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Abstract: Solving the problem of intersection crossing for autonomous vehicles is a challenging
task due to combined combinatoric and dynamical control decisions. To reduce the complexity
of the computations and distribute the resulting global optimization problem, we propose a
combined scheduling-control method. Thereby, in this paper, we focus on the formulation of a
resource-constrained-project-scheduling problem (RCPSP) to solve the combinatoric decision,
i.e. the order in which vehicles cross an intersection area in a central coordination unit.
This problem considers control decisions from the vehicles, which are computed using model
predictive control (MPC) laws. In turn, the resulting scheduling solution is incorporated again
in local vehicle MPC problems, which negotiate among each other to find a dynamically feasible
solution. This seamless combination of scheduling and control results in efficient solutions, which
is illustrated using numerical simulation and the results are compared with a first-come-first-
served (FCFS) strategy.
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1. INTRODUCTION

The increase in vehicle automation reveals great po-
tential to improve ground traffic coordination. In par-
ticular, Vehicle-to-Vehicle and Vehicle-to-Infrastructure
(V2X) communication capabilities of cars enables the im-
plementation of scalable and intelligent vehicle coordina-
tion procedures. Coordinating vehicles optimally through
intersections becomes a bottleneck in cooperative driving
scenarios; this is because it requires combined combina-
torial and dynamically optimized decisions. This problem
has gained high interest in recent years.

A common approach to compute coordinated vehicle tra-
jectories is to use optimal control (OC) methods and, in
particular, model predictive control (MPC), see Zhang
et al. (2016); Tedesco et al. (2010); Campos et al. (2014);
Kneissl et al. (2018); Katriniok et al. (2017).These enable
the consideration of complex vehicle dynamics and dynam-
ics constraints as well as environmental constraints, and
provide a predictive solution. The combinatorial decision
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describes the order in which vehicles cross the intersec-
tion area. It induces non-convexity into OC problems and
makes them prohibitively difficult to solve to optimality
when real-time requirements are given. Therefore, sim-
ple heuristics, such as first-come-first-served (FCFS), can
be applied as by Zhang et al. (2016) and an improved
FCFS rule by Kim and Kumar (2014). However, heuris-
tics that are too simple risk leading to an overall sub-
optimal solution to the intersection coordination problem,
e.g. if the dynamic differences between vehicles are not
considered. Hult et al. (2018) provide a mixed-integer-
quadratic-programming (MIQP) heuristic to overcome the
aforementioned issue.

Alternative approaches deploy scheduling theory to solve
the sequencing problem at automated intersections. These
methods often use high-level traffic dynamics or do not
consider vehicle dynamics at all, as proposed by Li
and Zhou (2017) and Yan et al. (2011) using machine
scheduling. In most cases, the objective of scheduling ap-
proaches is to find a solution that minimizes the problem’s
makespan, i.e. to minimize the overall time taken for all
vehicles to cross the intersection, as proposed e.g. by Wu
et al. (2012) and Vial et al. (2016). On the contrary,
Colombo and Del Vecchio (2014) and Ahn and Del Vecchio
(2016) design a scheduler that incorporates simple linear
vehicle dynamics, which acts as a supervisor. It intervenes
with the crossing vehicles in a least restrictive manner if
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they would leave a safe set. Its implementation as a job-
shop scheduling problem can be solved for 25 vehicles at
an intersection within 100ms. Scheduling problems can
be solved by converting them to a mixed-integer-linear-
programming (MILP) optimization problem. Thus, they
can also be formulated directly as MILP problems as
proposed by Fayazi and Vahidi (2018), in which the vehi-
cles are coordinated through the intersection by receiving
target arrival times from the central scheduler.

A main drawback of most scheduling approaches is that
they lack the guarantee of dynamic feasibility with respect
to local vehicle control systems. In contrast, formulating
the intersection crossing task as a scheduling problem
enables a seamless integration of precedence constraints.
This, for example, excludes solutions that would lead to
rear-end collisions, which is often not considered in OC for-
mulations during the approaching phase at intersections.
See Zanon et al. (2017); Kneissl et al. (2018).

