
An Optimization-Based Receding Horizon
Trajectory Planning Algorithm

Kristoffer Bergman ∗ Oskar Ljungqvist ∗ Torkel Glad ∗

Daniel Axehill ∗

∗ Division of Automatic Control, Linköping University, Sweden
(e-mail: {kristoffer.bergman, oskar.ljungqvist, torkel.glad,

daniel.axehill}@liu.se).

Abstract: This paper presents an optimization-based receding horizon trajectory planning
algorithm for dynamical systems operating in unstructured and cluttered environments. The
proposed approach is a two-step procedure that uses a motion planning algorithm in a first
step to efficiently find a feasible, but possibly suboptimal, nominal solution to the trajectory
planning problem where in particular the combinatorial aspects of the problem are solved. The
resulting nominal trajectory is then improved in a second optimization-based receding horizon
planning step which performs local trajectory refinement over a sliding time window. In the
second step, the nominal trajectory is used in a novel way to both represent a terminal manifold
and obtain an upper bound on the cost-to-go online. This enables the possibility to provide
theoretical guarantees in terms of recursive feasibility, objective function value, and convergence
to the desired terminal state. The established theoretical guarantees and the performance of the
proposed algorithm are verified in a set of challenging trajectory planning scenarios for a truck
and trailer system.

Keywords: Trajectory & Path Planning, Optimal Control, Autonomous Vehicles

1. INTRODUCTION

In recent decades, an extensive amount of research has
been conducted in the area of motion planning for au-
tonomous vehicles (LaValle, 2006; Paden et al., 2016).
However, the problem of computing locally optimal tra-
jectories for dynamical systems in confined and unstruc-
tured environments is still considered as a difficult task.
In this paper, the optimal motion planning problem is
defined as the problem of finding a feasible and collision-
free trajectory that brings the system from its initial state
to a desired terminal state while a performance measure
is minimized. The computed trajectory is then intended
to be used as reference to a trajectory tracking or path
following controller (Andersson et al., 2018b; Paden et al.,
2016; Ljungqvist et al., 2019).

The optimal motion planning problem is in general
hard to solve by directly applying optimal control tech-
niques, since the problem in general is nonconvex due
to obstacle-imposed constraints and nonlinear system dy-
namics. Therefore, approximate methods in terms of mo-
tion planning algorithms are commonly used (LaValle,
2006). One commonly used approach for dynamical sys-
tems is to apply sampling-based planners, which are either
based on random or deterministic exploration of the vehi-
cle’s state space (LaValle, 2006). One approach based on
random sampling is RRT? which is a popular motion plan-
ning algorithm for dynamical systems where an efficient
steering function is available (Karaman and Frazzoli, 2013;
Banzhaf et al., 2018). Unless an efficient steering function
is available, the RRT? algorithm becomes computationally
? This work was partially supported by FFI/Vinnova and the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

inefficient as multiple optimal control problems (OCPs)
have to be solved online at each tree expansion (Stoneman
and Lampariello, 2014).

A popular deterministic sampling-based motion planner is
the lattice-based motion planner, which uses a finite set
of precomputed motion segments, or motion primitives,
online to find an optimal solution to a discretized version
of the motion planning problem (Pivtoraiko et al., 2009).
A benefit with this method is that efficient graph-search
algorithms can be used online such as A? (Hart et al.,
1968), making it real-time applicable (Pivtoraiko et al.,
2009; Ljungqvist et al., 2019). However, since the lattice-
based planner uses a discretized search space, the com-
puted solution can be noticeably suboptimal and a latter
post-optimization step is often desirable to use (Dolgov
et al., 2010; Andreasson et al., 2015). A related technique is
proposed in our previous work in (Bergman et al., 2019b),
where an optimization-based improvement step is added,
aiming at locally improving the solution from a lattice-
based planner without being limited to a discrete search
space. Compared to previous work, a tight integration
between the motion planner and the optimization step
was introduced. This new approach was shown to have
significant benefits over existing related methods in terms
of solution quality and reliability. However, the introduced
improvement step increases the motion planner’s latency
time and hence, the time before the trajectory can start
being executed. To reduce the computation time of the
improvement step, and thus enable a faster start of the
execution phase, a receding horizon trajectory planning
approach is proposed in this paper where the nominal
trajectory from the motion planning algorithm is improved
iteratively during the execution phase.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15759

Optimization-based receding horizon planning (RHP) is
commonly used in on-road applications, where the struc-
ture of the road environment is utilized to evaluate sev-
eral candidates with different terminal states centered
around the vehicle’s lane. In (Werling et al., 2012), these
candidates are efficiently computed using quintic polyno-
mials. In unstructured environments, optimization-based
RHP has mainly been applied on unmanned areal vehicles
(UAVs) (Schouwenaars et al., 2004; Kuwata et al., 2005;
Liu et al., 2017). The RHP approach is motivated in many
applications due to limited sensing range, which makes
it unnecessary to optimize the full horizon trajectory to
the terminal state (Liu et al., 2017). Common for these
methods are that outside the vehicle’s planning range,
a geometric planning algorithm is used to compute a
simplified trajectory to the goal, e.g., a shortest distance
trajectory that avoids known obstacles but disregards the
system dynamics. The simplified trajectory is then used to
estimate the cost-to-go, which enables a trade-off between
short term and long term trajectory selection. This tech-
nique has been shown to work well for agile systems such
as quadcopters. However, for systems that are less agile
(such as truck and trailer systems), using, e.g., a geometric
algorithm to estimate the cost-to-go can in worst case lead
to infeasibility (Pivtoraiko et al., 2009; Bergman et al.,
2019b).

