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Abstract: The increased penetration of Distributed Energy Resources (DERs) within power
networks is bringing challenges, an important one being the potential voltage excursions within
the system that must be mitigated, as voltage must be maintained within statutory range at all
times and at any node of the system by regulation. This paper proposes a scalable framework
based on machine learning techniques (ML) to assess voltage excursion risks node by node
and derive the related marginal probabilities in response to any net-loads under various DER
penetration scenarios. The framework is then used to quantify the resulting financial impact
of voltage excursion in large-scale networks. Therefore, this novel end-to-end risk framework
supports decision making in the planning phase of networks in response to any intermittent
DER penetration scenario. We show through simulations that the framework is both scalable to
high-dimensional systems and efficient to handle vast number of scenarios. In our simulations,
the use of ML technique enables to lower the computing time by a factor of 800 compared
to load flow solving, while maintaining an accuracy ≥ 95% , enabling the assessment of vast
number of scenarios.
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1. INTRODUCTION

The adoption of renewable energy sources is fast increasing
globally. For instance, in its global roadmap REMap to
2050, (1) predicts an increase of global electricity demand
from 20.204 TWh/yr in 2015 to 41.508 TWh/yr in 2050,
with a renewable share jumping from 24 % to 85% in the
same period and where the solar PV capacity contribution
would jump from 223 GW to 7,122 GW. Increasing the
share of Distributed Energy Resources (DERs) to signifi-
cant levels would create some effects on the power networks
that need to be appropriately planned and managed. The
intermittency of some renewable sources characterised by
fluctuation and uncontrollability of the power generated
can cause rapid unbalance between power generated and
consumed locally. In scenarios of high penetration level
of DERs within the network, the containment of voltage
within statutory limits, and especially the upper limit,
would become an issue, (2). Distribution Network Service
Providers (DNSPs) must plan to adapt their network to
control e the voltage where it is susceptible to exceed the
threshold limits.

This paper presents a framework that helps the DNSP in
their planning decision making in response to any scenario
of DER penetration within their network. The fluctuation
of generation and local imbalance of net-demand are both
of stochastic nature, and therefore, so are the resulting
voltage excursion risks. It is consequently appropriate to
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analyse and assess those phenomenons using quantitative
risk management techniques that combine the likelihood
and the severity of event to quantify the risk, (3). The
likelihood at any node can be modelled through a marginal
probability that will depend on the net-demand joint
distributions at every node given a network configuration.
The severity of voltage excursion event can be modelled
though financial impact for the customers.

In this paper we propose a robust and scalable framework
to assess the probability and financial impact of volt-
age risk events in response to any intermittent net-load
penetration scenario. The predictive method uses Support
Vector Machine (SVM) classifiers to assess the identified
risk event’s occurrence. SVM is a robust Machine Learning
technique that is particularly suitable to deal with high-
dimensional data, (4) and the computations involved in
using trained classifiers are linear. This property enables
the proposed method to assess vast numbers of scenarios
in order to infer risk probabilities. The novelty of the
developed approach is multiple:

• It is ‘end-to-end’, providing a framework that assesses
the voltage risk probabilities and respective financial
impacts for planning decision making

• It is fast and reliable to assess vast amounts of
scenarios

• It is scalable to large-scale power networks

By using machine learning classifiers, the presented
method will decouple the problem of identifying the net-
loads conditions that lead to a voltage excursion at one
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node and the capability of assessing vast amounts of net-
loads scenarios. The initial problem, which is connected to
training the machine learning classifiers, is computation-
ally intensive and uses traditional methods to solve the
load flow equations for the system, but this is a one-off
exercise per network configuration. Once the classifiers are
trained and sufficiently accurate, they can be repetitively
and swiftly used to assess any net-load and penetration
scenario for the system. Our simulations have shown that
using the classifiers is 800 times faster than solving the
load flow equations. This proposed methodology opens
the way to assess wide range of ‘what-if’ analyses for the
system and derive voltage risk probabilities that can then
be linked to financial impact and constitute a quantitative
voltage risk assessment framework as illustrated in Fig1.