Therefore, in this paper, we propose a combined scheduling-
control design. It exploits the strength of scheduling to
determine a safe and deadlock free crossing order and uses
a distributed MPC framework, which guarantees feasibility
of constraint dynamic vehicle systems. The intersection
scenario is formulated as a resource-constrained-project-
scheduling problem (RCPSP) and solved by converting it
to an MILP problem. It receives a heuristic approximation
for the vehicles’ crossing duration, which makes the ex-
change of vehicle model data unnecessary. After extracting
the pure order information and, thus, neglecting the timing
information from the resulting schedule, the distributed
local MPC problems compute timed-trajectories given this
crossing order. The trajectories represent a guaranteed
dynamically feasible and safe solution by incorporating
local dynamic constraints and coupled inter-vehicle safety
constraints for collision avoidance. The distributed MPC
method is an iterative scheme with any-time feasible inter-
sampling iterations and is discussed in detail in Kneissl
et al. (2019).

The remainder of this paper is organized as follows. In
Section 2, we introduce the model of an intersection
and state the overall optimization problem as a central-
ized MPC formulation. Section 3 defines the scheduling
problem and explains the link with local vehicle control
problems, which are introduced in Section 4. Numerical
results that apply the proposed approach are presented in
Section 5, while Section 6 contains concluding remarks and
comments about future work.

Notation: Throughout this paper x(k|t) indicates a pre-
diction of state x for time k computed at time t, while
all prediction values at time t are x(: |t). The set of
integers Ia:b defines {a, a+1, ..., b}. The weighted 2-norm is
denoted by ‖x− x̂‖2Q = (x− x̂)TQ(x− x̂) with appropriate
dimensions of vectors x, x̂ and matrix Q. The relation

a
T
� b indicates that element a appears before element

b in a tuple T . The cardinality of a set S is given by |S|.

Scheduling
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Fig. 1. Intersection crossing scenario.

2. PROBLEM STATEMENT

2.1 Intersection Framework

We model the intersection scenario consisting of a set of
Nv connected automated vehicles (CAV) vi, i ∈ I1:Nv ,
with local control units and an intersection management
(IM) unit with which the CAVs exchange information
via vehicle-to-infrastructure (V2I) communication. Fig. 1
illustrates the introduced intersection setup. We distin-
guish between a scheduling area and an intersection area.
Vehicles approaching the intersection enter the scheduling
area in which, based on their local control computations,
the IM determines a crossing order for the inner intersec-
tion area and shares this information with the vehicles.
We introduce conflict zones, czj , j ∈ I1:6, dividing the
intersection area into zones for potential rear-end, front
and side collisions (cz1, ..., cz5) and rear-end collisions on
approaching lanes (cz6). Note that, in general, the concept
of conflict zones and the negotiation process presented in
this paper is applicable to arbitrary scenarios in which
several vehicles share a common area and where collision
conflicts can occur, e.g. obstacle avoidance scenarios.

Finally, we define a multi-graph Groute = (Vroute, Eroute)
describing the given vehicles’ routes through the intersec-
tion. The set of vertices Vroute = {cz1, ..., cz6} contains all
conflict zones and V iroute ⊂ Vroute all conflict zones that
vehicle vi passes. Directed edges ejk ∈ Eroute are connec-
tions between consecutive conflict zones, which indicates
that a vehicle crosses these zones and the driving direction,
i.e. ejk = (czj → czk), j, k ∈ I1:6.

2.2 Control Problem Setting

Next, we state the coordination problem of Nv vehicles
through the intersection area as a centralized MPC prob-
lem, while we refer to its solution as the optimal solu-
tion. The central problem serves as a reference for the
distributed implementation presented in this paper. It is
defined as
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V ∗ = min
Z

V (x(t), u(t)) (1a)

subject to

x(k + 1|t) = Ax(k|t) +Bu(k|t) k ∈ It:t+M−1 (1b)

x(k|t) ∈ X k ∈ It+1:t+M (1c)

u(k|t) ∈ U k ∈ It:t+M−1 (1d)

dN (di(k|t), dj(k|t)) ≥ ds
{
k ∈ It+1:t+M

(vi, vj) ∈ N
(1e)

x(t|t) = x(t), (1f)

where M is the prediction horizon. The time-discrete local
vehicle dynamics models,(

di
vi

)+

︸ ︷︷ ︸
xi(t+1)

=

(
1 −Ts
0 1

)
︸ ︷︷ ︸
Ai∈R2×2

(
di
vi

)
︸ ︷︷ ︸
xi(t)

+

(
−T 2

s
Ts

)
︸ ︷︷ ︸
Bi∈R2×1

ai︸︷︷︸
ui(t)

