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Abstract: This paper addresses the reference tracking problem subject to formation constraints
for a group of unmanned vehicles. A scheme based on receding horizon control ideas has been
developed, whose the main feature consists in avoiding the need to explicitly impose non-convex
constraints in the underlying optimization problem. The latter has been achieved by exploiting
the properties provided by a novel description of the kinematic evolution when the agents are
organized as a swarm. Numerical simulations on a team of five agents described by double
integrator models are presented to show the effectiveness of the proposed control architecture.
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1. INTRODUCTION

Multi-agent systems have attracted an increasing interest
due to the natural occurrence of flocking and formation.
In this respect, several contributions can be found in
different areas: spacecraft formations, unmanned aerial
vehicles, mobile robots, distributed sensor networks to
cite a few, see e.g. Egerstedt and Hu (2001), Olfati-Saber
et al. (2007). In this context, one of the most interesting
and well-known problems concerns with the capability of
the multi-agent system to track a given trajectory. The
rationale behind this can be found in many examples.
For the sake of simplicity, consider the following operating
scenario arising in the unmanned vehicle field.
Assume that an operator (autonomous vehicle or human
being) needs a support during search and rescue operations
in an impervious and difficult to reach region. To facilitate
this task, the operator periodically transmits samples of a
safe trajectory to the group of vehicles sent by the central
operating unit. Then, at each time instant the emergency
vehicles receive the proper sampled information to be
tracked as best as possible in order to safely accomplish
the mission.

Although several approaches have been proposed in liter-
ature as testified by the recent survey Oh et al. (2015),
a key computational aspect is still the subject of further
investigations: keeping the vehicle formation during the on-
line operations by ensuring collision avoidance capabilities
amongst the involved agents.

In fact as it is well-known, these requirements are usu-
ally addressed by imposing the satisfaction of non-convex
constraints that, in order to be computationally tractable,
must be convexified via geometrical arguments such as ad-
hoc inner approximation algorithms, see Dinh et al. (2012)
and references therein. As easily perceivable, this leads
to control performance degradations that could become

significant within e.g. the unmanned vehicle field of appli-
cations (missions in hazardous environments, search and
rescue operations, and so on).

By pointing out the attention to the distributed tracking
problem, it has been extensively scattered in the literature
by means of different methods, such as artificial potential
fields Tanner et al. (2007), sliding-mode control Mirkin
et al. (2012), adaptive control Peng et al. (2013), impulsive
control Han et al. (2016) and output-feedback control
Zhang et al. (2011). Nonetheless, a distributed model
predictive control (DMPC) approach appears to be more
appropriate Christofides et al. (2013) to deal with hard
constraints, neighbour interactions and time-varying state
references or multi-agent system topologies Cheng et al.
(2014).

Starting from these premises and by referring to the multi-
agent system as a swarm whose communication graph is
undirected, connected and time-varying, the constrained
tracking problem of interest consists in achieving the
asymptotic convergence of the swarm centroid to a given
reference signal.
To this end, an ad-hoc kinematic model of the swarm
agents is derived whose main properties can be summa-
rized as follows. Under the assumption that the current
kinematic conditions are distant more than twice a pre-
assigned positive quantity µ, one has that: 1) at each
time instant, agent kinematic trajectories are confined into
non-intersecting hyper-balls centered at the corresponding
current positions having the same radius µ (no collisions
amongst the swarm agents may occur at the same time
instant); 2) given the hyper-ball of an agent at a certain
time instant, say t̄, it is guaranteed that starting from t̄ a
finite number of future reference trajectory samples remain
confined within this hyper-ball.
Then, such properties allow to develop a distributed re-
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ceding horizon control strategy where the local MPC con-
trollers are built up according to:

• collision avoidance requirements addressed by impos-
ing that the sequences of state predictions are jailed
within those hyper-balls complying with the property
1);
• control horizon lengths computed by following the

prescriptions of property 2).

One of the main merits of the resulting distributed algo-
rithm concerns with the feasibility retention: if the current
agent conditions do not satisfy the prerequisite on the
minimum distance (at least greater than 2µ), then the
controller considers the last admissible reference samples.

In conclusion, the overall controller architecture is based
on two components: a path-planning unit whose reference
state trajectories are provided by the kinematic swarm
agent models; a distributed MPC algorithm whose single
unit is adequately customized to the proposed framework
starting from the results of Chisci et al. (2001).