The main contribution in this work is to use a nominal
trajectory computed by a motion planning algorithm in
a novel way to define a terminal manifold and an upper
bound on the optimal cost-to-go. This use of a nominal
trajectory makes it possible to avoid potential infeasibility
caused by using a simplified cost-to-go estimate when
solving the RHP problem. The result is utilized to pro-
vide theoretical guarantees on feasibility during the entire
planning horizon, objective function value improvement
and convergence to the terminal state. These theoretical
results are used to define a practical RHP algorithm, whose
performance is verified in a number of challenging motion
planning problems for a truck and trailer system.

The remainder of the paper is organized as follows. The
optimal motion planning problem is posed in Section 2.
In Section 3, the RHP problem is defined and theoretical
guarantees presented. These results are used in Section 4
to present an algorithm to iteratively improve the nominal
trajectory using RHP. A simulation study for a truck
and trailer system is presented in Section 5, followed by
conclusions and future work in Section 6.

2. PROBLEM FORMULATION

In this paper, continuous-time nonlinear systems in the
form

ẋ(t) = f(x(t),u(t)), x(t0) = x0, (1)
are considered, where x ∈ Rn and u ∈ Rm denote the
state and control signal of the system, respectively. These
are subject to the following constraints:

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm. (2)

Furthermore, the system should not collide with obsta-
cles, where the obstacle region is defined as Xobst ⊂ Rn.
Thus, in motion planning problems, the state space is
constrained as:

x ∈ Xfree = X \ Xobst. (3)

This constraint is in general non-convex since Xfree is
defined as the complement set of Xobst.

The motion planning problem can now be defined as the
problem of computing a feasible (i.e. satisfying (1)-(3))
state and control signal trajectory (x(·),u(·)) that moves
the system from x0 ∈ Xfree to a desired terminal state,
xf ∈ Xfree, while a performance measure Jtot is minimized.
This problem can be posed as a continuous-time OCP:

minimize
u(·), tf

Jtot(x0,u(·)) =

∫ tf

t0

`(x(t),u(t))dt

subject to x(t0) = x0, x(tf) = xf ,

ẋ(t) = f(x(t),u(t)),

x(t) ∈ Xfree, u(t) ∈ U t ∈ [t0, tf].

(4)

Here, the decision variable tf represents the time when the
terminal state is reached. Furthermore, `(x,u) forms the
cost function that is used to define the objective functional
Jtot.

Assumption 1. ` : Rn × Rm → R1 is continuous, and
`(x,u) ≥ ε > 0 for all (x,u) ∈ X × U .

Remark 1. Assumption 1 provides an explicit penalty on
the terminal time. Hence, Jtot →∞ as tf →∞.

One commonly used cost function for motion planning and
optimal control problems can be written in the form:

`(x,u) = 1 + ||x||2Q + ||u||2R, (5)

in which the weight matrices Q � 0 and R � 0 are
used to determine the trade-off between time duration
(captured by the first term in (5)) and other measures
such as smoothness of a motion (Ljungqvist et al., 2019).

As discussed in Section 1, the problem in (4) is hard to
solve by applying direct optimal control techniques due
to the non-convex obstacle avoidance constraints and the
nonlinear dynamics. Hence, a good initialization strategy
is required to enable the possibility of computing efficient
and reliable solutions (Bergman et al., 2019b). In this
work, it is assumed that a motion planning algorithm
(such as the ones described in Section 1) has provided a
nominal trajectory that moves the system from x0 to xf
and is at least a feasible solution to (4). This trajectory
is represented by (x̄(τ), ū(τ)), τ ∈ [t0, t̄f], where x̄(τ)
satisfies:

x̄(τ) = x0 +

∫ τ

t0

f(x̄(t), ū(t))dt (6)

This nominal trajectory (x̄(·), ū(·), t̄f) is used computa-
tionally to warm-start the second RHP step, but also the-
oretically to guarantee convergence to the terminal state.
A detailed description of this procedure is given in the next
section.

3. RECEDING HORIZON PLANNING

In this section, it will be shown how to use an optimization-
based receding horizon planner to optimize a nominal tra-
jectory already computed by a motion planning algorithm.
The nominal trajectory is used in the RHP approach to
represent a terminal manifold, which ensures the existence
of a feasible trajectory to the terminal state beyond the
current receding planning horizon.

3.1 Receding horizon planning formulation

The problem of optimizing the nominal trajectory is solved
using an iterative receding horizon approach. At each RHP
iteration k at time tk = t0 + kδ, δ > 0, k ∈ Z0, an OCP

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15760

is solved over a sliding time window [tk, tk + T], where
T ∈ (δ, Tmax] denotes its length in time. This optimization-
based RHP problem is defined as:

minimize
uk(·), τk

J(xcur,uk(·), τk) =

Ψk(τk) +

∫ tk+T

tk

`(xk(t),uk(t))dt

subject to xk(tk) = xcur, xk(tk + T) = x̄k−1(τk)

ẋk(t) = f(xk(t),uk(t)),

xk(t) ∈ Xfree, t ∈ [tk, tk + T]

uk(t) ∈ U .