Fig. 1. ‘End-to-end’ decision making framework

The integration of DERs and their impact on the voltage
stability has been subject to research in recent years,(5)
provide an overview of the consequences of decentralised
generation for typical voltage stability issues. In (6; 7),
planning frameworks for distribution grids are broadly
discussed, highlighting the need for new quantitative anal-
ysis tools. In (8), a probabilistic voltage risk analysis
is proposed to assess the value at risk associated with
decision making of installing SVC in the power system
and (9) proposes a probabilistic method to evaluate the
over-voltage risk in a distribution network with different
PV capacity sizes under different load levels, and (10)
proposed a voltage collapse risk approach. In (11), we
have proposed a machine learning based approach to assess
the voltage stability risk under stochastic net-loads. This
paper focus on voltage statutory thresholds and complete
the quantitative risk assessment framework with risk prob-
abilities and financial impact assessment approach

2. VOLTAGE RISK ASSESSMENT FRAMEWORK

The voltage risk framework that we propose is intended to
determine marginal voltage risk event probability at any
selected bus of a network in response to any scenario of
intermittent DER penetration and net-loads profile in the
system. The net-load is defined as the consumer embedded
generation minus the consumer demand. The voltage risk
events and criteria that are considered for this paper are:

(1) ‘Over-voltage’ at one bus (e.g. 1.1 p.u. in Australia)
(2) ‘Under-voltage’ at one bus (e.g. 0.94 p.u. in Aus-

tralia)

Those risks refer to net-load conditions that would cause
the voltage to breach the upper or lower voltage statutory
limit that is set according to local regulation.

To accomplish this, we firstly need a model that assesses
the occurrence of voltage risk events in response to any
particular net-load values within the system. Secondly, we
need the ability to run the model on a vast amount of net-
load values in order to determine marginal voltage risk
probabilities.

The method proposed in this paper decouples the as-
sessment of voltage risk events and the actual stochastic
distribution of net-loads. This offers a framework that can
be applied to any intermittent DER penetration level and
net-load profile, knowing that distributions of the net-
loads varies according to the geography, the time of the
day/year, and are highly dependent on external factors
such as weather forecast.

2.1 Model the voltage risk events

The voltage risk assessment model is an extension of the
model proposed by the authors in (11) where the steady
state power system is described by a set of 2B load-flow
equations, where B is the number of buses in the system,
in 2B algebraic variables Vi, θi :

0 = −Pi +
B∑

k=1

|Vi||Vk|(Gik cos θik +Bik sin θik) (1)

0 = −Qi +

B∑
k=1

|Vi||Vk|(Gik sin θik +Bik cos θik) (2)

where Pi is the net injected real power (power generated
minus power consumed) at bus i, Qi is the net injected
reactive power at bus i, Vi is the voltage at bus i, θik is
the difference in voltage angle between bus i and k, Gik is
the real part of the admittance Yik of the line between bus
i and k and Bik is the imaginary part of the admittance
Yik of the line between bus i and k.

For the sake of abbreviation, in this paper we denote the
set of 2B load flow equations (1),(2) as:

φ(V, θ, Ln) = 0 (3)

where V and θ are the B-dimensional vectors of voltage
and angles respectively and Ln is a 2B-dimensional vector
of net-load values P (active power) andQ (reactive power):

Ln := [P1, .., PB , Q1, ..., QB ] (4)

In that model, the loadability limit or critical points are
the points where the demand values reaches an extremum
value after which there is no solution of the load flow
equations. As demonstrated in (12), in the B-dimensional
parameter space, the points satisfying those conditions
belong to a manifold of dimension B − 1 which is called
the bifurcation surface or critical surface, or:

L∗
n,crit = {Ln | g(Ln) = 0} (5)

where g(Ln) is the critical surface.

Let’s define the stable region (hyper-volume) inside the
critical surface in the 2B-dimensional parameter space:

Sstable = {(V, θ, Ln) | |Ln < L∗
n,crit, φ(V, θ, Ln) = 0} (6)

Similarly, inside the stable region we can define the under-
voltage-limits and over-voltage-limits as the points where
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the demand values reach the extremums causing the volt-
age state variable Vi at bus i to reach the respective
extremum statutory limit respectively due to excessive
local generation (Ln < 0) or load (Ln > 0), or:

L∗
n,i,under = {Ln | φ(V, θ, Ln) = 0, Vi = Uv} (7)

L∗
n,i,over = {Ln | φ(V, θ, Ln) = 0, Vi = Ov} (8)

where Ov is the over-voltage threshold and Uv the under-
voltage threshold.

