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Abstract: In this paper, a numerical analysis to assess stability of time-delay systems is inves-
tigated. The proposed approach is based on the design of a finite-dimensional approximation
of the infinite-dimensional space of solutions of the system. Indeed, based on the dynamical
coefficients on the sequence made of the first Legendre polynomials, the original time-delay
system is modelled by a finite-dimensional model interconnected to a modelling error.
Putting aside the interconnection, the resulting finite-dimensional system turns out to be a nice
approximation of the time-delay system. Using Padé arguments, the eigenvalues of this finite-
dimensional system are proven to converge towards a set of characteristic roots of the original
time-delay system. Furthermore, considering now the whole interconnected system and having
a deeper look at the interconnection, an enriched Lyapunov-Krasovskii functional is proposed
to develop a sufficient condition expressed in terms of linear matrix inequalities for the stability
of the time-delay system. Both results are illustrated on a toy example.
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1. INTRODUCTION

In several fields, delay phenomena appear while processing
information or connecting different networked systems.
These transmission delays have a significant impact on the
behaviour of the state of the complete system and can even
destabilise it. In consequence, taking into consideration
these lag times is crucial (see Richard [2003]). Further-
more, from a theoretical point of view, the analysis of such
systems is a difficult task since they belong to the wide
class of infinite-dimensional systems. Hence, characterising
the stability of time-delay systems (TDSs) is a current
research purpose.

Several ways have been proposed to analyse its stability.
Some of them are relying on the design of Lyapunov-
Krasovskii functionals (LKF). Indeed, some necessary and
sufficient conditions can be established by using the so-
called complete LKF. Nevertheless, these conditions reveal
complicated to fulfil relying on a solution of a second order
ordinary differential equation with boundary conditions.
That is the reason why, in the literature, many works
have been conducted to find only sufficient conditions often
expressed in the linear matrix inequality (LMI) framework
(see Fridman [2014] or Gu et al. [2003]). Recently, some
methods based on augmented systems have shown its effi-
ciently even for non small delays (see Ariba et al. [2018]).
They are all based on some inequalities (Jensen, Wirtinger,
Bessel as presented in Seuret and Gouaisbaut [2015]) and
require to extend the state with a finite-dimensional sys-
tem. A second approach is based on the inspection of the
characteristic roots of the linear TDS. To assess stability
in a direct manner, a determination of the root crossing
points through Routh criterion (see Olgac and Sipahi
[2002]) or a formulation based on matrix pencils (see
Louisell [2015]) can be implemented. However, to evaluate

each characteristic root, the infinite-dimensional system is
often approximated, once again, by a finite-dimensional
system. For example, a Padé approximant of the delay
is largely implemented (see Golub and Van Loan [1989]).
Otherwise, more recently, Breda et al. [2005] presents a
method based on pseudospectral differentiation and differ-
ent rough projections on Fourier, Chebychev or Legendre
basis functions were also numerically investigated (see
Pekar and Gao [2018]). All these numerical approaches can
then characterise the root locus thanks to an approximate
finite-dimensional model.

From comparative studies, both the best reduced LKF and
the root approximation with the fastest convergence (see
Vyasarayani et al. [2014]) are obtained using a decom-
position on Legendre first polynomials. Based on these
considerations, one proposes in this paper to get a deeper
understanding of the equivalent model which includes the
system satisfied by the first Legendre coefficients. The aim
of this study is to highlight a link in between the reduced
LKF and the finite-dimensional system, which approxi-
mates the characteristic roots of the TDS. Proving that the
approximation is converging, this new link help to better
understand the accurate underlying stability result using
Legendre technique. First, the augmented system, which
includes the dynamics satisfied by the N+1 first Legendre
coefficients, is presented. This resulting augmented system
is made of an interconnection between a finite-dimensional
model and an infinite element. Focusing on the finite-
dimensional part, it is equivalent to a Padé approximant
of the original system, which consists in approximating
the transfer function of the delay with a rational fraction
which numerator of order N and denominator of order
N + 1 are given by Padé table. From this equivalence, the
convergence of the eigenvalues of the finite-dimensional

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4890



model towards some of those of the infinite-dimensional
system can be deduced and reinforces the choice of Leg-
endre first polynomials. Based on the structure of the
interconnection, the reduced LKF including Legendre co-
efficients provides a sufficient condition of stability thanks
to Bessel inequality. This condition takes a very convenient
form and is easy to express as an LMI. Knowing that the
finite-dimensional part uniformly converges towards the
original system, it gives now an understandable numerical
stability condition with respect to the delay.