(7)

Here, xcur = x̄k−1(tk) is the predicted state of the
system at time tk, x̄k−1(·) the previously optimized state
trajectory at time tk (with x̄−1(·) = x̄(·)) and Ψk(τk)
the cost-to-go function. Compared to (4), a subindex k
has been added to the state and control signal to clarify
that it is related to the k:th RHP iteration. Furthermore,
an additional decision variable τk has been added. This
variable can be seen as a timing parameter and is used in
the terminal constraint to select at what time instance the
state at the end of the horizon xk(tk + T) is connected to
the previously optimized state trajectory x̄k−1(·), which
defines the terminal manifold. From this state on the
terminal manifold, an open-loop control law is known
that moves the system from x̄k−1(τk), τk ∈ [t0, t̄

k−1
f] to

xf . Note that if the previous solution is already locally
optimal, the optimal solution to (7) is given by (u?k(·), τ?k),
where u?k(t) = ūk−1(t), t ∈ [tk, tk + T] and τ?k = tk + T .
Otherwise, a time shift to connect to the previous solution
might occur, which is defined as

∆tk = τ?k − (tk + T). (8)

Hence, a new optimized solution ūk(·) is available in the
end of each RHP iteration and is given by

ūk(t) =

ūk−1(t), t ∈ [t0, tk)

u?k(t) ∈ U , t ∈ [tk, tk + T)

ūk−1(t+ ∆tk), t ∈ [tk + T, t̄k−1
f −∆tk],

(9)

where ū−1(·) = ū(·) which is the nominal control tra-
jectory. Furthermore, the new terminal time is updated
according to t̄kf = t̄k−1

f −∆tk and the new optimized state

trajectory x̄k(·) is defined analogously as in (9).

In order to be able to select the optimal choice of τk,
i.e., where to connect onto the terminal manifold given by
x̄k−1(·), a terminal cost Ψk(τk) is added that represents
the cost to transfer the system from x̄k−1(τk) to xf using
the previously optimized solution. This cost-to-go function
is given by

Ψk(τk) =

∫ t̄k−1
f

τk

`(x̄k−1(t), ūk−1(t))dt, τk ∈ [t0, t̄
k−1
f], (10)

which represents an admissible overestimate of the optimal
cost-to-go, obtained from the previous solution.

3.2 Feasibility, optimality and convergence

It will now be shown that the RHP problem in (7) pos-
sesses the following properties: i) recursive feasibility, ii)
the total objective function value will be non-increasing at
every RHP iteration, and iii) convergence to the terminal
state. The reasoning behind most of the results are inspired
by stability analysis for nonlinear model predictive control
(MPC) (Mayne et al., 2000).

x̄k−1(·) x?
k(·) x̄k−1

(
τ?k : t̄k−1

f

)

0 20 40 60 80
0

20

40

x̄k−1(tk)

xf

obstacle

x̄k−1(τk)

x [m]

y
[m

]

Fig. 1. An illustrative example of one RHP iteration. The problem
in (7) is solved from x̄k−1(tk), which results in an optimal state
trajectory (green). The previous solution x̄k−1(·) (blue) is used
to provide guarantees that a feasible trajectory to the terminal
state exist beyond the receding planning horizon (dashed).

Lemma 1. (Recursive feasibility).
Assume that the nominal trajectory (x̄−1(·), ū−1(·)) is
feasible in (4). Then, at all RHP iterations k satisfying

tk + T ≤ t̄k−1
f , there exists a feasible solution to (4).

Proof. Assume that ūk−1(·) is feasible in (4) at RHP
iteration k − 1. Then, at any RHP iteration k,
∀k : tk + T ≤ t̄k−1

f , one choice of feasible decision variables

in (7) is:

τ ik = tk + T,

uik(t) = ūk−1(t), t ∈ [tk, tk + T).
(11)

After solving (7), an updated full horizon open-loop con-
trol law feasible in (4) at RHP iteration k is obtained
from (9) as ūk(·). The desired result follows from induction
by noting that at RHP iteration 0, ū−1(·) is feasible. �
Theorem 1. (Full horizon objective function value).
Assume that the nominal trajectory (x̄−1(·), ū−1(·)) is
feasible in (4). Then, the result in the end of each RHP

iteration k satisfying tk + T ≤ t̄k−1
f is a full horizon open-

loop control law ūk(·) that is feasible in (4) and satisfies

Jtot(x0, ūk(·)) ≤ Jtot(x0, ūk−1(·)) ≤. . .≤ Jtot(x0, ū−1(·)).
Proof. From Lemma 1, it is known that ūk−1(·) is fea-
sible in (4). Furthermore, the objective function value is
Jtot(x0, ūk−1(·)), which can be equivalently expanded as

Jtot(x0, ūk−1(·)) = Ψctc(tk−1)

+ J(x̄k−1(tk−1),u?k−1(·), τ?k−1),
(12)

where Ψctc(t) is the cost-to-come function, i.e., the accu-
mulated cost up until t, with Ψctc(t0) = 0, while J and
(u?k−1(·), τ?k−1) are the objective function and the solution
to (7) at RHP iteration k − 1, respectively. By using (7),
(9), (10), (11) in (12), it follows that

Jtot(x0, ūk−1(·)) =

Ψctc(tk−1) +

∫ tk

tk−1

`(x̄k−1(t), ūk−1(t))dt

︸ ︷︷ ︸
Ψctc(tk)

+

∫ tk+T

tk

`(x̄k−1(t), ūk−1(t))dt+ Ψk(tk + T)

︸ ︷︷ ︸
Using (11) in (7) : J(x̄k(tk),ui

k
(·),τ i

k
)

=

Ψctc(tk) + J(x̄k(tk),uik(·), τ ik) ≥
Ψctc(tk) + J(x̄k(tk),u?k(·), τ?k) = Jtot(x0, ūk(·)).

(13)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15761

Thus, using induction, it is possible to conclude that:

Jtot(x0, ūk(·)) ≤ Jtot(x0, ūk−1(·)) ≤. . .≤ Jtot(x0, ū−1(·)).
which holds ∀k : tk + T ≤ t̄k−1

f . When tk + T > t̄k−1
f ,

an optimal solution within the current planning horizon
already exists and no re-planning is required. �
Remark 2. Note that Assumption 1 on the cost function
`(x,u) is not required in Lemma 1 nor in Theorem 1.