The paper is organized as follows. Section 2 is devoted to
state the proposed tracking problem. Section 3 presents a
novel description of the swarm kinematic evolution and a
brief analysis on its main properties. Then, the distributed
model predictive control architecture is developed in Sec-
tion 4, while Section 5 provides illustrative simulations.
Finally, some remarks end the paper.

NOTATION

Let G = (L, E) be a graph with L := {1, . . . , L} nodes and
E edges, i.e. E := {(i, j) : i, j ∈ L, i 6= j}. The graph G is
connected if there exists a path from any node i ∈ L to
any other node j ∈ L \ {i}.
The hyper-ball of center ξ and radius µ is indicated as
B(ξ, µ).
With 0n we denote the zero entries vector of IRn, while In
the n× n identity matrix.
Given a set S ⊆ X × Y ⊆ IRn× IRm, the projection of S
onto X is defined as
ProjX(S) := {x ∈ X | ∃y ∈ Y s.t. (x, y) ∈ S} .
Definition 1. Given the sets A, E ⊂ IRn, A ∼ E := {a ∈
A : a + e ∈ A, ∀e ∈ E} the Pontryagin-Minkowski Set
Difference. 2

2. PROBLEM FORMULATION

Consider a group of L agents described by the following
discrete-time state model:

xi(t+ 1) = Aixi(t) +Biui(t) +Bi
dd

i(t), i = 1, . . . , L, (1)

where t ∈ ZZ+ := {0, 1, . . . , }, xi(t) = [pi
T

(t) x̄i
T

(t)]T ∈
IRnx denotes the state of the i−th agent, with pi(t) ∈ IRnp

the environment position vector, ui(t) ∈ IRnu the input
vector and di(t) ∈ Di is an exogenous bounded disturbance
with Di ⊂ IRnd a compact subset. Moreover, for each i−th
agent the following constraints are prescribed:

ui(t) ∈ U i, ∀t ≥ 0, (2)

xi(t) ∈ X i, ∀t ≥ 0, (3)

with U i ⊂ IRnu and X i ⊂ IRnx compact subsets.

Hereafter, it is assumed that the L agents (1) are organized
as a swarm SW := {Σi}Li=1, whose the peculiarity is
to track as best as possible a reference trajectory under
formation requirements, see e.g. Lozano-Perez (2012).

Throughout the paper, the following hypotheses and defi-
nitions are exploited:

• Reference trajectory - It is assumed that an external
agent, say Σsup, is in charge of correctly providing to
each agent Σi, i = 1, . . . , L, and at each time instant
t, the same reference trajectory;

• Vision module - Agents are equipped with a vision
module capable to detect neighbours within a pre-
specified radius Rv ∈ IR+;

• Communication topology - The team of L agents are
indexed by the elements of the set L. The commu-
nication network is represented by a time-varying
undirected and connected graph Gt = (L, Et);

• Neighbours - The time-varying set of neighbours of
each agent Σi, i = 1, . . . , L, is:

N i
t := {q ∈ {1, . . . , i− 1, i+ 1, . . . , L} :

pq(t) ∈ B(pi(t), Rv)} (4)

• Bidirectional property - The edge (i, j) ∈ N i
t iff

(j, i) ∈ N j
t ;

• Swarm centroid - At each time instant t

ζ(t) ,
1

L

L∑
i=1

pi(t) (5)

Then, the problem to solve can be stated as follows.

Reference Tracking and Coordination (RTC) -
Given the reference trajectory r(t), ∀t ≥ 0, determine a
distributed state feedback policy

ui(t) = g(xi(t), {xk(t)}, r(t)), k ∈ N i
t , i = 1, . . . , L, (6)

compatible with (2)-(3) and collision avoidance require-
ments such that, starting from an admissible initial condi-

tion x(0) = [x1T

(0), x2T

(0), . . . , xL
T

(0)]T the swarm cen-
troid ζ(t) asymptotically converges to r(t). 2

3. THE KINEMATIC MODEL

Consider a swarm SW, topologically characterized by the
time-varying connected graph Gt = (L, Et) and mov-
ing in a np-dimensional Euclidean space with positions
zi(t), i = 1, . . . , L. Agent evolutions are described by
single-integrator models

