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Abstract: This paper studies a consensus problem for discrete-time linear nabla fractional order
multi-agent systems with Riemann-Liouville difference operator. With the help of the discrete
fractional Lyapunov direct method, a state feedback stabilization problem of a discrete-time
linear nabla fractional order system is firstly analyzed. Then a distributed consensus control law
is proposed for a discrete-time linear nabla fractional order multi-agent system. Some sufficient
conditions are presented to guarantee that the leader-following consensus can be achieved by the
proposed algorithm. The control gain is determined according to an algebraic Riccati inequality.
Finally, simulation results are presented to demonstrate the effectiveness of theoretical analysis.
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1. INTRODUCTION

Coordination control of multi-agent systems (MASs) has
attracted much more attention in many research fields due
to its wide applications such as wireless sensor networks,
unmanned air vehicle formations and smart grids (see Hu
and Hu (2008), Zheng et al. (2019), Dong et al. (2016)
and Ansari et al. (2016)). As one of the key issues of co-
ordination control problems, consensus control focuses on
developing appropriate protocols to achieve an agreement
for all agents by using the information of neighbor agents.
So far, there have been a large number of research results
in the literature such as leaderless consensus, the leader-
following consensus and robust consensus (see Hu et al.
(2013), Yu and Xia (2017), Girejko and Malinowska (2019)
and Li et al. (2018)).

Up to date, most of the existing works related to consensus
control of MASs focused on the integer-order dynamics.
However, some physical phenomena with memory prop-
erties and practical engineering systems can not be well
described by integer-order dynamics, such as microorgan-
isms moving in macromolecule fluids, unmanned aerial
vehicles flying in snow (see Ren et al. (2019) and Chen
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et al. (2018)). Motivated by these observations, consensus
control of fractional order multi-agent systems(FOMASs)
has been paid much attention by some researchers. For
example, a consensus problem of FOMASs was addressed
firstly in Cao et al. (2010), which showed that the conver-
gence speed of the fractional order consensus algorithms
can be improved by a varying order strategy. A consensus
problem of FOMASs with input delays was studied in
Shen and Cao (2012) by applying the Laplace transfor-
m and Nyquist stability theorem. A fractional Lyapunov
direct method and the adaptive control law were used to
study the nonlinear fractional order leaderless and leader-
following consensus control algorithms in Gong (2016). An
adaptive distributed control strategy was proposed in Mo
et al. (2019) to solve a leaderless consensus problem of
FOMASs with unknown nonlinearities and external dis-
turbance by applying neural networks.

All previous work about consensus control of FOMASs
just considered continuous cases, discrete fractional order
calculus may play a more important role than the continu-
ous counterparts in real applications. Very recently, there
has been an increasing interest to study consensus control
of discrete FOMASs. In Liu et al. (2015), the authors
analyzed the convergence problem of a discrete FOMAS
with a leader based on the Grunwald-Letnikov’s definition
of fractional order operators. By using the finite difference
method, Shahamatkhah and Tabatabaei (2018) studied
the leader-following consensus of discrete FOMASs, where
the dynamics of the agents and the leader are considered as
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first-order or second-order fractional order systems. In or-
der to reduce numerical errors in discrete FOMASs, some
researchers turned to use fractional sum and difference
with Riemann-Liouville and Caputo definitions to study
discrete fractional systems. For example, in Chen (2011),
the authors discussed the stability of nonlinear fractional
difference equations with Caputo delta fractional differ-
ence operators via fixed point theory.

However, according to Cermak and Nechvatal (2010),
the delta fractional difference of a given function is of-
ten defined at points different from those of the func-
tion’s original domain which may cause some unpleas-
ant phenomenons. For this reason, Cermak et al. (2013)
analyzed the stability region of nabla linear fractional
order system with Riemann-Liouville difference operator.
Wu et al. (2017) provided asymptotic stability conditions
for nonlinear nabla discrete fractional order system with
Riemann-Liouville definition by applying the Lyapunov
second direct method. Wei et al. (2019) presented some
sufficient conditions on the stability of discrete fractional
order systems by computing the fractional difference of
Lyapunov functions based on Riemann-Liouville, Caputo,
Grunwald-Letnikov definitions. However, there is still few
results on consensus control of discrete FOMASs with
nabla fractional difference operators.