Remark 3. When tk + T > t̄k−1
f , one possibility is to

perform re-planning by iteratively decreasing the planning
horizon T . However, the optimal solution will stay the
same during these last T/δ RHP iterations using argu-
ments from principle of optimality.

Theorem 2. (Finite number of RHP iterations).
Under Assumption 1, the maximum number of RHP
iterations kmax is upper bounded by

kmax ≤
Jtot(x0, ū−1(·))

εδ
, (14)

where δ is the time between two consecutive RHP itera-
tions.

Proof. At RHP iteration k, Assumption 1 and (12) give

Jtot(x0, ūk(·)) ≥ Ψctc(tk) =
∫ t0+δk

t0

`(x̄k(t), ūk(t))︸ ︷︷ ︸
≥ε

dt ≥ εδk. (15)

From Theorem 1, it holds that

Jtot(x0, ūk(·)) ≤ Jtot(x0, ū−1(·)),∀k : tk + T ≤ t̄k−1
f

which combined with (15) gives

εδk ≤ Jtot(x0, ū−1(·)) ⇐⇒ k ≤ Jtot(x0, ū−1(·))
εδ

, (16)

which completes the proof. �
Corollary 1. (Convergence to terminal state).
Under Assumption 1, the terminal state xf will be reached
in finite time.

Proof. Using Theorem 2, the terminal time tf when the
terminal state xf is reached is upper bounded by

tf ≤ t0 + δkmax + T, (17)

where kmax is upper bounded in (14) and T is the user-
defined RHP horizon length in (7). �

4. A PRACTICAL ALGORITHM

In this section, a reformulation of the RHP problem in the
previous section is introduced to handle a piecewise con-
tinuous nominal control trajectory. The new formulation
is connected to the theory in Section 3 to show that recur-
sive feasibility, non-increasing objective function value and
convergence to the terminal state still can be guaranteed.
Finally, an algorithm is outlined which summarizes all
steps in the proposed RHP approach.

4.1 Solving the receding horizon planning problem

A common approach to solve OCPs such as the RHP
problem in (7) is to use direct methods for optimal control.
In these methods, the continuous problem is discretized
and cast as a standard NLP. This is typically achieved by
using a piecewise continuous control signal (Diehl et al.,
2006). The discretized problem can then be solved using

standard methods for nonlinear optimization such as SQP
or nonlinear interior point methods (Nocedal and Wright,
2006). These solvers can be interfaced through a standard
solver interface such as CasADi (Andersson et al., 2018a),
which can be used when all involved functions in (7) are
(at least) continuously differentiable everywhere.

In practice, it is desirable to use nominal trajectories
in (7) where the control signal is piecewise continuous.
As an example, this is the case when a lattice-based
motion planner is used to compute a nominal trajectory
using motion primitives computed by applying direct
optimal control techniques (Bergman et al., 2019a). The
problem of using a piecewise continuous nominal control
signal trajectory is that the terminal manifold, defined
by x̄k−1(τ), and the cost-to-go function Ψk(τ) in (7) are
piecewise continuously differentiable with respect to the
timing variable τ . This follows from that

dx̄k−1

dτ
= ˙̄xk−1(τ) = f(x̄k−1(τ), ūk−1(τ)),

dΨk

dτ
= −`(x̄k−1(τ), ūk−1(τ)),

(18)

explicitly depend on the piecewise continuous control sig-
nal trajectory ūk−1(τ). Hence, in this case it is not possible
to directly use standard solver interfaces. One possibility
is to modify the solver and/or solver interface, which is
out of scope in this work. Another possibility, which is
used in this paper and will further be described in the
next sections, is to adjust the problem formulation while
aiming at preserving the theoretical guarantees proved in
Section 3.2.

4.2 Adjusted receding horizon planning formulation

One approach to deal with a piecewise continuous nominal
control trajectory is to use a variable horizon length Tk in
each RHP iteration, and select the value of the timing
parameter τk in (7) in a separate step. This means that
the RHP problem in (7) can be reformulated as:

minimize
uk(·), Tk

J =

∫ tk+Tk

tk

`(xk(t),uk(t))dt

subject to xk(tk) = xcur,

xk(tk + Tk) = x̄k−1(τk)

ẋk(t) = f(xk(t),uk(t)),

xk(t) ∈ Xfree, uk(t) ∈ U .

(19)

Here, the difference compared to (7) is that Tk is added
as a decision variable, and τk is removed from being a
decision variable and is instead considered as a parameter
to the RHP problem. Since τk is no longer a decision
variable, it is not an issue with using piecewise continu-
ously differentiable functions x̄k−1(·) and Ψk(·). This new
problem formulation reduces the terminal state manifold
to a single state. Furthermore, the cost-to-go function
Ψk(·) does not need to be explicitly taken into account
since the terminal state, and hence also the cost along
the remaining nominal solution, is already selected before
(19) is solved. By assuming a piecewise continuous input
over each planning interval [tk, tk+1], the problem can thus
be discretized using direct optimal control methods and
solved using standard NLP interfaces.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15762

4.3 Feasibility, optimality and convergence

The theoretical results in Section 3.2 neglected that the
RHP problem is to be discretized when solved using direct
optimal control techniques. This discretization introduces
the possibility of loosing recursive feasibility (in contrast
to the theoretical setup in Lemma 1) since it is not guaran-
teed that the time-shifted input in (11) is possible to repre-
sent in the discretized version. Even if the problem turns
out to be feasible, it could be the case that Theorem 1
does not hold, i.e., the new solution has a higher objective
function value than the previously optimized solution.
Here, we show how to obtain a practical implementation
with the properties already guaranteed for the somewhat
simplified theoretical setup in Section 3.