, (2)

are combined to the central linear time invariant (LTI)
model. Above sampling time Ts and di, vi, ai describe
vehicle v′is distance state, velocity state, and acceleration
input, respectively. The distance state di will relate to
the vehicle’s distance to critical zones in the intersection
area. For simplicity we neglect in the above notation the
dependency of time t = {0, 1, 2, ...}. The central model
(1b) consists of states and inputs

x(t) =
(
x1(t)T, ..., xNv

(t)T
)T ∈ R2Nv , (3)

and

u(t) =
(
u1(t)T, ..., uNv

(t)T
)T ∈ RNv , (4)

respectively, a central system and input matrix definition

A = diag(A1, A2, ..., ANv) ∈ R2Nv×2Nv (5)

and
B = diag(B1, B2, ..., BNv

) ∈ R2Nv×Nv . (6)

States and inputs are constrained by closed and polytopic
sets X and U. The coupling constraint (1e) ensures inter-
vehicle distances between vehicles vi and vj to be greater
or equal to a defined safety distance ds for all possible
neighbor relations, N , w.r.t. a common critical zone.
Thereby, N is a set of all feasibly possible (vi, vj)−tuple,
i.e.

N ⊆ {(vi, vj)|(i, j) ∈ I1:Nv
× I1:Nv

, i 6= j}. (7)

The initial state at the current time step t is defined by
(1f). Finally,

Z = (x(t+ 1|t)T, ..., x(t+M |t)T,
u(t|t), ..., u(t+M − 1|t)),

(8)

defines the optimization vector and

V (x(t), u(t)) =

Nv∑
i=1

Vi (xi(t), ui(t)) =

Nv∑
i=1

(
t+M∑
k=t+1

‖xi(k|t)− xri ‖2Qi(k)
+

t+M−1∑
k=t

‖ui(k|t)‖2Ri(k)

)
(9)

the global objective function, which is the sum of all
individual vehicle objectives. Thereby, xri is a given state
reference, constant for one optimization step, and Qi(k)
and Ri(k) are positive semi-definite matrices.

One possibility is to solve problem (1) centrally in the
IM infrastructure unit and share the computed system
inputs with the respective vehicles. This, however, has

several drawback. First, (1) grows with the number of
vehicles what consequently results in a growing computa-
tion time. Second, constraint (1e) induces non-convexity
to the problem which makes it hard to solve. Due to this
combinatorial variability, (1) is a mixed integer quadratic
program (MIQP). Third, the local vehicle models (2) have
to be known by the central IM unit and cannot be kept
locally in the vehicles.

To overcome the above discussed drawbacks, we propose
a distributed coordination strategy. In the central IM
unit we solve a scheduling problem which will be used
to compute the combinatorial decision in (1e) and remove
the non-convexity (Section 3). The remaining central MPC
problem, which now is reduced to a quadratic problem
(QP), is distributed between the vehicles (Section 4). Each
vehicle solves the problem related to its own dynamics with
shared trajectory information from neighboring vehicles.
This gives the benefit of computationally distributing the
problem and thus provides a scalable solution. Further-
more, dynamic models can be kept locally in each vehicle.
Finally, from a safety perspective it is preferred to make
control decisions inside a vehicle rather than relay on
actuation commands coming from a central unit via a
wireless V2I communication channel.

3. CROSSING ORDER SCHEDULING

The problem of automated intersection crossing, using the
framework in Section 2.1, can be seamlessly formulated
as a scheduling problem. Therefore, we first introduce
the standard notation of a resource-constrained-project-
scheduling problem (RCPSP) in the beginning of Section
3.1 as classified in Brucker et al. (1999). Following this,
we map this notation to the intersection problem. Finally,
we solve it by formulating a mixed integer linear problem
(MILP) in Section 3.2.

3.1 Formulation of the scheduling problem

Let us define the RCPSP by the tuple

(V, δ, E ,R, α,B) , (10)

where V = {A0, ..., An+1} is a set of activities and the sub-
set A = {A1, ..., An} ⊂ V with n non-dummy activities;
δ ∈ Nn+2 is a vector describing the duration of each
activity and we set the dummy activities’ duration to
δ0 = δn+1 = 0; matrix E ∈ Nl×2 contains l ∈ N precedence
relations where each row in E with elements (Ai, Aj) ∈
A, i 6= j, means that activity Ai precedes activity Aj ;
R = {ρ1, ..., ρm} is the set of renewable resources with
m ∈ N; α ∈ Nm is a vector describing the amount of
available resources with the respective identifier; finally the
matrix of demands is given by B = (βir) ∈ Nn+2×m with
elements describing the amount of consumed resources
ρr ∈ R for each activity Ai ∈ V.