żi(t) = hi(t), i = 1, . . . , L. (7)

Given a reference signal r(t) ∈ Rnp , the r.h.s. of (7) is
selected as the combination of an attractive term to r(t)
and a hard limiting repulsion function:

hi(t) =− α(zi(t)− r(t)) + ṙ(t)

−M
∑
j∈N i

t

zi(t)− zj(t)
(||zi(t)− zj(t)||2 − 4µ2)

2 , i = 1, . . . , L,

(8)

with M ∈ Rnp×np any full rank matrix and the scalar
α > 0 adequately chosen to improve as much as possible
the capability to track r(t). Notice that the bidirectional
property of SW ensures that

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7058



L∑
i=1

∑
j∈N i

t

zi(t)− zj(t)
(||zi(t)− zj(t)||2 − 4µ2)

2 = 0np
, ∀t (9)

and, in turn, the swarm centroid exponentially converges
to r(t) with a rate 2α as it results from

ζ̇(t)− ṙ(t) = −α(c(t)− r(t)) (10)

Then, the following statements straightforwardly come
out.

Statement 1 - If ‖zi(0)−zj(0)‖ > 2µ, ∀(i, j), j 6= i, then
‖zi(t)− zj(t)‖ > 2µ holds true ∀t and ∀(i, j), j 6= i.

It is important to underline that the repulsion function (8)
could lead to node disconnections within the graph Gt. In
fact at a certain time instant t̄, if an agent Σi is such that

B(pi(t̄), Rv) ∩ B(pj(t̄), Rv) = ∅, ∀j ∈ L \ {i}, (11)

one has Gt̄ = (L \ {i}, Et̄). In this case, the i-th agent
becomes a singleton, i.e. N i

t = ∅, and the model (7)-(8)
reduces to

żi(t) = −α(zi(t)− r(t)) + ṙ(t) (12)

Nonetheless, notice that (12) ensures that Σi will converge
to r(t) and, as a consequence, it will again interact with
the connected graph as soon as its distance from Gt is less
than µ.

Statement 2 - Let Ts be the sampling time. There exists
an integer kiM ≥ 0 such that

kiM = max
k

{
||pi(t)− zi(t+ k)|| ≤ µ

}
, i = 1, . . . , L. (13)

where k , q ∗ Ts.
The latter has the following meaning: the sequence of

kinematic samples {zi(t+k)}k
i
M

k=0} of each agent Σi strictly
lies within the corresponding hyper-ball B(pi(t), µ). The
rationale behind (13) can be illustrated by means of the
sketch in Fig. 1. There, two agents Σi and Σj move within
a planar environment by tracking their kinematic samples
{zi(t + k)}1k=0} ⊂ B(pi(t), µ) and {zj(t + k)}2k=0} ⊂
B(pj(t), µ), respectively. The number of usable reference
signal samples could be different for each involved agent.
According to this, it is guaranteed that no collisions
amongst neighbours can occur.

4. A DISTRIBUTED MPC ARCHITECTURE

In this section, the swarm kinematics properties are ex-
ploited in order to derive a computable MPC scheme
capable to comply with the RTC problem.

4.1 Basic MPC unit

By recalling that:

• the constraint sets X i and U i in (2)-(3) are compact,
convex and containing the origin in their interiors;
• the pair (Ai, Bi) is stabilizable;
• there exists a stabilizing state feedback law ui(t) =
F ixi(t) for the unconstrained and disturbance-free
model (1) such that the closed-loop matrix Φi := Ai+
BiF i is Schur,

the approach of Chisci et al. (2001) will be considered to
deal with disturbance effects.

t+1t t+2 t+3

B(p (t),μ)i

B(p (t),μ)j

z (t+1)i

z (t)i

z (t+2)i
z (t+3)i

z (t)j

z (t+1)j

z (t+2)j
z (t+3)j

Fig. 1. Swarm agents: the kinematic evolution

Specifically, the family of virtual commands uiMPC
(t) is

parametrized as follows:

ui
MPC

(t+ k|t) = F ixi(t+ k|t) + ci(t+ k|t), ∀k ≥ 0, (14)

with ci(t+k|t) a perturbation with respect to the nominal

feedback F ixi(t + k|t). Let ci(t) , {ciT (t|t), . . . , ciT (t +
N i − 1|t)}, then by considering the following quadratic
cost:

JNi(t) :=

∞∑
k=0

ci
T

(t+k|t)Ψci(t+k|t), ΨT = Ψ > 0, (15)

at each time instant t a robust MPC solution complying
with persistent disturbances is:

ci
∗
(t+ k|t) , arg min

ci(t)
JNi(t) (16)

subject to

F ixi(t+k|t) + ci(t+k|t) ∈ U i
k, k = 0, 1, . . . , N i−1, (17)

xi(t+ k|t) ∈ X i
k, k = 0, 1, . . . , N i − 1, (18)

xi(t+N i|t) ∈ Ξi
0 ∼

Ni−1∑
q=0

(
Φi
)q
Bi

dDi, (19)

ci(t+ k|t) = 0, k ≥ N i, (20)

where

X i
k , X ∼

k−1∑
q=0

(
Φi
)q
Bi

dDi (21)

U i
k , U i ∼

k−1∑
q=0

F
(
Φi
)q
Bi

dDi (22)

and Ξi
0 is the maximal output admissible set (the largest

d-invariant set) Gilbert et al. (1995):

Ξi
0 , {x : Φix ∈ X i

k, FΦix ∈ U i
k,∀k = 0, 1, . . . , ki0} (23)

with the positive integer ki0 computed by using the proce-
dure developed in Gilbert and Tan (1991).
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4.2 The distributed algorithm

The following two considerations open the doors to a
distributed formulation for solving the RTC problem:

(1) the set-membership property of Statement 1 en-
sures that along the kinematics state trajectory tube
no collisions occur when the agents jointly move;

(2) Statement 2 proves that, given the hyper-ball
B(pi(t), µ), there exists an integer kiM such that the
future kinematic samples zi(t+k) ∈ B(pi(t), µ), ∀k =
1, . . . , kiM .

In order to simplify the next developments, these assump-
tions are made:

Assumption 1 - All the agents Σi receive the sequence
of reference signal samples at the same time instant. 2

Assumption 2 - At each time instant t, data are instan-
taneously shared amongst the agents of the graph Gt. 2

Moreover, the vision module is subject to the following
constraint Rv ≥ 2µ, so that the Statement 1 prescrip-
tions can be evaluated during the on-line operations.

The control architecture for each agent consists of two
ingredients: a Path Planner algorithm and a MPC
controller each tuned with respect to the agent Σi, i =
1, . . . , L. Then, the idea can be summarized as follows:

(1) at each time instant t, the connected graph Gt is
updated by using the set-membership condition (11);

(2) according to Statement 1, each agent Σi evaluates
‖zi(t) − zj(t)‖,∀j ∈ N i

t and instantaneously shares
the result with its neighbours;

(3) at each time instant t, all the agents Σi, i = 1, . . . , L,
jointly receive the reference signal sample r(t) from
Σsup;

(4) the new sample r(t) will be exploited to generate the
kinematic state trajectories zi(·) by means of (7)-(8)
if and only if ‖zi(t) − zj(t)‖ > 2µ, ∀(i, j), j 6= i;
otherwise the sample r(t) is discarded and the old
data r(t− 1) is kept without updating zi(·);

(5) the MPC controller computes the admissible con-
trol actions ui(t) in a distributed receding horizon
fashion.

Such an abstract procedure can be formally recast into a
computable algorithm. To this end, the first question relies
on which is the control horizon length of the input se-
quence parametrization (14) pertaining to the local MPC
controller. Notice that at each time instant the Statement
2 provides the number of admissible kinematics samples
zi(·); then the control horizon length for the MPC opti-
mization can be chosen exactly equal to kiM , because it
is ensured that the related kinematic evolution remains
confined within B(pi(t), µ). As a quid pro quo, this could
give rise to the following consequences:

• different values: N i 6= N j ,∀i 6= j;
• time dependency: N i(t),∀i.