Notations : Throughout the paper, R,C,Rn×m,Sn de-
notes respectively the set of real numbers, complex num-
bers, n ×m real matrices and n × n symmetric matrices.
Furthermore, |.| is the modulus and ||.|| denotes some
matrix norm. Then, for any square matrix A, H(A) =
A + AT , adj(A) the adjugate matrix (the transpose of
its cofactor matrix), det(A) the determinant, det′(A) its
derivatives given by Jacobi’s formula, tril(A) the lower
triangular part of the matrix A and A > 0 means that A
is symmetric positive definite. Moreover, I is the identity
matrix, diag(d0, ..., dN ) is the diagonal matrix defined by
its diagonal coefficients (d0, ..., dN ) and the operation ⊗
traduces a Kronecker product. The space L2(−h, 0;Rn)
represents the set of square-integrable functions from
(−h, 0) to Rn. The spaceH1(−h, 0;Rn) refers to absolutely
continuous functions from [−h, 0] to Rn with derivative in
L2(−h, 0;Rn). Lastly, for any function x : (−h,+∞) →
Rn, the notation xt(τ) stands for x(t + τ), for all t ≥ 0
and all τ ∈ (−h, 0).

2. MODELLING OF A TIME-DELAY SYSTEM ON
LEGENDRE POLYNOMIALS BASIS

2.1 Definition of a time-delay system

Consider the linear TDS given by{
ẋ(t) = Ax(t) +BdCdx(t− h), ∀t ∈ R+,(

x(0), x0
)

=
(
f(0), f

)
, f ∈ H1(−h, 0;Rn),

(1)

where matrices A ∈ Rn×n, Bd ∈ Rn×m, Cd ∈ Rm×n and
the single delay h > 0 are assumed to be known.

Remark 1. System (1) is well defined in the Hilbert space
Rn × L2(−h, 0;Rn). For each t ∈ R+, the unique analytic
solution

(
x(t), xt

)
belongs therefore to Rn×L2(−h, 0;Rn).

Since several years, one assists to a huge number of works
dedicated to the stability analysis of TDSs based on an
extended state space of a finite-dimensional system. These
extension is related to the use of appropriate inequalities
(Jensen, Wirtinger, Bessel) which needs extra-signals to
be usefull. Usually, these extra-signals are based upon
the projection of the state xt on a basis of L2(−h, 0;Rn)
such as the one generated by Legendre polynomials, which
definition is recalled in the next subsection.

2.2 Definition of the Legendre polynomials basis

By definition, for all τ ∈ [−h, 0] and k ∈ N, each k-order
Legendre polynomial is written as

Lk(τ) = (−1)k
k∑
l=0

(−1)l
(
k

l

)(
k + l

l

)
(
τ + h

h
)l. (2)

As noted in Lagrange [1939], these polynomials form an
orthogonal basis of L2(−h, 0;Rn). In addition, they have
the following properties.

Lemma 2. For all k ∈ N,
d

dτ
Lk(τ) =

k−1∑
l=0

2l + 1

h

(
1− (−1)k+l

)
Ll(τ) k ≥ 1,

d

dτ
L0(τ) = 0, Lk(−h) = (−1)k, Lk(0) = 1.

(3)

Proof. The proof of (3), using Rodrigues formula, is given
in Gautschi [2006].

2.3 Coefficients on the Legendre polynomials basis

Focusing on Cdxt, which is the transported part of the
state and can be seen as a function of L2(−h, 0;Rn),
its N + 1 first components on Legendre polynomials
orthogonal basis can be calculated. Let us define the vector
XN , which stores these Legendre coefficients.

XN (t) =


∫ 0

−h
Cdxt(τ)L0(τ)dτ

. . .∫ 0

−h
Cdxt(τ)LN (τ)dτ

 , ∀t ∈ R+. (4)

These first Legendre coefficients represent the projection
on a finite-dimensional basis of the retarded state. Hence,
increasing N adds information on the functional state and
the behaviour of Cdxt.