The mapping into the intersection framework is proposed
as follows. Each non-dummy activity Ai ∈ A, i ∈ I1:n,
indicates a vehicle’s route through the scheduling and
intersection zone, i.e.

Ai = (ejk, ..., elm),where ejk, elm ∈ Eroute. (11)

We distinguish two types of activities. The first one, drive
to, models the vehicle driving in the scheduling zone
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towards the beginning of the intersection. The second one,
cross, passing through the intersection. For clarification,
consider the following demonstrative example.

Example 1. Assume vehicle v1 in Fig. 1 driving from E to
S, then its route is cz6 → cz2 → cz1 → cz4. Vehicle v1’s
drive to activity would be “driving in cz6” and its cross
activity would be “driving through cz2, cz1, and cz4”.

Duration δi of an activity Ai ∈ A models the expected
time a vehicle consumes to perform the respective activity,
i.e. to drive to the intersection or to cross it. The activity
duration vector δ represents the interface to the local
vehicle control problems, discussed in Section 4. Here
several candidates for suitable heuristics exist. We propose
an MPC-related duration measure in order to achieve a
close link to the local vehicles’ control decisions. Therefore,
let us define

δi = fj(Ẑj), (12)

with activity Ai’s duration δi given by vehicle vj ’s MPC

optimization, Ẑj (see Section 4). We introduce a prece-
dence relation in E for the routes of a vehicle, i.e. the
drive to activity precedes the cross activity. Furthermore,
a precedence relation is added if we a priori know a certain
crossing order, e.g. if two vehicles approaching the inter-
section on the same lane and the first cannot been taken
over by its follower (rear-end collision avoidance) such as
illustrated in the following example.

Example 2. Assume vehicle v2 in Fig. 1 driving from N
to S and vehicle v3 from N to E. Furthermore, let Ai =
(cz6 → cz3, cz3 → cz4) be the intersection crossing activity
of vehicle v2, and Aj = (cz6 → cz3, cz3 → cz1, cz1 → cz5)
of vehicle v3. Then a pair (Ai, Aj) in E ensures that v2

enters the intersection before v3.

The resources represent the set of conflict zones in the
scenario, i.e.

R = {cz1, ..., cz6} (13)

in our intersection setup. The availability of the respective
resources at a certain time-instant is defined by

α = (1, 1, 1, 1, 1, Nv)T (14)

and elements of the demand matrix B are

βir =

{
1 if czr ∈ Ai
0 else

. (15)

Fig. 2 illustrates the construction of a precedence graph
according to the definition of E and R, while Table 1
summarizes the scheduling taxonomy related to the in-
tersection model.

3.2 Solution of the RCPSP

Problem (10) can be solved by formulating it as MILP.
We suggest a modified version of the discrete-time MILP
formulation introduced by Pritsker et al. (1969).

Let bi,τ be a binary decision variable with bi,τ = 1 if
activity i starts at time τ and bi,τ = 0 otherwise, then
(10) can be formulated as the following MILP:

A0 A3

drive to

A4

cross

A1

drive to

A2

cross

...
...

An−1

drive to

An

cross

An+1

Fig. 2. Precedence graph representing the vehicles’ routes
through the intersection by distinguishing the activity
types drive to and cross, as well as a priory known
inter-vehicle relations as illustrated between A4 and
A2.

Table 1. Intersection Scheduling Taxonomy

Scheduling Intersection
meaning Param. Model Param. meaning

non-dummy Ai = (ej , ..., ek) route through
activity ejk, elm∈Eroute intersection

duration δi = fj(zj) crossing duration
prediction

precedence εk,: = (Ai, Aj) vehicles on
relations same lane

resources R = {cz1, ..., cz6} conflict zones

availabilities α = (1, ..., 1, Nv)T # respective
conflict zones

demands βir =

{
1 if czr∈Ai

0 else
passed czs

b∗ = argmin
b

∑
i∈I1:|V|

∑
τ∈H

τbi,τ (16a)