Therefore, inside the stable region (hyper-volume), we can
define a smaller Acceptable Region (hyper-volume) which
is upper bounded by the over-voltage multi-dimensional
surface and lower-bounded by the under-voltage multi-
dimensional surface that can be represented by the set:

Sacc. = {(V, θ, Ln)| | Ln < L∗
n,i,under,

φ(V, θ, Ln) = 0,
Vi ≥ Uv}

∪ {(V, θ, Ln)| | Ln > L∗
n,i,over,

φ(V, θ, Ln) = 0,
Vi ≤ Ov}

(9)

Thus there exist multi-dimensional surface boundaries
that respectively separates:

• The set of acceptable loads versus the set of unac-
ceptable loads that cause over-voltage at one given
bus i
• The set of acceptable loads versus the set of unac-

ceptable loads that cause under-voltage at one given
bus i

There exists no analytical solutions to calculate those
boundaries and it is therefore appropriate to utilise nu-
merical solution to this problem.

2.2 Model a risk event predictor using machine learning
technique

We are proposing to use Machine Learning (ML) technique
to quickly assess the voltage risks (over-voltage risk and
under-voltage risk) at selected buses in response to any
given net-load set of values. The advantage of this ap-
proach is the scalability and ease of use once the classifiers
have been appropriately trained. Support Vector Machine
(SVM) is a well accepted numerical method adapted to
solve classification problems where the model parameters
are defined to maximise the margin, which is the smallest
distance between the decision boundary and any of the
training samples. In our case, the decision boundaries
coincide with the above defined surfaces (7)(8) and we
train 2 distinct two-class linear models per bus:

(1) Over-voltage model that discriminate between ac-
ceptable region and over-voltage region for that bus

(2) Under-voltage model that discriminate between ac-
ceptable region and under-voltage region for that bus

In general terms, the SVM models formulates as:

Y (Ln) = wt × α(Ln) + b (10)

where w are coefficients, α() denotes a fixed feature-
space transformation and b is the bias. Training the
models, or identifying the model parameters (w, α(), b)

correspond to a quadratic convex optimization problem
as described in (4) and (13). For each model type (over-
voltage and under-voltage) and bus i, we will require
a set of training data that will comprise M input net-
loads vectors Ln1, .., LnM with corresponding target value
Y1, .., YM where Y ∈ {−1, 1} corresponding to the voltage
of bus i being respectively within threshold (Y = −1) or
not (Y = 1), meaning being under-voltage or over-voltage
respectively depending on the model type .

In order to generate those training sets, a network con-
figuration and related network parameters are identified,
and a Monte-Carlo simulation on the system is executed
extracting net-load values for every bus from a stochastic
distribution, solving the load-flow and comparing the volt-
age at each bus with the thresholds to capture the target
values for each model type as described in Fig.2.

Fig. 2. Training Dataset generation framework

Each training set is used to train the respective classifier,
meaning identifying the model parameters as described in
(4), i.e the w,α(Ln) and b in (10). It should be noted
that the values of the net-loads used in the Monte Carlo
simulation at each bus are extracted from a uniform distri-
bution within their maximum operating range. Using uni-
formly distributed net-loads within their maximum range
of operation enables us to uniformly sample the surface
boundaries when building the training set for the SVM
classifiers. The number of samples is empirically chosen so
that the SVM classifiers are sufficiently accurate in their
prediction. The accuracy will be defined as the proportion
of true results (true positives and true negatives) among
the total number of cases examined and arbitrarily set to
be close to 95%.

Once the classifiers are trained they can be used to assess
any given set of new intermittent net-load vector for
the same configuration of the power system and predict
potential voltage risk events. The creation of the training
set data for the classifiers is computational intense, but is
a one-off exercise. Once trained and tested, the classifiers
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which are simple linear functions can be used to assess the
voltage risk for any given set of net-loads.

2.3 Scenario Analysis - Voltage Risk Probabilities

The strength of the method is that the SVM classifiers
are decoupled from the stochastic distributions of the net-
load and can repetitively be utilised to quickly assess
the occurrence of a risk event in response to load and
generation profile within the system.

Leveraging the law of big numbers, the proposed risk
framework will use large Monte Carlo simulations to deter-
mine the marginal voltage risk event probability for every
given node in response to any scenario of intermittent DER
within the system as illustrated in Figure 3.