In this paper, a consensus problem of a linear nabla dis-
crete FOMAS with Riemann-Liouville difference operator
is addressed. The contributions of this paper are sum-
marized as follows: First, based on the discrete fractional
Lyapunov direct method, the stabilizaiton problem of n-
abla linear fractional order system is considered. Second,
a leader-following consensus control is proposed for a FO-
MAS and the consensus analysis is provided using Riccati
inequality as well. Third, numerical results are given to
validate the proposed controls of the nabla linear fractional
order systems.

The remainder of this paper is organized as follows. In
Section 2, some preliminaries of graph theory and the
nabla fractional difference are revisited. In Section 3,
several sufficient conditions are presented to guarantee
the stability of the closed-loop discrete fractional order
multi-agent system. In Section 4, numerical examples are
provided to demonstrate the proposed method. Finally, we
give some conclusions in Section 5.

2. PRELIMINARIES

2.1 Graph theory

Let G = (V, E) be a weighted undirected graph with
the set of nodes V = {v1, . . . , vN} and the set of edges
E ⊆ V × V. The set of neighbors of node vi is denoted by
Ni = {vj ∈ V : (vi, vj) ∈ E}. A weighted adjacency matrix
A = (aij)N×N with nonnegative entries is defined as
aij > 0 if eij ∈ E and aij = 0 otherwise. A diagonal matrix
D = diag{d1, d2, . . . , dN} is the degree matrix whose
diagonal elements are defined by di =

∑
j∈Ni

aij .The

Laplacian matrix of the graph is denoted by L = (lij)N×N
as L = D − A. We use another graph G to describe the
interaction network topology of the leader-following multi-
agent system, which contains N follower agents labeled by
vi ∈ V and one leader labeled by v0. The leader adjacency

matrix is given by B = {b1, . . . , bN}, where bi is a positive
number if the follower agent i can receive the information
from the leader, and 0 otherwise.

Lemma 1. (Hu and Hong (2007)) If the undirected graph
G is connected, then the matrix H = L+B is a symmetric
positive definite matrix.

2.2 Discrete fractional calculus

Definition 1. [Nabla difference] (Goodrich and Peter-
son (2015)) Given a function f : Na+1−m → R, its m-th
nabla difference is defined by

a∇mn f(n) =

n∑
j=0

(−1)j
(
m

j

)
f(n− j) (1)

where m ∈ Z+, n ∈ Na+1 = {a+1, a+2, . . . }, a ∈ R,
(
p
q

)
,

Γ(p+1)
Γ(q+1)Γ(p−q+1) and Γ(·) is the Gamma function.

Definition 2. [Nabla fractional sum](Goodrich and Pe-
terson (2015)) Given a function f : Na+1 → R, its α-th
nabla fractional sum is defined by

a∇−αn f(n) =

n−a−1∑
j=0

(−1)j
(
−α
j

)
f(n− j) (2)

where α ∈ R+, n ∈ Na+1 and a ∈ R.

Definition 3. [Nabla Riemann-Liouville fractional d-
ifference](Goodrich and Peterson (2015)) Given a func-
tion f : Na+1−m → R, the α-th nabla Riemann-Liouville
fractional difference is defined by

R
a∇αnf(n) = ∇ma ∇α−mn f(n) (3)

where α ∈ (m − 1,m),m ∈ Z+, n ∈ Na+1, a ∈ R and
∇f(n) = f(n)−f(n−1) represents the conventional nabla
operator.