As a matter of fact, the time-varying nature of the control
horizon length could make infeasible the resulting MPC
strategy. To formally overcome such an hitch and accord-
ing to the robust Bellman optimality principle Mayne
(2001), the following inequalities has to be satisfied:

N i(0) ≥ N i(1) ≥ · · · ≥ N i(t),∀t ≥ 0, i = 1, . . . , L. (24)

A second aspect to address concerns with the computa-
tions of kiM , i = 1, . . . , L. This can be straightforwardly
done by using the above condition (24). Accordingly, a
set of buffer units of length N i(0) is used and the new
reference sample r(t) is there stored by discarding the
oldest data (a first-input-first-output strategy). Then, the
integers kiM , i = 1, . . . , L, are easily computed by evaluat-
ing the set-membership argument of (13).

Finally, the optimization of Section 4.1 must be cus-
tomized according to the above developments that pre-
scribe:

(1) the k−steps ahead state predictions must be subsets
of the hyper-ball B(pi(t), µ), k = 0, . . . , N i(t),∀t ≥ 0;

(2) a time-varying framework in the involved variables
comes out.

As a consequence, the optimization (15)-(20) is re-written
as follows:

DMPC-Pi(t) :

ci
∗
(t+ k|t) , arg min

ci(t)
JNi(t)(t) (25)

subject to

F i(t)xi(t+k|t) + ci(t+ k|t) ∈ U i
k, k = 0, 1, . . . , N i(t)− 1

(26)

pi(t+k|t)∈Propi

(
X i

k)⊂B(pi(t), µ
)
, k=0, 1, . . . , N i(t)− 1

(27)

x̄i(t+k|t)∈Prox̄i

(
X i

k

)
, k = 0, 1, . . . , N i(t)− 1 (28)

pi(t+N i(t)|t) ∈Propi

Ξi
0(t)∼

Ni(t)−1∑
q=0

(
Φi
)q
Bi

dDi


⊂ B(pi(t), µ)

(29)

x̄i(t+N i(t)|t) ∈ Prox̄i

Ξi
0(t) ∼

Ni(t)−1∑
i=0

(
Φi
)q
Bi

dDi


(30)

ci(t+ k|t) = 0, k ≥ N i(t) (31)

For the sake of simplicity, assume that the following in-
formation are available: the initial control horizon lengths
N i(0), i = 1, . . . , L; initial pairs (Ξi

0(0), F i(0)); the con-
nected graph G0. Moreover, it is hypothesized without loss
of generality that the Buffer-Σi are initialized according
to N i(0), i = 1, . . . , L.

Then, the above developments translate into the following
algorithm.

Swarm-DMPC-Algorithm - Agent i− th

Input: Gt, Rv, x
i(t|t), {xj(t|t)}∀j∈Gt ;

Output: ui
∗
(t|t);

1: Update Gt;
2: Receive r(t) from Σsup;
3: Update the unit Buffer-Σi

4: if i ∈ Gt then CONNECTED AGENT
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5: Evaluate the euclidean distances

dij := ‖pi(t)− pj(t)‖,∀(i, j) ∈ Gt;
6: if dij > 2µ,∀(i, j) ∈ Gt, then Activate==true;
7: end if
8: if Activate==false then Store r(t)
9: Solve the optimization DMPC-Pi(t), by con-

sidering (Ξi
0(t− 1), F i(t− 1));

10: Apply ui
∗
(t|t) = F i(t− 1)xi(t|t) + ci

∗
(t|t);

11: Goto Step 26
12: end if
13: Determine N i(t) via (13) under the satisfaction

of (24);
14: Generate zi(t + k), k = 0, 1, . . . , N i(t), by means

of (7)-(8);
15: Update the pair (Ξi

0(t), F i(t)) with respect to the
current state condition xi(t);

16: Solve the optimization DMPC-Pi(t);
17: Apply ui

∗
(t|t) = F i(t)xi(t|t) + ci

∗
(t|t);

18: Send xi(t+ 1) to all the connected agents in Gt;
19: else NOT CONNECTED AGENT
20: Determine N i(t) via (13) and subject to (24);
21: Generate zi(t + k), k = 0, 1, . . . , N i(t), by means

of (7)-(8);
22: Update the pair (Ξi

0(t), F i(t)) with respect to the
current state condition xi(t);

23: Solve the optimization DMPC-Pi(t);
24: Apply ui

∗
(t|t) = F i(t)xi(t|t) + ci

∗
(t|t);

25: end if
26: t← t+ 1 and goto Step 1.