2.4 Dynamics of the coefficients

In order to analyse the behaviour of XN , one has to
compute its dynamics. This is formulated in the next
proposition.

Proposition 3. The vector XN is solution of the dynamical
model{
ẊN (t) = ANXN (t) + BNCdx(t)− B∗N εN (t)

εN (t) = Cdx(t− h)− C∗NXN (t)
, ∀t ∈ R+,

(5)
with

1N = [1 . . . 1]
T
, 1∗N =

[
(−1)0 . . . (−1)N

]T
,

LN = tril(1N1TN − 1∗N1∗TN ), LN = −(LN + 1∗N1∗TN ),

IN =
1

h
diag(1, . . . , 2N + 1),

AN = (LNIN )⊗ Im, BN = 1N ⊗ Im, B∗N = 1∗N ⊗ Im,
CN = (1TNIN )⊗ Im, C∗N = (1∗TN IN )⊗ Im,

and satisfies an initial condition X0
N given by the coeffi-

cients of Cdx0.

Proof. For all k ∈ J0, NK, thanks to Legendre basis
properties (3), to an integration by parts the derivation
of each coefficient gives, for all t ∈ R+,

d

dt

∫ 0

−h
Cdx(t+ τ)Lk(τ)dτ = Cdx(t)− (−1)kCdx(t− h)

−
k−1∑
l=0

2l + 1

h

(
1− (−1)k+l

) ∫ 0

−h
Cdx(t+ τ)Ll(τ)dτ.
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Gathering all the components, a compact expression is
obtained

ẊN (t) =(1N ⊗ Im)Cdx(t)− (1∗N ⊗ Im)Cdx(t− h)

− (LNIN ⊗ Im)XN (t).

Using the decomposition of Cdx(t− h), for all t ∈ R+,

Cdx(t− h) = (1∗TN IN ⊗ Im)XN (t) + εN (t),

it gives
ẊN (t) = (1N ⊗ Im)Cdx(t)− (1∗N ⊗ Im)εN (t)

−
(
(LN + 1∗N1∗TN )IN ⊗ Im

)
XN (t),

εN (t) =Cdx(t− h)− C∗NXN (t).

The resulting non-autonomous dynamical system (5) is
finally driven by two inputs, the current transported so-
lution (Cdx) and the remainder of Legendre serie eval-
uated at −h (εN ). Notice that the proposed procedure
is equivalent to decomposing the block e−hsIm into a
finite-dimensional system to which is added a structured
disturbance εN .

2.5 Augmented time-delay system

Gathering the dynamics of x and XN , one can construct
an augmented TDS as described in this subsection. The
new system of state x and XN is build up an augmented
finite-dimensional system which state error is related to
the remainder εN . This remainder includes the infinite-
dimensional part. To sum up, this new augmented system
is an interconnection between a finite-dimensional and an
infinite-dimensional model as it is proposed in Theorem 4
and represented by the block diagram on Fig. 1.

Theorem 4. The system (1) takes the following form
ξ̇N (t) =

[
A BdC∗N
BNCd AN

]
︸ ︷︷ ︸

AN

ξN (t) +

[
Bd
−B∗N

]
︸ ︷︷ ︸

BN

εN (t)

εN (t) = [Cd −C∗N ]

[
x(t− h)
XN (t)

] , ∀t ∈ R+,

(6)

with ξN =
[
xT XT

N

]T
satisfying ξN (0) = [ x(0)T X0T

N ]
T

.

Proof. First, Proposition 3 can be rewritten as{
ẊN (t) = [BNCd AN ] ξN (t)− B∗N εN (t),

εN (t) = Cdx(t− h)− C∗NXN (t).

Then, equation (1) completes the dynamics. Using the
previous equation, we have

ẋ(t) =Ax(t) +BdCdx(t− h)

= [A BdC∗N ] ξN (t) +BdεN (t).

Since, intuitively the additional error εN is expected to
become small enough increasing the size N , the finite-
dimension part can be investigated as an approximation
of the TDS, which is the aim of the next section.

