‖2H1
0 (0,L)

(20)

≤ C1e
−2κt

(
∆uD(0)2 + ∆ζ(0)2 + ‖∆w(0)‖2H1

0 (0,L)

)
.

The proof of Theorem 1 relies on the following Lyapunov
function:

V (t) =
M

2
∆Z(t)>P∆Z(t) (21)

+
M

2

∫ t

max(t−D,0)
∆Z(s)>P∆Z(s) ds

− 1

2

∑
j≥1

λj∆wj(t)
2,

where P ∈ R(n+2)×(n+2) is the solution of the Lyapunov
equation A>KP + PAK = −I and M > 0 is chosen such
that

M > max

(
γ1λ1
λm(P )

, 2
(
γ1‖a‖2 + ‖b‖2‖e−DAK‖2‖K‖2

))
with γ1 , 2 max

(
1, De2D‖A‖‖BK‖2

)
. Useful properties of

V are stated in the three following lemmas. Due to space
limitation, only a sketch of proof is provided.

Lemma 1. There exists a constant C1 > 0 such that

V (t) ≥ C1

∑
j≥1

(1 + |λj |)∆wj(t)2, (22a)

V (t) ≥ C1

(
∆uD(t)2 + ∆ζ(t)2 + ‖∆w(t)‖2H1

0 (0,L)

)
,

(22b)

V (t) ≥ C1‖∆Z(t)‖2, (22c)

for every t ≥ 0.

Sketch of proof Using M > γ1λ1

λm(P ) , the claimed es-

timates are obtained similarly to the ones reported in
(Prieur and Trélat, 2019). 2

Lemma 2. There exist κ,C2 > 0 such that

V (t) ≤ e−2κ(t−D)V (D)

for every t ≥ D.

Sketch of proof As A is self-adjoint, we have for t > D,

V̇ (t) = −M
2
‖∆Z(t)‖2 − M

2

∫ t

t−D
‖∆Z(s)‖2 ds

− ‖A∆w(t)‖2 − 〈A∆w(t), a〉∆uD(t)

− 〈A∆w(t), b〉∆vD(t).

The use of Cauchy-Schwarz and Young inequalities show
that, for all t > D,

V̇ (t) ≤ −1

2
‖A∆w(t)‖2

− γ2
λM (P )

(
∆Z(t)>P∆Z(t) +

∫ t

t−D
∆Z(s)>P∆Z(s) ds

)
with γ2 = M/2 −

(
γ1‖a‖2 + ‖b‖2‖e−DAK‖2‖K‖2

)
> 0.

Similarly to (Prieur and Trélat, 2019), we infer the exis-
tence of a constant γ3 > 0 such that, for all t ≥ 0,

−〈A∆w(t),∆w(t)〉 ≤ γ3‖A∆w(t)‖2.
Consequently, we obtain that V̇ (t) ≤ −2κV (t) for all

t > D with κ =
1

2
min

(
2γ2

MλM (P )
,

1

γ3

)
> 0. 2

Lemma 3. There exists C2 > 0 such that

V (t) ≤ C2

(
∆uD(0)2 + ∆ζ(0)2 + ‖∆w(0)‖2H1

0 (0,L)

)
for all 0 ≤ t ≤ D with ∆uD(0) = −ue.

Sketch of proof Estimations similar to the ones reported
in the proof of Lemma 2 show the existence of γ4 > 0 such
that

V̇ (t) ≤ γ4‖∆X(0)‖2
for all 0 ≤ t < D. Therefore, V (t) ≤ V (0)+Dγ4‖∆X(0)‖2
for all 0 ≤ t ≤ D. The estimation of V (0) from (21) and a
direct integration with t ≤ D show the claimed result. 2

The proof of Theorem 1 is now a straightforward combina-
tion of the results reported in Lemmas 1, 2 and 3. Recalling
that ∆v(t) = K∆Z(t) for t ≥ 0 and ∆v(t) = 0 for t < 0,
we also obtain that

∆vD(t)2 (23)

≤ Ĉ1e
−2κt

(
∆uD(0)2 + ∆ζ(0)2 + ‖∆w(0)‖2H1

0 (0,L)

)
for t ≥ 0 with Ĉ1 = ‖K‖2C1e

2κD.

4. SETPOINT REFERENCE TRACKING ANALYSIS

We assess that the tracking of the constant reference
input r is achieved in spite of the stationary distributed
disturbance d.

Theorem 2. Let κ > 0 be provided by Theorem 1. There
exists C2 > 0 such that

|yx(t, 0)− r| (24)

≤ C2e
−κt

(
|∆uD(0)|+ |∆ζ(0)|+ ‖∆w(0)‖H1

0 (0,L)

+‖A∆w(0)‖L2(0,L)

)
.