Lemma 2. (Wu et al. (2017)) Consider the following
R-L nabla fractional dynamical system R

a∇αnx(n) =
f(n, x(n)), x(a+ 1) = C with 0 < α < 1, n ∈ Na+1 and let
x = 0 be an equilibrium point of the system.If there exists
a positive definite function V (n, x(n)) such that

γ1(‖x(n)‖) ≤ V (n, x(n)) ≤ γ2(‖x(n)‖), n ∈ Na+1 (4)

and
R
a∇αnV (n, x(n)) ≤ −γ3(‖x(n)‖), (5)

where γ1, γ2 and γ3 are discrete class-K functions, then the
equilibrium point x = 0 is asymptotically stable.

Remark 1. For a positive definite function V = xTPx, the
following inequalities are always hold:

λmin(P ) ‖x‖2 ≤ xTPx ≤ λmax(P )‖x‖2 (6)

where λmin(P ) and λmax(P ) denotes the minimum and
maximum eigenvalue of matrix P respectively.

Lemma 3. (Wei et al. (2019)) For any discrete time n ∈
Na+1 and 0 < α < 1,the following inequality involving the
R-L difference holds:

R
a∇αnxT (n)Px(n) ≤ 2xT (n)PRa ∇αnx(n) (7)

where x(n) ∈ Rk, k ∈ Z+, P ∈ Rk×k is a positive definite
matrix.

Lemma 4. The linear nabla discrete fractional order sys-
tem

R
a∇αnx(n) = Ax(n) (8)
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is asymptotically stable if there exists a positive definite
matrix P ∈ Rk×k such that

ATP + PA < 0 (9)

Proof. Let V (n) = xT (n)Px(n) be a Lyapunov function
for system (8).Computing the fractional difference with
respect to system (8), while using inequality (7), then we
obtain:

a∇αkv(n) ≤ 2xT (n)Pa∇αkx(n)

≤ (a∇αkx(n))Px(n) + xTPa∇αkx(n)

= (Ax(n))TPx(n) + xTP (Ax(n))

= xT (n)(PA+ATP )x(n) < 0. (10)

According to Lemma 2,the equilibrium point of system (8)
is asymptotically stable.

3. MAIN RESULTS

3.1 Stabilization of discrete linear nabla fractional order
systems

Consider a discrete linear nabla fractional order system as
follows:

R
a∇αnx(n) = Ax(n) +Bu(n) (11)

where 0 < α < 1, ∇α is the R-L difference, x(n) ∈ Rk and
u(n) ∈ Rm are the state and control input respectively,
A ∈ Rk×k and B ∈ Rk×m are constant matrices.

A state-feedback controller is designed for the nabla frac-
tional order system (11) as follows:

u(n) = Kx(n) (12)

where K is the feedback gain to be determined later.

Now we give a main result to show under what condition
the closed-loop system of system (11) under the controller
(12) is asymptotically stable.

Theorem 1. Suppose that (A,B) is stabilizable. The linear
nabla fractional system (11) is asymptotically stable under
the state feedback control law (12) with the control gain
given by K = BTP , where P is the solution of the
following inequality:

PA+ATP + 2PBBTP + θIk < 0, (13)

and θ is a positive number.

Proof.

Consider the Lyapunov function candidate:

V (n) = xT (n)Px(n). (14)

Applying Lemma 3, the fractional difference of Lyapunov
function (14) along the trajectories of system (11) is given
as follows:

a∇αkV (n) ≤ 2xT (n)Pa∇αkx(n)

= 2xT (n)P (Ax(n) +BBTPx(n))

= xT (n)(PA+ATP + 2PBBTP )x(n)

≤ −θxT (n)x(n)

= −θ ‖x(n)‖2 . (15)

From Lemma 2, the equilibrium point of system (11) is
asymptotically stable.

3.2 Consensus analysis of multi-agent systems

Consider a nabla fractional multi-agent system consisting
of N agents and a leader. The dynamics of each agent is
given by

a∇αkxi(n) = Axi(n) +Bui(n), i ∈ {1, 2, . . . ,N } (16)

where 0 < α < 1, ∇α is the R-L difference, xi(n) ∈ Rk
and ui(n) ∈ Rm are the state and control input of the i-th
agent respectively, A ∈ Rk×k and B ∈ Rk×m are constant
matrices. The leader dynamics is described as

a∇αkx0(n) = Ax0(n), (17)

where 0 < α < 1, x0(n) ∈ Rk.