3. STABILITY ANALYSIS OF THE APPROXIMATE
FINITE-DIMENSIONAL MODEL

3.1 Approximation by a finite-dimensional model

This part is dedicated to the stability analysis of the finite-
dimensional system getting rid of the effect of the error

e−hsIm

(
AN BN −B∗N
C∗N 0 0

)

(
A Bd Bd
Cd 0 0

)
Finite-dimensional part (AN BN )

Infinite-dimensional part

εN

+−

C∗ N
X
N

C
d
x

Fig. 1. Block diagram of augmented time-delay system (6).

εN , which is expected to be small when N is sufficiently
large. In that case, the resulting system corresponds to the
finite-dimensional part of Fig. 1.

The dynamical approximate model can be written as :

˙̂
ξN (t) = AN ξ̂N (t), ∀t ∈ R+, (7)

with ξ̂N =
[
x̂T X̂T

N

]T
satisfying ξ̂N (0) = ξN (0).

This model can then bring information on the locus of the
eigenvalues and be used for the stability analysis of TDSs.

3.2 Link with the Padé approximant model

The aim of this subpart is to prove that system (7)
described by the finite-dimensional part on Fig. 1 can also
be interpreted as an approximation of the original TDS,
where the time-delay element e−hs has been replaced by
its Padé approximant which transfer function is HN (s).

Proposition 5. For each N ∈ N, the state representation(
AN BN

C∗N 0

)
is a realisation of HN = nN (s)

dN (s) Im, where
nN (s) =

N∑
j=0

N !(2N + 1− j)!
(N − j)!(2N + 1)!

(−hs)j

j!
,

dN (s) =

N+1∑
i=0

(−1)i
(N + 1)!(2N + 1− i)!
(N + 1− i)!(2N + 1)!

(−hs)i

i!
,

(8)

are respectively the numerator and denominator of Padé
approximant (N,N + 1) of the function e−hs.

Proof. Consider, GN the transfer function of the state

space representation
(
AN BN

C∗N 0

)
. The objective is to show

that GN = HN , for any value of N . Let first note that

GN (s) = C∗N (sIm(N+1) −AN )−1BN ,
Hence, in order to prove this result, one needs to show
that each numerator and denominator of GN are equal to
2NnN and 2NdN respectively. For any s ∈ C, this means{

1∗TN adj(sI−1N − LN )1N = 2NnN (s)

det(sI−1N − LN ) = 2NdN (s)
,∀N ∈ N.

This result is obtained recursively. The complete proof is
given in Bajodek et al. [2020], but the initialization part is
provided here to highlight the main features of this proof.
For N ∈ {0, 1}, we easily find that
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{
1∗T0 adj(sI−10 − L0)10 = 1 = n0(s),

det(sI−10 − L0) = sh+ 1 = d0(s),
1∗T1 adj(sI−11 − L1)11 = 2(1− sh

3
) = 2n1(s),

det(sI−11 − L1) = 2

(
1 +

2sh

3
+

(sh)2

6

)
= 2d1(s).

Then, to give an idea of the induction, let express the result
at the order N = 2 relying on the two previous ones.
To begin with, we know that{
1∗T2 adj(sI−12 −L2)12 = 1∗T2 E0adj

(
F0(sI−12 −L2)E0

)
F012,

det(sI−12 − L2) = det
(
F0(sI−12 − L2)E0

)
,

where E0 and F0 are nonsingular matrices given by

E0 =

[
1 0 0
0 1 1
0 0 1

]
, F0 =

[
1 0 0
0 1 0
0 −1 1

]
.

Indeed, we have
1∗T2 adj(sI−12 −L2)12 =

[
1
−1
0

]T
adj

[
sh+1 −1 0

1 sh
3

sh
3

0 −sh
3 2(1− sh

15 )

][
1
1
0

]
,

det(sI−12 − L2) = det

[
sh+1 −1 0

1 sh
3

sh
3

0 − sh
3 2(1− sh

15 )

]
.

From one side, we note that

1∗T2 adj(sI−12 −L2)12 =4

((
1− sh

15

)
n1(s) + (

sh

6
)2n0(s)

)
,

=4

(
1− 2sh

5
+

(sh)2

20

)
= 4n2(s).