At RHP iteration k − 1, (x̄k−1(t), ūk−1(t)) is executed
during the time interval t ∈ [tk−1, tk]. Since both model
errors and external disturbances are assumed to be zero,
the state at tk will be x̄k−1(tk). By setting xcur = x̄k−1(tk)
and a desired value of τk in (19), the solution at RHP
iteration k (if any exists) will be given by (u?k(·), T ?k). If
the problem is feasible, a new candidate nominal control
is to use:

ūcan(t) =

ūk−1(t), t ∈ [t0, tk)

u?k(t), t ∈ [tk, tk + T ?k)

ūk−1(t+ ∆tk), t ∈ [tk + T ?k , t̄
can
f]

(20)

where ∆tk = τk− (tk +T ?k). In order to guarantee a result
similar to Theorem 1, the candidate solution is explicitly
benchmarked against the old one ūk−1(·). If the total
objective function value is improved by using the new
candidate, i.e.

Jtot(x0, ūcan(·)) < Jtot(x0, ūk−1(·)) (21)

the nominal trajectory is updated:
(
ūk(·), x̄k(·), t̄kf

)
=
(
ūcan(·), x̄can(·), t̄k−1

f −∆tk

)
, (22)

where x̄can(·) can be computed analogously to ūcan(·) in
(20). Otherwise, the previously optimized solution ūk−1(·)
is reused, which still represents a feasible solution to
xf . Hence, a practically useful approach that provides
similar guarantees as in Lemma 1 and Theorem 1 is
obtained using (20) and (21). Another required property
is to ensure that the approach converges to the terminal
state xf . Since the timing variable τk is updated before
and kept fixed during each RHP iteration (as described

in Section 4.2), progress towards t̄k−1
f is required for

convergence. A sufficient condition for progress is

τk+1 ≥ τk + ετ , (23)

which means that τk = t̄k−1
f < ∞ will be selected after a

finite number of RHP iterations, implying that xf is used
as terminal state in (19) and hence eventually reached.

4.4 Algorithm

The resulting RHP algorithm for motion planning is out-
lined in Algorithm 1. Before explaining the steps, note that
state and control signal trajectories, i.e. x(·) and u(·) in
Algorithm 1, are written as x and u for notational brevity.

The inputs to the algorithm are given by the initial and
terminal states, a desired planning horizon T , the time
between two consecutive RHP iterations δ (which together
define the number of discretization points N = T/δ), and
the current representation of Xfree. A motion planner is

Algorithm 1 Receding horizon planning

1: Input: x0,xf , T , δ, Xfree

2: (x̄−1, ū−1, t̄f)← Motion planner(x0,xf ,Xfree)
3: τ0 ← t0 + T , T init

0 ← τ0 − t0
4: (xinit

0 ,uinit
0)← resample(ū−1, x̄−1, δ)

5: while τk 6= τk−1 do
6: Set xcur = x̄k−1(tk) in (19)
7: (u?k, T

?
k)← Solve (19) using uinit

k ,xinit
k , T init

k and τk
8: if J(xcur,u

?
k, T

?
k) <∞ then

9: ∆tk ← τk − (tk + T ?k)
10: (ūcan, x̄can)← get cand(ūk−1, x̄k−1,u

?
k,∆tk)

11: if Jtot(x0, ūcan) < Jtot(x0, ū) then
12: Update solution:

(ūk, x̄k)← (ūcan, x̄can)

t̄kf ← t̄k−1
f −∆tk

13: else
14: (ūk, x̄k, t̄

k
f)← (ūk−1, x̄k−1, t̄

k−1
f)

15: end if
16: else
17: (ūk, x̄k, t̄

k
f)← (ūk−1, x̄k−1, t̄

k−1
f)

18: end if
19: Send nominal trajectory to controller :

send reference(ūk, x̄k)
20: Update receding horizon terminal constraint:

τk+1 ← update timing(tk+1, T, t̄
k
f)

21: Initialization for next iteration:
T init
k+1 ← τk+1 − tk+1

xinit
k+1,u

init
k+1 ← resample(ūk, x̄k, T

init
k+1/N)

22: Set k → k + 1
23: end while

then used on Line 2 to compute a nominal trajectory. To
obtain the best overall performance, the nominal trajec-
tory should also be computed while minimizing the same
objective function value as in (4) (Bergman et al., 2019b),
since the RHP iterations only perform local improvements
of the nominal trajectory.

For each RHP iteration k, the problem in (19) is solved
from xcur = x̄k−1(tk) starting from a provided initial-
ization (discussed further down in this section) and a
selected value of τk. If this problem is feasible, a new
candidate solution is found using (20). If this candidate
has a lower full horizon objective function value (i.e. the
inequality in (21) holds), the current candidate is selected
as solution. Otherwise, the previous solution is reused. The
selected solution is sent on Line 19 to a trajectory-tracking
controller.

The timing variable τk is updated at Line 20 in Algo-
rithm 1. The result in (23) only requires an update policy
such that τk+1 ≥ τk + ετ . One policy that satisfies this
requirement is:

τk+1 = min
(
t̄kf , tk+1 + T

)
, (24)

since tk+1 +T = τk+δ. This means that the terminal state
at the next RHP iteration is selected using the user-defined
desired planning horizon T in Algorithm 1.