subject to∑
τ∈H

τbj,τ ≥
∑
τ∈H

τbi,τ + δi (i, j) ∈ E (16b)

n∑
i=1

(
βi,k

τ∑
m=τ−δi+1

xi,m

)
≤ Bk τ ∈ H, k ∈ R (16c)∑

τ∈H
bi,τ = 1 i ∈ V (16d)

bi,τ ∈ {0, 1} i ∈ V, τ ∈ H, (16e)

with H = {0, 1, ..., Tsched} representing the set of schedul-
ing time-steps upto a scheduling horizon Tsched, with
Tsched > MTs, and the optimization variable b =
(b1,1, ..., bi,τ , ..., bn+2,Tsched

), i ∈ I1:|V|, τ ∈ H. Note that
(16a) is formulated such that it minimizes the problem’s
makespan as well as each activity’s makespan, i.e. finds the
solution with the shortest overall and individual vehicles’
time consumption. This objective is chosen because the
infrastructure’s goal is to maximize the vehicle throughput
in the intersection area.

The scheduling result can be conveniently illustrated by a
Gantt-chart as exemplary shown in Fig. 3.
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vNv
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scheduling time H

cross

cross

drive to

drive to

drive tocz6

cz6

cz6

czj , czk, ...

czj , czk, ...

czj , czk, ...

δn

δ2

Fig. 3. Exemplary scheduling result indicating time and
duration of execution for each activity, where for
vehicles vi activities drive to the intersection area
and cross the intersection are distinguished. Further-
more, for each activity the consumed resources are
illustrated with j, k ∈ {1, ..., 5}.

Given the result of (16) and the respective consumed
resources of each activity Aj ∈ A, we are able to extract a
crossing order, oi, for each critical zone czi, i ∈ I1:5. This
is achieved by neglecting the actual scheduling time H and
solely extract the order in which vehicles vj , j ∈ I1:Nv

are
scheduled to cross a certain conflict zone czi. Consequently,
we achieve a set of orders

O = {oi = (vj , vk, ...) | i ∈ I1:5; j, k ∈ I1:Nv}. (17)

Remark 1. Note that modeling the scheduling such that
activities reserve the complete intersection area (cross),
does not mean that in the end only a single vehicle can be
in the intersection, as we only extract the order decision
and pass this information to the local control units, as
discussed in the following section.

4. DISTRIBUTED COORDINATION CONTROL

In this section, we first discuss the distributed control law
and its connection to the scheduling decision. Thereafter,
we argue why the proposed RCPSP results in a deadlock
free decision and thus enables a guaranteed feasible control
negotiation.

4.1 Distributed MPC

Given the orders (17), computed with the scheduling law,
the local vehicles can receive a set of neighbors. Based on
this information the vehicle trajectories will be computed
using distributed MPC laws with respective neighbor
predictions. After formulating this distributed MPC setup
we introduce how to predict the vehicles’ activity duration
(12).

The MPC laws, solved locally in each vehicle vi, i ∈ I1:Nv ,
are given by:

Z∗i = argmin
Zi

Vi (k, x(t), u(t)) (18a)

subject to

xi(k+1|t) = Aixi(k|t) +Biui(k|t) k ∈ It:t+M−1 (18b)

xi(k|t) ∈ Xi k ∈ It+1:t+M (18c)

ui(k|t) ∈ Ui k ∈ It:t+M−1 (18d)

dPi
(k|t) ≥ ds k ∈ It+1:t+M (18e)

dSi(k|t) ≥ ds k ∈ It+1:t+M (18f)

xi(t|t) = xi(t) (18g)

xi(t+M |t) ∈ {xi(t)|vi(t) = 0} (18h)

ui(t+M − 1|t) = 0. (18i)

Thereby, Zi is the complement of (8) containing only
local information from vehicle vi. Similar, (18b) - (18d)
and (18g) are as defined in (1) with local information
only. The application of terminal constraints (18h) and
(18i) contribute to the recursive feasibility guarantee of
the distributed computations (Kneissl et al. (2019)). For a
given scheduling decision (17) we are able to formulate
the distance constraints (18e) and (18f). Note that all
feasible combinations N in (1e) are replaced by these
local constraints for a single combination. This reduces
the computational effort. The set of predecessors,

Pi = { vj | j ∈ I1:Nv
∧ vj

ok� vi, czk ∈ V iroute \ cz6}, (19)

contains all vehicles crossing before vehicle vi on its
route through the intersection. Then we derive dPi(k|t) =

d̃czmi (k|t)− d̃czmj∗
k

(k|t− 1), with

j∗k = argmax
j∈Pi

d̃czmj (k|t− 1), (20)

and notation d̃czmi indicating a transformation of v′is
distance state di to the beginning of the critical zone czm,
which vi and vj have in common.