Definition 4. The multi-agent system (16)-(17) achieves
leader-following consensus if:

lim
n→∞

‖xi(n)− x0(n)‖ = 0. (18)

In order to achieve the leader-following consensus, we need
to propose a distributed control law for each agent. By
using the relative state information in the neighborhood,
a distributed controllers ui(n) is designed for agent i as
follows:

ui(n) = K
(∑
j∈Ni

aij(xj(n)− xi(n)) + bi(x0(n)− xi(n))
)

(19)
where K is the control gain matrix to be designed later.

A main result is given to show that the closed-loop multi-
agent system can be stabilized by the control law (19).

Theorem 2. Suppose that (A,B) is stabilizable and the
interaction network G is connected. The leader-following
consensus can be achieved for the linear nabla fractional
multi-agent system (16)-(17) under the feedback control
law (19) with the gain matrix given by K = BTP , where
P is the unique positive definite solution of the following
Riccati inequality:

PA+ATP − 2βPBBTP + βIk < 0 (20)

and β = ρ(H), ρ(H) is the smallest nonzero eigenvalue of
the matrix H.

Proof. Because (A,B) is stabilizable,then there exists a
matrix P > 0 such that the Riccati inequakity holds(Ren
et al. (2019)).

Let ei(n) = xi(n)− x0(n), i = 1, 2, . . . , N , from (16)-(19),
we have

a∇αk ei(n) = Aei(n)+ (21)

BK
(∑
j∈Ni

aij(ej(n)− ei(n))− diei(n)
)
. (22)

Denote e(n) = (eT1 (n), . . . , eTN (n))T. By using the Kro-
necker product and Lemma 1, (21) can be rewritten in the
following compact form

a∇αk e(n) = (IN ⊗A−H ⊗BK)e(n). (23)

We construct the following Lyapunov function candidate:

V (n) =
1

2
eT (n)(IN ⊗ P )e(n), (24)

where P > 0 is a solution of Riccati inequality (20).

Denote Â = 1
2 (ATP + PA) and B̂ = PBBTP .With the

help of Lemma 3, the α-th order fractional difference of
V (n) along the trajectory of system (23) is given by
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a∇αkV (n) ≤ eT (n)(IN ⊗ P )∇αe(n)

≤ eT (n)(IN ⊗ P )(IN ⊗A−H ⊗BK)e(n)

≤ eT (n)((IN ⊗ Â)− (H ⊗ PBBTP ))e(n)

≤ eT (n)(IN ⊗ Â−H ⊗ B̂)e(n), (25)

Since H = L+ B is a symmetric positive definite matrix,
there exists an orthogonal matrix T ∈ RN×N such that

THTT = Λ = diag(λ1, . . . , λN )

where λ1, . . . , λN are the eigenvalues of matrix H. Let
ẽ(n) = (T ⊗ In)e(n), then the system (25) is transformed
to

a∇αkV (n) = ẽT (n)(IN ⊗ Â− Λ⊗ B̂)ẽ(n)

=

N∑
i=1

ẽTi (n)(Â− λiPBBTP )ẽi(n)

≤
N∑
i=1

ẽTi (n)(Â− βPBBTP )ẽi(n)

≤ −β
2

N∑
i=1

ẽi
T (n)ẽ(n)i

= −β
2
eT (n)e(n) (26)

It is noticed that V (n) ≤ 1
2λN (P )eT (n)e(n), we have

a∇αkV (n) ≤ − β

λmax(P )
V (n) (27)

where λmax(P ) is the largest eigenvalue of the matrix P .
From Lemma 2, the system (23) is asymptotically stable
about its equilibrium point, which implies that the leader-
following consensus is achieved.