From the other side, we obtain

det(sI−12 − L2) =4

((
1− sh

15

)
d1(s) + (

sh

6
)2d0(s)

)
,

=4

(
1 +

3sh

5
+

3(sh)2

20
+

(sh)3

60

)
= 4d2(s),

which completes the proof for N = 2. The proof for any
N ≥ 3 follows the same process relied on three-term Pade
identity and can be found in Bajodek et al. [2020].
From this result given by induction, we obtain the follow-
ing transfer function

GN (s) =
2NnN (s)

2NdN (s)
Im =

nN (s)

dN (s)
Im = HN (s), ∀N ∈ N.

The previous calculations and statement allow us to state
the main result of this paper.

Theorem 6. Approximate model (7) is a Padé approxi-
mant of time-delay system (1).

Proof. Identifying the transfer function HN given in
Proposition 5, one can recognise a Padé approximant of the
exponential function e−hs repeated m times. That directly
gives Theorem 6.

Then, the uniform convergence result on open ball of the
Padé approximant towards the exponential function e−hs

could be used on our finite-dimensional model.

3.3 Convergence of the characteristic roots of the model
towards some of those of the time-delay system

The finite-dimensional model studied is equivalent to a
Padé approximant. Hence, the convergence results issued

from Padé approximant theory (see Baker [1975]) can
be used to link the characteristic roots of the TDS (1)
and the eigenvalues of AN , state matrix of approximate
model (7). More precisely, one proposes Theorem 8. But,
before, a first technical lemma is recalled, showing that,
on a compact set, the Padé approximant converges to the
delay transfer function e−hs.

Lemma 7. Let R > 0. On a compact set B(0, R), nN (s)
and dN (s) uniformly converge when N → ∞ towards

n(s) = e
−hs
2 and d(s) = e

hs
2 respectively. In other words,

∀ε>0 ∃N∗; ∀N≥N∗, ∀s ∈ B(0, R),

{
|nN (s)−n(s)| ≤ ε
|dN (s)−d(s)| ≤ ε .

Proof. The proof of this convergence result is given in
Baker [1975].

For all s ∈ C, let matrices ∆N (s) and ∆(s) in Rn×n be{
∆N (s) = (sIn −A)dN (s)−AdnN (s),

∆(s) = (sIn −A)d(s)−Adn(s),

with Ad = BdCd, d(s) = e
hs
2 and n(s) = e−

hs
2 .

Now, the aim is to prove that, for N sufficiently large, the
characteristic roots of model (7), i.e. zeros of χN (s) =
det
(
∆N (s)

)
, are close enough to some of those of the

TDS (1), i.e. zeros of χ(s) = det
(
∆(s)

)
.

Theorem 8. For all R > 0, if the time-delay system (1)
contains K characteristic roots with multiplicities ν∗k∈J1,KK

into the open ball B(0, R), then
K∑
k=1

ν∗k eigenvalues of AN
converges towards them. More precisely,

∀r ∈ (0, r∗), ∃N∗; ∀N ≥ N∗, max
k∈J1,KK
i=J1,ν∗

k
K

|sNk,i − s∗k| ≤ r. (9)

Proof. Starting from the uniform convergence of ∆N (s)
towards ∆(s) obtained by application of Lemma 7, the
proof follows the one provided by Breda et al. [2015] in the
case of the uniform convergence of the eigenvalues given
by the pseudospectral differentiation method towards the
characteristic roots directly. Calculations can be found in
the complete version (see Bajodek et al. [2020]).

Thus, increasing N , some eigenvalues of AN can approxi-
mate as close as desired the roots of system (1). Especially,
for unstable TDSs, one can find a value N∗ such that ma-
trix AN has at least one eigenvalue with positive real parts
for each N ≥ N∗. From these promising properties of this
finite-dimensional model, a Lyapunov-Krasovskii stability
analysis is proposed going back on the interconnected
system (6) to take in account the infinite-dimensional part
which have been neglected in this section.

4. STABILITY ANALYSIS OF THE
INTERCONNECTED SYSTEM

The aim of this part is to analyse the stability of the whole
system depicted in Fig. 1. One proposes to design an LKF,
highly related to system (6).