Fig. 3. DER scenario voltage risk assessment framework

The voltage risk framework enables to quickly assess the
impact of different net-load distributions or scenarios in
terms of voltage risk event probability of occurrence, our
simulations have shown that the assessment is 800 times
faster with our method compared to traditional load flow
equation solving (1.9 second versus 26 minutes for 110,000
simulations).

3. VOLTAGE RISK SEVERITY - FINANCIAL
IMPACT

The previous section has described a framework usable to
assess the voltage risk events probabilities in response to
given stochastic net-loads where the risk events are Over
voltage and Under voltage. As described in (3), (14), in
probabilistic risk assessment the risk value associated to
a scenario Si over a period of time is the product of its
probability Pi and consequence Xi integrated over the
period of time T or

RiskSi
=

∫
T

Pi ×Xi dt

In our case, we have identified two different types of events
or scenarios and developed a methodology to estimate
their probabilities of occurrence Pi but need to identify
metrics to assess their consequence Xi in monetary value.

For the scenario identified (under-voltage and over-
voltage), the consequence is mainly felt by the consumers
and the excursion of voltage can disrupt or damage the
connected appliances or machineries. In Australia, regula-
tions are in place to enforce the DNSPs to maintain the
voltage within statutory limits and a non-respect, even
temporary, entitles the consumers to lodge claims that
must be managed and cleared by the DNSPs. The cost

of those complaints can be used as a metric to assess the
consequence of over-voltage and under-voltage scenarios as
follows :

Riskover =

∫
T

Pover ×
∑
k

(Pcompl × Ccompl × Ck) dt (11)

Riskunder =

∫
T

Punder ×
∑
k

(Pcompl × Ccompl × Ck) dt(12)

where Pcompl is the respective probability of receiving
consumer complaint following over/under voltage event,
Ccompl is the average cost of complaint and Ck the number
of customer of each type impacted by the event. The pro-
posed voltage risk framework estimates the point in time
Pover and Punder and identifies the bus where it occurs,
and therefore helps to assess the number of customers
impacted. Ccompl can be extrapolated by DNSPs from
past events and similarly, the Pcompl can be extrapolated
by DNSPs from historical data depending on the severity,
duration, and location of the event.

4. SIMULATION RESULTS

In this section we illustrate on a test case (IEEE 118
buses test network (15)) end-to-end and step-by-step the
methodology required to build the risk framework. A set of

Fig. 4. IEEE 118 Test system

buses has been identified to accommodate solar PV gener-
ation and arbitrarily selected in pockets to simulate high
concentrations of intermittent loads in some geographic
area (circled in figure 4). The Risk events considered in
this simulation are the over-voltage and under-voltage.

4.1 Train the SVM classifiers

The initial step of the method requires the creation of
training data sets in order to train SVM classifiers as il-
lustrated in Fig. 2. Following standard practice in Machine
Learning, the models have been trained and validated
using a 10-fold cross validation technique, (16). It is to
be noted that the training procedure proposed requires
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solving the load flows for the entire system for each Monte-
Carlo simulation. It is computationally intense, but this
preliminary operation is required only once given a power
network configuration. The performance of the classifiers is
assessed using a confusion matrix which records correctly
and incorrectly classified risk events. The classification
performance will be assessed via commonly-accepted mea-
sures : the F-1 score, (17). To test the performance of the
classifiers, an independent validation data set has been
generated from a new Monte Carlo simulation on the same
system configuration as the one used to create the training
data set and the F-1 scores for the trained classifiers
applied to this new validation data set are distinctively
high (on average 99.2% and 98.8%). The elevated accuracy
makes the classifiers trustworthy and useful to predict
potential risk events.