Feasibility and closed-loop stability of the Swarm-DMPC
Algorithm are stated in the next proposition.

Proposition 1. Let x(0) be given. Then, the Swarm-
DMPC Algorithm always satisfies the prescribed con-
straints, the swarm centroid ζ(t) asymptotically tracks the
reference signal r(t) and ensures that the closed-loop state
trajectories are asymptotically stable.

Proof - The recursive feasibility property of the Swarm-
DMPC Algorithm is proved by investigating the admis-
sibility at each time instant t of the optimization problem
DMPC-Pi(t).

By referring to the connected agents, two scenarios are
considered. Under a normal operating phase, i.e. the pre-
scriptions of Statement 1 are always satisfied, the feasi-
bility arises from the fact that if an optimal solution there
exists at t, then at the next time instant the d-invariance
property of Ξi

0(t) ensures that the state trajectory is at
least confined within Ξi

0(t) and, by construction, the tran-
sition to the new hyper-ball B(pi(t+ 1), µ) is guaranteed.
Conversely if there exists at least a pair (i, j), i, j ∈ Gt
such that dij < 2µ, an anomalous scenario results. In
this case, even if the received reference sample r(t) cannot
be exploited for updating the hyper-ball B(pi(t), µ), the
pair (Ξi

0(t− 1), F i(t− 1)) is still admissible at the current
time instant. Then, the optimization DMPC-Pi(t) has
always a solution because the state trajectory could remain
indefinitely jailed in Ξi

0(t− 1).

Notice that at each time instant the not-connected agents
operate in a completely decentralized fashion and, there-
fore, feasibility retention can be simply proved.

The closed-loop asymptotic stability also comes out by
retracing the same reasoning and it is omitted for the sake
of brevity. 2

5. SIMULATIONS

In this section, the effectiveness of the proposed strategy is
evaluated by considering a team of five autonomous vehi-
cles described by double integrator models and discretized
via a forward Euler method with a sampling time Ts =
0.8 [s]. The agent state is xi = [pix, p

i
y, v

i
x, v

i
y]T ∈ R4 and

the following point-wise input constraints are prescribed:
|uix(t)| ≤ 3[m/s2], |uiy(t)| ≤ 3[m/s2], i = 1, . . . , L, ∀t ≥ 0.

The RTC problem has been faced by referring to the
signal r(t) = [t, 5 sin(0.1t)]T . By assuming the initial
topology of Fig. 2 and under the initial conditions p1(0) =
−0.0300, 0.0306]T , p2(0) = [2.5306,−4.0604]T , p3(0) =
[0.5656,−9.5658]T , p4(0) = [−4.4304,−9.1734]T , p5(0) =
[−3.4636,−14.3047]T , vi(0) = [0, 0]T , i = 1, ..., 5, the
agent kinematics is derived by using the following knobs:
α = 1, M = −50 I2, µ = 2[m] and Rv = 6[m].

Fig. 2. Initial swarm topology

All the relevant numerical results have been collected
in Figs. 3-5. First, notice that the prescriptions of the
RTC problem have been satisfied: the swarm centroid
asymptotically tracks the reference r(t), Figs. 3-4; the
saturation constraints are fulfilled, Fig. 5.

By analysing the snapshots of Fig. 3, it is interesting to
underline that, as expected, the swarm formation is kept
at each time instant, while the control horizon lengths of
each local MPC optimizations change according to the
feasibility condition (24): starting from N i(0) = 3, i =
1, . . . , 5 until N i(t) = 1, i = 1, . . . , 5,∀t ≥ 39.24 [s].
Finally, in Fig. 3 it is also shown the time-varying nature
of the swarm topology, where the connections amongst the
five agents are explicitly reported.

6. CONCLUSIONS

In this paper, a distributed model predictive control strat-
egy has been proposed for addressing tracking problems
for a class of multi-agent systems. The main effort was
devoted to mitigate as much as possible the occurrence of
non-convex constraints when formation requirements are
of interest. This has been formally achieved by harmoniz-
ing into a unique framework the properties deriving from
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Fig. 3. Swarm centroid vs reference signal
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a novel description of the kinematic evolution with the
capabilities of the robust MPC philosophy. Finally, some

simulations have been carried out with the aim to show
effectiveness and benefits of the proposed approach.
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