Finally, the solver initialization for the next RHP iteration
is done on Line 21 in Algorithm 1. First, Tk is initialized
according to the predicted length, i.e., T init

k+1 = τk+1−tk+1.
Then, the previous full horizon solution is resampled to be
compatible with T init

k+1. Assuming a piecewise constant con-
trol signal and a multiple-shooting discretization strategy,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15763

one possible resampling of (x̄k(·), ūk(·)) is

uinit
k+1(tj) = ūk(tj), ∀j ∈ [k + 1, k + 1 +N],

xinit
k+1(tj) = x̄k(tj), ∀j ∈ [k + 1, k + 2 +N],

(25)

where N represents the number of discretization points
(given by T/δ), and tj = t0 + jδinit, with δinit = T init

k+1/N .
The RHP iterations are solved until τk = τk−1, which
means that xf has been used as terminal state in (19).

5. SIMULATION STUDY

In this section, the proposed optimization-based RHP
approach presented in Section 4 is evaluated in two
challenging parking problem scenarios for a truck and
trailer system. To evaluate the proposed RHP approach,
a lattice-based motion planning algorithm is employed in
a first step to compute nominal trajectories using a li-
brary of precomputed motion primitives. The lattice-based
planner is implemented in C++, while the optimization-
based RHP approach is implemented in Python using
CasADi together with the warm-start friendly SQP solver
WORHP (Büskens and Wassel, 2013).

5.1 Vehicle model

The truck and trailer system is a general 2-trailer with car-
like truck (Altafini et al., 2002; Ljungqvist et al., 2019).
The system consists of three vehicle segments: a car-like
truck, a dolly and a semitrailer. The state vector for the
system is given by

x =
[
qT α ω v1 a1

]T

q = [x3 y3 θ3 β3 β2]
T

(26)

where (x3, y3) and θ3 represent the position and orien-
tation of the semitrailer, respectively, while β3 and β2

denote the joint angles between the semitrailer and the
truck. Finally, α and ω are the truck’s steering angle and
steering angle rate, respectively, while v1 and a1 are the
longitudinal velocity and acceleration of the truck. Assum-
ing low-speed maneuvers, the truck and trailer system can
compactly be modeled as (Ljungqvist et al., 2019):

q̇ = v1f(q, α),

α̇ = ω, ω̇ = uω,

v̇1 = a1 ȧ1 = ua.
(27)

The control signal to the truck and trailer system is
uT = [uω ua]. The vehicle’s geometry coincides with the
one used in Ljungqvist et al. (2019). The control signal
and the vehicle states are constrained as
|β3| ≤ 0.87, |β2| ≤ 0.87, |α| ≤ 0.73, |ω| ≤ 0.8,

|v1| ≤ 1.0, |a1| ≤ 1.0, |uω| ≤ 10, |ua| ≤ 40,

and the cost function is chosen as

`(x,u) = 1 +
1

2

(
α2 + 10ω2 + a2

1 + uTu
)
, (28)

which is used both in the lattice-based planner and the
proposed optimization-based RHP approach as suggested
in Bergman et al. (2019b).

5.2 Lattice-based motion planner

As previously mentioned, a lattice-based planner is used in
a first step to compute a nominal trajectory to the terminal
state. The lattice-based planner uses a discretized state
space Xd and a library of precomputed motion primitives
P. During online planning, a nominal trajectory to the
terminal state is computed using A? graph search together

with a precomputed free-space heuristic look-up table
(HLUT) (Knepper and Kelly, 2006). In this work, we use
a similar state-space discretization Xd as in Ljungqvist
et al. (2019), where the position of the semitrailer is
discretized to a uniform grid with resolution r = 1 m and
the orientation of the semitrailer is irregularly discretized
θ3 ∈ Θ into |Θ| = 16 different orientations. It is done to
be able to compute short straight trajectories from each
θ3 ∈ Θ (Pivtoraiko et al., 2009). One difference compared
to Ljungqvist et al. (2019) is that the longitudinal velocity
is here also discretized as v1 ∈ V = {−1, 0, 1}. All other
vehicle states are constrained to zero for all discrete states
in Xd as was done in Ljungqvist et al. (2019). Note,
however, that on the trajectory between two states in Xd,
the system is free to take any feasible state.

The motion primitive set P is computed offline using
the framework presented in Bergman et al. (2019a) and
consists of straight, parallel and heading change maneuvers
between discrete states in Xd. Velocity changes between
discrete states are only allowed during straight motions. At
each discrete state with nonzero velocity, heading change
maneuvers are computed to the eight closest adjacent
headings in Θ, and parallel maneuvers ranging from ±10
m with 1 m resolution. The final motion primitive set P
consists of 1184 motion primitives. More details of the
lattice-based planner is found in Bergman et al. (2019a).

5.3 Simulation results

The proposed optimization-based RHP approach is eval-
uated on a reverse parking scenario (see Fig. 2) and a
parallel parking scenario (see Fig 4). The obstacles and
vehicle bodies are described by bounding circles (LaValle,
2006). In all simulations, the time between two consecutive
RHP iterations is δ = 0.5 s. During the simulations, it
is assumed that a trajectory-tracking controller is used
to follow the computed trajectories with high accuracy
between each RHP iteration, however the controller design
is out of the scope in this work.