4.2 Use the SVM classifiers to derive risk probabilities on
planning scenarios

Appropriately trained classifiers are now used to predict
risk events on respective bus in response to given net-load
input. Illustratively, we are constructing multiple scenarios
for our IEEE118 test buses system where we progressively
introduce solar PV generation capacity on the selected
pocket of weak buses (Fig.4). For each scenario, the
maximum solar PV capacity is set to a value increasing
from 75MW up to 150MW and in each case we analyse
the effect of those potential new solar PV capacities on
the over-voltage risk within the system over a full day.
In order to generate the hourly net-load of the system,
we randomly generate net-load values using the respective
hourly value indicated in the profile illustrated in Fig.5 as a
mean (and where the peak value is the scenario maximum
capacity) and the standard deviation set arbitrarily to 0.2
to simulate intermittency. For each scenario, we executed

Fig. 5. Load and DER Generation profiles - mean values

10k daily Monte-Carlo simulations to generate hourly net
load series and the over-voltage risk events assessed using
the respective trained classifiers. The hourly probability
of risk event in each scenario has been inferred from the
calculated frequency (#PositiveClass

10,000 ). Fig. 6 illustrate the

over-voltage probabilities per bus and scenario at 12PM.

The graph shows that some buses are more sensitive to
intermittent generation than others and that is dictated
by the network topology and internal parameters (line
admittances, transformer tap ratios). Interestingly, the
proposed method allows to identify and map the voltage

Fig. 6. Over-voltage risk probability for each weak buses
at 12PM

risk’s sensitivity of each bus under any set of given scenar-
ios. Fig.7 illustrate for one bus the hourly over-voltage risk

Fig. 7. Hourly over-voltage risk probabilities for BUS 21

probability per scenario which remarkably illustrate the
good sensitivity of the classifiers that are used to generate
the probabilities which unsurprisingly follows the shape
of the generation profile as over-voltage is caused by an
excess embedded generation within the system.

4.3 Risk Assessment - estimate the financial impact

To complete our risk assessment for this over-voltage
simulation, we will calculate the daily impact of over-
voltage risk for each scenario if no mitigation actions are
undertaken. In E(11), Pover is the probability of over-
voltage illustrated in Fig.7, Pcompl. is arbitrary set to
5%. To calculate the cost of complaint term we need to
multiply an average cost of complaint with the number of
customer impacted. The DNSP usually precisely know this
information. For the sake of this simulation we will use an
average cost of $1, 500 per complaint. For each scenario, we
will estimate the number of customers dividing the nom-
inal intermittent generation of the scenario by 5kW , this
equivalent to saying that the every customer connected
to the bus is contributing to the intermittent embedded
generation with 5kW solar PV and the scenarios are sim-
ulating an increase of penetration within the system. Tab.
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1 summarises the daily risk monetary impact for 4 buses:
bus 21, bus 22, bus 43 and bus 44. The risk values are to be

DER Bus Id
Capacity
scenario 21 22 43 44

150 MW $15,58 M $16,19 M $10.68 M $16,17 M

140 MW $13,19 M $13,81 M $7,86 M $14,02 M

130 MW $10,56 M $11,36 M $5,34 M $11,57 M

125 MW $9,09 M $9,99 M $3.97 M $10,00 M

120 MW $7,62 M $8,55 M $2,77 M $8,70 M

115 MW $5,96 M $6,90 M $1,67 M $7,51 M

110 MW $4,39 M $5,30 M $0,88 M $5,93 M

105 MW $3,09 M $4,04 M $0,29 M $4,52 M

100 MW $1,71 M $2,45 M $48 k $3,18 M

95 MW $0,74 M $1,29 M - $1,92 M

85 MW $31 k $89 k - $0,33 M

Table 1. Simulated over-voltage risk values for
4 buses

used by the DNSP to assess the proper mitigation actions
and investment on their network in order to appropriately
manage those risks (accept, reduce, avoid or transfer)

5. CONCLUSION

This paper presents a novel end-to-end methodology to
assess voltage risks and their financial impact within
a power system. The benefits and contribution of the
presented risk framework are presented below:

• Versatility to assess any scenario’s type of nomi-
nal intermittent generation capacities and net-load
profiles as developed in Section 2.3. In effect, the
presented method decouples the problem of assessing
the occurrence of a risk given one net-load profile and
the capability of assessing vast amounts of scenarios.
• End-to-end relevant for network planning decisions

supported by financially quantified risk values as
developed in Section 3
• Discrimination to precisely identify weak buses

within the system in response to scenarios, as the
presented method in Section 2.2 trains individual
classifiers by bus and risk event;
• Scalability to large scale distribution system due to

intrinsic characteristics of SVM classifiers that are
well suited and performing in high-dimension space,
(4);

Future work will extend the Risk Framework to
include the effects of reverse power flows and fault
detection due to increased penetration of DER in the
distribution networks.
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