4.1 A Lyapunov-Krasovskii functional

To be consistent with augmented TDS (6), let define the
LKF enriched by Legendre coefficients,
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VN
(
x(t), xt

)
= VPN

(
ξN (t)

)
+ VS(xt) + VR(xt), (10)

with
VPN
(
ξN (t)

)
= ξTN (t)PNξN (t),

VS(xt)=

∫ 0

−h

(
Cdxt(τ)

)T
S
(
Cdxt(τ)

)
dτ−XT

N (t)SNXN (t),

VR(xt)=

∫ 0

−h
(h+ τ)

(
Cdxt(τ)

)T
R
(
Cdxt(τ)

)
dτ.

Matrices PN ∈ Sn+m(N+1) and S,R ∈ Sm are assumed to
be symmetric positive definite and SN stands for IN ⊗ S.

4.2 Bessel-Legendre inequality

Bessel inequality, applied to Cdxt and its N + 1 first
components XN on Legendre polynomial basis, is a tool
allowing to bound the integral terms which appear in VS
or in the derivative of VR.

Lemma 9. For any positive definite matrix M ∈ Sm,
Bessel-Legendre inequality provides∫ 0

−h

(
Cdxt(τ)

)T
M
(
Cdxt(τ)

)
dτ ≥ XT

N (t)(IN ⊗M)XN (t).

This inequality leads to the following stability condition.

4.3 Sufficient condition of stability

The LKF defined previously combined with Lemma 9
provides Theorem 10, a rewrite of the LMI condition given
by Seuret and Gouaisbaut [2015].

Theorem 10. If it exists symmetric positive definite matri-
ces PN > 0, S > 0 and R > 0 such that[
H(PNAN ) + CTNSCN +

[
hCT

d RCd 0
∗ −RN

]
PNBN

∗ −S

]
< 0,

(11)
where RN = IN ⊗R and with

AN =

[
A BdC∗N
BNCd AN

]
, BN =

[
Bd
−B∗N

]
, CN = [Cd −CN ] ,

then system (1) is asymptotically stable, for the delay h.

Proof. Consider the LKF candidate VN given by (10).
Indeed, the positivity of VN is ensured by the positive
definiteness of PN , S and R. More precisely, we show that
VS is positive by application of Lemma 9.
Then, the derivative of VN along the trajectories of
system (6) is composed of the derivative of the finite-
dimensional part,

V̇PN (ξ) = ξTNH(PNAN )ξN + ξTNPNBN εN + εTNBTNPNξN ,
to which is added the derivative of VS ,

V̇S(xt) =
(
Cdx(t)

)T
S
(
Cdx(t)

)
−
(
Cdx(t−h)

)T
S
(
Cdx(t−h)

)
−2XT

N (t)SN
(
LNINXN (t) + 1NCdx(t)− 1∗NCdx(t− h)

)
,

which, reorganising the terms, is equal to

V̇S(xt) =
(
Cdx(t)−CNXN (t)

)T
S
(
Cdx(t)−CNXN (t)

)
−
(
Cdx(t−h)−C∗NXN (t)

)T
S
(
Cdx(t−h)−C∗NXN (t)

)
,

= ξTN (t)CTNSCNξN (t)− εTN (t)SεN (t),

and, lastly, the derivative of VR,

V̇R(xt) = h
(
Cdx(t)

)T
R
(
Cdx(t)

)
−
∫ 0

−h

(
Cdxt(τ)

)T
R
(
Cdxt(τ)

)
dτ.

Fig. 2. Example 11 for h = 3 : Convergence of the
eigenvalues with (R, r) = (5, 10−2).

Table 1. Example 11 : Eigenvalues for h = 3.

Method N = 2 N = 6

Legendre
−0.6955 −0.7026

+0.0058± 2.3377j −0.1007± 2.1920j

Theorem 8
−1.1997± 1.2033j −0.5656± 2.7489j
−0.0834± 4.4994j −0.0863± 4.4764j

Collocation
−0.6542 −0.7026

−0.0249± 2.3553j −0.1007± 2.1938j

Breda et al. [2005]
−0.5895± 0.9612j −0.6155± 2.7404j
−0.0810± 4.5049j −0.0951± 4.4905j

Legendre-Tau
−0.7018 −0.7026

+0.0185± 2.2573j −0.1007± 2.1919j

Ito and Teglas [1986]
−1.2259± 1.1696j −0.5712± 2.7535j
−0.1210± 4.5012j −0.0987± 4.4641j

Putting all the terms together, according to Lemma 9,

V̇N
(
x(t), xt

)
≤ξTNH(PNAN )ξN+

[
ξN
εN

]T[
CTNSCN PNBN
∗ −S

][
ξN
εN

]
+ ξTN

[
hCTd RCd 0
∗ −RN

]
ξN .