Remark 2. Even though we assume that the interaction
network G is undirected in this paper, the Theorem 2
can also be extended to the case with balanced directed
networks.

4. NUMERICAL SIMULATION

In this section,we give two examples to demonstrate the
efficiency of the proposed method.

Example 1. Consider a linear nabla discrete fractional
order system described by (11), where 0 < α < 1 and

A =

[−2 −2 −1
−3 −1 −1
1 0 −4

]
, B =

[−1 0
0 −1
−1 −1

]
,

It is not difficult to see that (A,B) is stabilizable(Wei
et al. (2018)).Let a = 0, α = 0.98, x1(1) = 2, x2(1) =
−1, x3(1) = 0.5. If we select u(t) = 0, Fig. 1 shows that
the system is unstable.

By solving the inequality (13) by the YALMIP toolbox in
MATLAB with θ = 0.2679, we have

P =

[
0.1533 −0.0821 −0.0062
−0.0821 0.1591 −0.0106
−0.0062 −0.0106 0.0713

]
,

and further, the gain matrix is given by

K =

[
−0.1471 0.0927 −0.0651
0.0883 −0.1486 −0.0607

]
.

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
106

Fig. 1. State evolution of the nabla fractional system

Using the control law (12), the state trajectory of the
closed-loop system (11) is shown in Fig. 2, which shows
that the equilibrium is asymptotically stable.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

Fig. 2. State evolution of the system in (11) with u(n) =
Kx(n)

Example 2. Consider a discrete nabla fractional order
multi-agent system consisting of a leader and four fol-
lowers. The interaction network topology is illustrated as
in Fig. 3. Then the Laplacian matrix L and the leader

0

1 2

3 4

Fig. 3. The undireted topology of system (16)-(17)

adjacency matrix B are given as follows

L =

 2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 , B =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
The agent dynamics are described by (16)-(17) with 0 <
α < 1 and

A =

[
0 −1
1 0

]
, B =

[
1 0.7

0.5 1

]
.

It is easy to verify that (A,B) is stabilizable Wei et al.
(2018) and according to a straightforward calculation
shows that the smallest nonzero eigenvalue of H = L+B
is β = 0.1864.Then,by Solving the Riccati inequality (20)
with YALMLP toolbox in MATLAB leads to

P =

[
0.1078 −0.0244
−0.0244 0.1399

]
,

and further,

K =

[
0.0956 0.0456
0.0511 0.1228

]
.
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We take a = 0, α = 0.8 and choose the initial condition as
x0(1) = [1, 2]T , x1(1) = [8, 6]T , x2(1) = [−4, 1]T , x3(1) =
[4, 6]T , x4(1) = [7,−1]T .

Under the proposed control law (19), the state trajectories,
xi(n), are shown in Fig. 4 and the state error trajectories,
ei(n) = xi(n) − x0(n) (i = 1, 2, 3, 4), are shown in Fig. 5,
respectively. The two simulation results show that the four
agents can follow the leader.

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4

6

8
leader
follower 1
follower 2
follower 3
follower 4

(a) xi1(n)

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4

6
leader
follower 1
follower 2
follower 3
follower 4

(b) xi2(n)

Fig. 4. The state trajectories of the leader and the followers

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

2

4

6

8

(a)

0 5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

4

(b)

Fig. 5. The error trajectories between the leader and the
followers

5. CONCLUSION

In this paper, the consensus problem of a discrete linear
nabla fractional order multi-agent system with Riemann-
Liouville difference operator has been investigated. Firstly,
the stabilization problem of discrete linear nabla fractional
order system has been analyzed by using the discrete
fractional Lyapunov direct method. Secondly, distributed
controllers have been proposed for agents to realize the

leader-following consensus for a discrete linear nabla frac-
tional order multi-agent system through Riccati inequality.
Finally, numerical simulation results have been presented
to demonstrate the theoretical results. In the future, we
will further consider the consensus control of fractional or-
der multi-agent systems in some more practical cases with
time-varying network topology and privacy preservation.
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