The results for the reverse parking scenario are presented
in Fig. 2 and Table 1. As shown in Fig. 2b, the average
difference in objective function value ∆Jtot increases as
the planning horizon grows. The maximum achievable
improvement is 26.5% compared to the nominal solution
computed by the lattice-based planner. However, extend-
ing the planning horizon beyond T = 60 s only leads to
a minor improvement. More precisely, if the full horizon
(FH) in (4) is improved in a single iteration as done
in Bergman et al. (2019b) (i.e. not using a receding hori-
zon approach), only an additional improvement of 3.5%
is obtained. Furthermore, the average computation time
for one RHP iteration t̄RHP grows with longer planning
horizon (especially for T > 100 s), which is mainly due to
increased problem dimension of the resulting NLP. Since
the time needed to execute the trajectory is included in
the cost function (28), a practically relevant performance
measure is the total time to reach the terminal state ttot,
which is the computation time before trajectory execu-
tion can start, i.e. the latency time, plus the trajectory
execution time. When the nominal solution is improved
using the RHP algorithm, the additional latency time
∆tlat depends only on the computation time for the first
RHP iteration, since the remaining improvements are done
during execution. In Table 1, it is shown that the average
difference in total time ∆t̄tot between using and not using
the RHP algorithm obtains its minimum at a planning

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15764

Nominal Full Horizon (FH) T = 60 s

−80 −60 −40 −20 0 20 40 60 80

−20

0

20
(x3,0, y3,0)

θ3,0:

x3 [m]

y 3
[m

]

(a) Reverse parking scenario

20 60 100 140

-30

-20

-10

0

T [s]

∆
J
to

t
[%

]

20 60 100 140
0

3

6

9

12

15

∆JFH
tot ∆t̄lat

t̄ R
H
P
[s
]

(b) Improvement and computation time vs. planning horizon

Fig. 2. (a): Reverse parking scenario from 32 different initial states. The nominal path (dashdotted) compared to the paths after applying
the RHP algorithm using T = 60 (solid) and the path using full horizon (FH) improvement (dashed). (b): The average difference
in objective function value ∆Jtot, and the average computation time per RHP iteration t̄RHP using different planning horizons T
in Algorithm 1. The shaded area represents ± one standard deviation. Finally, ∆JFH

tot (dashed blue) represents average difference in
objective function value using FH improvement, and ∆t̄lat (dashed red) is the average difference in latency time.

Table 1. Summary of results from the reverse parking scenario in
Fig.2. See Fig. 2 and Fig. 4 for a description of the variables.

T [s] 20 40 60 80 120 FH
∆Jtot [%] -12.5 -14.4 -23.0 -24.1 -26.3 -26.5
t̄RHP [s] 0.05 0.14 0.32 0.64 3.6 14.0
∆t̄lat [s] 0.34 0.96 1.8 3.1 7.3 14.0
∆t̄tot [s] -16.6 -23.5 -30.2 -30.3 -26.2 -22.8

horizon of 60− 80 s in this scenario. Using a planning
horizon in this interval, the vehicle will in average reach
the terminal state more than 30 s faster (latency time +
motion execution time) than if the nominal trajectory is
planned and executed without improvement.

The results for the parallel parking scenario (Fig. 4 and
Table 2) are similar to the ones for the reverse parking sce-
nario. The main differences are that the average decrease
in total time ∆t̄tot and total objective function value ∆Jtot

are even more significant in this scenario, with a maximum
objective function value improvement of more than 40%.
The reason for this is because the lattice-based planner
computes a nominal trajectory that is further away from
a locally optimal solution due to the confined environ-
ment, which leaves large possibilities for improvement to
the RHP algorithm. One illustrative example of this is
shown in Fig. 3, where it can be seen that the terminal
time is nearly halved compared to the nominal solution.
Moreover, as can be seen in Table 2 and Fig. 4b, also in
this example ∆t̄tot and ∆Jtot are decreasing rapidly with
increased planning horizon until T = 60− 80 s. Beyond
that, only a minor additional decrease in ∆Jtot is obtained
(full horizon: 2.9%), whereas ∆t̄tot starts to increase due
to an increased average computation time of the first RHP
iteration. As a result, in this scenario the vehicle will in
average reach the terminal state 54 s faster (latency time +
motion execution time) using the proposed RHP approach
with planning horizon of T = 80 s compared to when the
nominal trajectory is planned and executed.

Table 2. Summary of results from the parallel parking scenario in
Fig.4. See Fig. 2 and Fig. 4 for a description of the variables.

T [s] 20 40 60 80 120 FH
∆Jtot [%] -24.9 -35.2 -40.8 -41.7 -43.4 -43.7
t̄RHP [s] 0.09 0.29 0.77 2.0 10.4 17.0
∆t̄lat [s] 0.35 0.73 2.0 3.5 12.3 17.0
∆t̄tot [s] -32.6 -45.7 -53.7 -54.0 -45.9 -44.1

6. CONCLUSIONS AND FUTURE WORK

This paper introduces a new two-step trajectory planning
algorithm built on a combination of a search-based motion
planning algorithm and an optimization-based receding
horizon planning (RHP) algorithm. While the motion
planning algorithm quickly can compute a feasible, but
often suboptimal, solution taking combinatorial aspects of
the problem into account, the RHP algorithm based on
direct optimal control techniques iteratively improves the
solution quality towards the one typically achieved using
direct optimal control. The receding horizon setup makes
it possible for the user to conveniently trade off solution
time and latency against solution quality. By exploiting
the nominal dynamically feasible trajectory, a terminal
manifold and a cost-to-go estimate are obtained, which
make it possible to provide theoretical guarantees on recur-
sive feasibility, non-increasing objective function value and
convergence to the terminal state. These guarantees and
the performance of the proposed method are successfully
verified in a set of challenging trajectory planning prob-
lems for a truck and trailer system, where the proposed
method is shown to significantly improve the nominal
solution already for short receding planning horizons.

Future work includes to modify the proposed receding
horizon planner such that it can be applied in dynamic
environments. Another extension is to improve real-time
performance by using ideas from fast MPC.