Therefore, if the LMI (11) is satisfied, system (1) is
asymptoticaly stable by application of the Lyapunov-
Krasovskii theorem.

As the eigenvalues of AN approximate the characteristic
roots of the original TDS, one expects that the stability
condition proposes in Theorem 10 can approximate the
entire stability chart with respect to h.

5. EXAMPLES

An example was studied to illustrate our results.

Example 11. A=

[
0 0 1 0
0 0 0 1
−11 10 0 0
5 −15 0 −1

4

]
, Bd=

[
0
0
1
0

]
and Cd=

[
1
0
0
0

]T
.

5.1 Analysis of the eigenvalues

For a given value h, the eigenvalues of AN are depicted
in Figure 2 for Example 11, where there are materialised,
increasing N , by increasingly dark and small crosses. The-
orem 8 ensures the convergence of some of them towards
the expected ones contained in a ball B(0, R) with R = 5.
These first expected eigenvalues s∗ ∈ {−0.7026;−0.1007±
2.1919j;−0.5712 ± 2.7559j;−0.1241 ± 4.4733j} were cal-
culated with a precision 10−4 following Breda et al. [2005]
and are materialised by white points on Figure 2.
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Fig. 3. Example 11 : Instability of AN versus Lyapunov-
Krasovskii stability.

The convergence of some of the eigenvalues is confirmed
by zooming on expected characteristic roots s∗ contained
in B(0, R) and finding a value N∗ = 8 from which the
computed ones are inside a ball B(s∗, r) with r = 10−2.
To see how fast the proposed computation is converging, a
comparison with collocation (pseudospectral discretization
given by Breda et al. [2005] here) and Tau (Ito and Teglas
[1986] on Legendre basis too) methods are performed. The
closest calculated eigenvalues of those expected are given
in Table 1 for Example 11.
From this table, one can conclude that the proposed ap-
proximate model seems to give a better approximation
than collocation technique. Even though the Tau method
seems to converge faster, our method has the advantage
to bring, in addition, sufficient stability results.

5.2 Lyapunov-Krasovskii stability analysis

The sufficient stability condition given by the LMI (11)
can be easily implemented and ensures pointwise stability
with respect to the delay. On Example 11, a numerical test
was done with a precision of 10−3 and for N ∈ J0, 10K. The
first analytical bound of stability h = 1.142 is reached from
N = 3. As expected, these numerical results are equivalent
to those of Seuret and Gouaisbaut [2015].
On Figure 3, for Example 11, the intervals of stability with
respect to the delay given by Theorem 10 are represented
with thick dark lines and the instability of AN with respect
to the delay with thin gray lines.
First, by increasing N , the set of instability of AN with
respect to h converges as expected towards the entire set
of instability of the original TDS. Likewise, the intervals
of stability given by Theorem 10 appear to slightly grow
until to fill in the set of stability of the TDS. Then, as
aforementioned, LMI (11) based on the finite-dimensional
model also seems to converge to the entire stability region
with respect to h. Lastly, the intervals of stability of the
LMI at order N and those of instability of AN are disjoints.
In other words, the stability of AN could be a necessary
condition for the LMI at order N .

6. CONCLUSIONS

This work proposes some new insights for the stability
analysis of TDSs using the first projections on Legendre
polynomials. Taking into account these coefficients and
its dynamics, an interconnection scheme between a finite-
dimensional part and an infinite-dimensional error part

was designed to model such systems. By getting rid of
the error, the finite-dimensional system turns out to be a
Padé approximant which eigenvalues converges therefore
towards the expected characteristic roots. From the whole
augmented system, a sufficient stability condition of TDSs
expressed in terms of LMIs is also proposed. Thus, the new
model proposed in this paper seems to be really usefull to
yield numerical accurate stability conditions. Therefore,
keeping this same framework, future work focused on
control and observation of TDSs can provide interesting
new numerical solutions.
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K. Ito and R. Teglas. Legendre-Tau approximations for
functional differential equations. SIAM Journal on
Control and Optimization, 24(4):737–759, 1986.
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