Sketch of proof Recalling that we,x(0) +
1

L
ue = r, we

have
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|yx(t, 0)− r| =
∣∣∣∣wx(t, 0) +

1

L
uD(t)− r

∣∣∣∣
≤ |wx(t, 0)− we,x(0)|+ 1

L
|∆uD(t)|. (25)

From the exponential convergence of ∆uD(t) to zero
provided by (20), it is sufficient to study the term wx(t, 0)−
we,x(0) =

∑
j≥1 ∆wj(t)e

′
j(0). As e′j(0) ∼

√
2
L

√
|λj |, there

exists a constant γ7 > 0 such that |e′j(0)| ≤ γ7
√
|λj | for all

j ≥ n+ 1. Let m ≥ n+ 1 be such that η , −λm > κ > 0.
Thus λj ≤ −η < −κ < 0 for all j ≥ m. We have:

|wx(t, 0)− we,x(0)|

≤
m−1∑
j=1

|∆wj(t)||e′j(0)|+ γ7
∑
j≥m

√
|λj ||∆wj(t)|

≤

√√√√m−1∑
j=1

e′j(0)2

√√√√m−1∑
j=1

∆wj(t)2 (26)

+ γ7

√∑
j≥m

1

|λj |

√∑
j≥m

λ2j∆wj(t)
2

where
∑
j≥m

1
|λj | < +∞ because |λj | ∼ π2j2/L2. Based on

(20) and Poincaré inequality, it is sufficient to study the

term
√∑

j≥m λ
2
j∆wj(t)

2. To do so, we integrate (19b) for

j ≥ m and we use estimates (20) and (23), yielding

|λj∆wj(t)|
≤ eλjt|λj∆wj(0)|

+

∫ t

0

(−λj)eλj(t−τ) {|aj ||∆uD(τ)|+ |bj ||∆vD(τ)|} dτ

≤ e−ηt|λj∆wj(0)|+ C3,je
λjt

∫ t

0

(−λj)e−λjτe−κτ dτ ∆CI

with ∆CI =
√

∆uD(0)2 + ∆ζ(0)2 + ‖∆w(0)‖2
H1

0 (0,L)
and

constant C3,j = |aj |
√
C1 + |bj |

√
Ĉ1. As λj ≤ −η < −κ

for all j ≥ m, we obtain that eλjt
∫ t
0
(−λj)e−λjτe−κτ dτ =

λj

λj+κ
(e−κt − eλjτ ) ≤ λj

λj+κ
e−κt ≤ η

η − κ
e−κt, hence

|λj∆wj(t)| ≤ e−κt|λj∆wj(0)|+ C3,jη

η − κ
e−κt∆CI

and thus∑
j≥m

λ2j∆wj(t)
2 ≤ 2e−2κt‖A∆w(0)‖2 +

2C2
3η

2

(η − κ)2
e−2κt∆CI2.

(27)

with C3 > 0 defined by C2
3 =

∑
j≥m C

2
3,j ≤ 2C1‖a‖2 +

2Ĉ1‖b‖2. Using now (25) along with (26) and estimates
(20) and (27), we obtain the existence of a constant C2 > 0
such that the claimed estimate (24) holds for all t ≥ 0. 2

5. NUMERICAL ILLUSTRATION

We take c = 1.25, L = 2π, and D = 1 s. The three
first eigenvalues of the open-loop system are λ1 = 1,
λ2 = 0.25, and λ2 = −1. Only the two first modes need
to be stabilized. Thus we have n = 2 and we compute
the feedback gain K ∈ R1×4 such that the poles of the
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Fig. 1. Time evolution of the closed-loop system

closed-loop truncated model (capturing the two unstable
modes of the infinite-dimensional system plus two integral
components, one for the control input and one for reference
tracking) are given by −0.5, −0.6, −0.7, and −0.8. The
adopted numerical scheme is the modal approximation of
the infinite-dimensional system using its first 10 modes.
The initial condition is set as y0(x) = − x

L

(
1− x

L

)
.

The obtained simulation results with r = 50 and d(x) = x
are depicted in Fig. 1. As expected from the theoretical
analysis, the PI controller achieves the stabilization of the
reaction-diffusion equation and ensures that the Neumann
trace yx(t, 0) tracks the constant reference input r.
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6. CONCLUSION

This paper discussed the PI regulation control of the
left Neumann trace of a one-dimensional linear reaction-
diffusion equation with delayed right Dirichlet boundary
control. The proposed strategy extends to PI control a
recently proposed approach for the delay boundary feed-
back stabilization of infinite-dimensional systems combin-
ing spectral reduction and the use of the classical Artstein
transformation for handling the delay in the control input.
The validity of this control strategy for the tracking of
a constant reference input and in the presence of a sta-
tionary perturbation was assessed via a Lyapunov-based
argument. The extension of these results to the set-point
regulation control of a time-varying reference input r(t)
and in the presence of a time-varying distributed pertur-
bation d(t, x) can be found in (Lhachemi et al., 2019b).
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