0 20 40 60 80 100 120 140

−0.5

0

0.5

t [s]

α
[r
ad

]

Fig. 3. The resulting steering angle trajectories for the highlighted
example in Fig 4a.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15765

Nominal Full Horizon (FH) T = 60 s

−40 −20 0 20 40 60 80

0

10

20

30

(x3,0, y3,0)

θ3,0:

x3 [m]

y 3
[m

]

(a) Parallel parking scenario

20 60 100 140

-60

-40

-20

T [s]

∆
J
to

t
[%

]

20 60 100 140
−60

−50

−40

−30
∆JFH

tot

∆
t̄ t
o
t
[s
]

(b) Improvement and total time vs. planning horizon

Fig. 4. (a): Parallel parking scenario from 36 different initial states. The nominal solution (dashdotted) is compared with the paths after
applying the RHP algorithm using T = 60 (solid) and the path using full horizon improvement (dashed). (b): The average difference
in objective function value ∆Jtot, and the average difference in total time ∆t̄tot, i.e., trajectory execution time + computation time
for the first RHP iteration, using different planning horizons T in Algorithm 1. The shaded area represents ± one standard deviation.

REFERENCES

Altafini, C., Speranzon, A., and Johansson, K.H. (2002).
Hybrid control of a truck and trailer vehicle. In Hybrid
Systems: Computation and Control, 21–34. Springer.

Andersson, J.A.E. et al. (2018a). CasADi – A software
framework for nonlinear optimization and optimal con-
trol. Math. Programming Computation.

Andersson, O. et al. (2018b). Receding-horizon lattice-
based motion planning with dynamic obstacle avoid-
ance. In Proceedings of the 57th IEEE Conference on
Decision and Control.

Andreasson, H., Saarinen, J., Cirillo, M., Stoyanov, T.,
and Lilienthal, A.J. (2015). Fast, continuous state
path smoothing to improve navigation accuracy. In
2015 IEEE International Conference on Robotics and
Automation (ICRA), 662–669.

Banzhaf, H., Berinpanathan, N., Nienhüser, D., and
Zöllner, J.M. (2018). From G2 to G3 continuity: Con-
tinuous curvature rate steering functions for sampling-
based nonholonomic motion planning. In 2018 IEEE
Intelligent Vehicles Symposium (IV), 326–333.

Bergman, K., Ljungqvist, O., and Axehill, D. (2019a).
Improved optimization of motion primitives for motion
planning in state lattices. 2019 IEEE Intelligent Vehicles
Symposium (IV).

Bergman, K., Ljungqvist, O., and Axehill, D. (2019b).
Improved path planning by tightly combining lattice-
based path planning and optimal control. Ac-
cepted for publication in IEEE Transactions on
Intelligent Vehicles. Pre-print available at arXiv:
https://arxiv.org/abs/1903.07900.

Büskens, C. and Wassel, D. (2013). The ESA NLP solver
WORHP. In G. Fasano and J.D. Pintr (eds.), Modeling
and Optimization in Space Engineering, volume 73, 85–
110. Springer New York.

Diehl, M., Bock, H.G., Diedam, H., and Wieber, P.B.
(2006). Fast direct multiple shooting algorithms for
optimal robot control. In Fast motions in biomechanics
and robotics, 65–93. Springer.

Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J.
(2010). Path planning for autonomous vehicles in un-
known semi-structured environments. The International
Journal of Robotics Research, 29(5), 485–501.

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Karaman, S. and Frazzoli, E. (2013). Sampling-based
optimal motion planning for non-holonomic dynamical
systems. In 2013 IEEE International Conference on
Robotics and Automation, 5041–5047.

Knepper, R.A. and Kelly, A. (2006). High performance
state lattice planning using heuristic look-up tables. In
2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3375–3380.

Kuwata, Y., Schouwenaars, T., Richards, A., and How, J.
(2005). Robust constrained receding horizon control for
trajectory planning. In AIAA Guidance, Navigation,
and Control Conference and Exhibit, 6079.

LaValle, S.M. (2006). Planning Algorithms. Cambridge
University Press, Cambridge, UK.

Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya,
S., Taylor, C.J., and Kumar, V. (2017). Planning
dynamically feasible trajectories for quadrotors using
safe flight corridors in 3-d complex environments. IEEE
Robotics and Automation Letters, 2(3), 1688–1695.

Ljungqvist, O. et al. (2019). A path planning and path-
following control framework for a general 2-trailer with
a car-like tractor. Journal of field robotics, 36(8), 1345–
1377.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert,
P.O. (2000). Constrained model predictive control:
Stability and optimality. Automatica, 36(6), 789–814.

Nocedal, J. and Wright, S.J. (2006). Numerical Optimiza-
tion. Springer.

Paden, B., Čáp, M., Yong, S.Z., Yershov, D., and Frazzoli,
E. (2016). A survey of motion planning and control
techniques for self-driving urban vehicles. IEEE Trans-
actions on Intelligent Vehicles, 1(1), 33–55.

Pivtoraiko, M., Knepper, R.A., and Kelly, A. (2009).
Differentially constrained mobile robot motion planning
in state lattices. Journal of Field Robotics, 26(3), 308–
333.

Schouwenaars, T., How, J., and Feron, E. (2004). Receding
horizon path planning with implicit safety guarantees.
In Proceedings of the 2004 American Control Confer-
ence, volume 6, 5576–5581. IEEE.

Stoneman, S. and Lampariello, R. (2014). Embedding non-
linear optimization in RRT∗ for optimal kinodynamic
planning. In Proceedings of the 53rd IEEE Conference
on Decision and Control, 3737–3744.

Werling, M., Kammel, S., Ziegler, J., and Gröll, L. (2012).
Optimal trajectories for time-critical street scenarios
using discretized terminal manifolds. The International
Journal of Robotics Research, 31(3), 346–359.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15766