Similar for the set of successors,

Si = { vj | j ∈ I1:Nv
∧ vj

ok≺ vi, czk ∈ V iroute \ cz6}, (21)

we construct dSi(k|t) = d̃czmj∗
k

(k|t − 1) − d̃czmi (k|t), while

substituting Pi with Si and argmax with argmin in (20).

We find that local problems (18) are convex as (18a) is
quadratic and (18b) - (18i) are linear constraints. These
problems are thus QPs and can be solved efficiently.

Above we described how the global scheduling decisions
are incorporated in the local control problems. Now, it
remains to discuss the reverse link between local control
decisions and the scheduling problem. This link is repre-
sented by (12). Solving (18) is conducted in a distributed
and iterative manner where neighbor intentions ((18e) -
(18f)) are shared in each iteration step. Details on the
distributed algorithm, which guarantees any-time feasible
solutions, are presented in Kneissl et al. (2019). During
iterations in the procedure each vehicle computes a nomi-
nal trajectory Ẑi, neglecting (18h) and (18i) when solving
(18), and Z∗i used to provide the feasibility guarantee. In
what follows we will refer to the states from the nominal
optimization vector Ẑi.

For a given vehicle v′is activity Aj we extract czs ∈ Vroute
and cze ∈ Vroute which are the first zone in the intersection
of v′is route and the zone after leaving the intersection
area, respectively. We estimate the duration of activity Aj
by
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δj = btend − tstartc, (22)

which is computed distinguishing following cases:

tend =


min

(
(t+M)Ts +

d̃cze
i

(t+M |t)
vi(t+M |t) , tTs + Tsched

)
if d̃czei (t+M |t) ≥ 0

kendTs, if d̃czei (t+M |t) < 0,

(23)

with

kend = argmin
k

|d̃czei (k|t)| (24)

s.t. k ∈ It:t+M .
And similar for tstart by substituting kend with kstart and
d̃czei with d̃czsi in (23) and (24).

Finally, Algorithm 1 gives a summary of the combined
scheduling-control coordination procedure.

Algorithm 1 Combined Scheduling-Control Procedure

1: Vehicles:
2: compute distributed MPC problems (18) without

(18e),(18f),(18h),(18i)
3: IM:
4: compute activity duration estimation (22)
5: solve (16) and determine (17)
6: Vehicles:
7: negotiate distributed intersection crossing using (18)

according to Kneissl et al. (2019)

4.2 Feasibility Discussion

This section discusses on an example the deadlock free
scheduling solution and how it relates to dynamic feasi-
bility of local control decisions. Proving generality of this
result is subject of future work.

Assume two vehicles, v1 and v2, conduct a left turn from
opposite directions. Then, in the d1(t)-d2(t)-state-space
there are unfeasible areas due to commonly passed czs,
as illustrated by the red boxes in Fig. 4. As the cross-
activity of the RCPSP (10) groups all passed czs of a
vehicle, a consistent order solution is computed. Compare
the blue shaded area in the left plot of Fig. 4, which
indicates the possible d1(t)-d2(t)-trajectory space if v1 has
to cross before v2. This space is a connected set and thus
there exists a homotopy class of d1(t)-d2(t)-trajectories
(Gregoire et al. (2014)). On the contrary, the right plot
in Fig. 4 shows a non-consistent order decision where the
trajectory ends in deadlock configuration D and thus the
goal configuration G cannot be reached.

Now, it remains to discuss the relation to dynamic feasibil-
ity of the local MPC problems. In Kneissl et al. (2019) we
discuss feasibility for the area de1 < ds2, which is considered
via constraints (18e) and (18f). Moving the trajectory
there, i.e. from S to A in Fig. 4 is out of scope of this
paper, but we have a simple guarantee to reach it, if a
vehicle is able to stop before the entrance of an intersec-
tion. After v1 has left the intersection area the constraint
can be unbound (B in Fig. 4). Thus, we conclude that
a deadlock free schedule enables a dynamically feasible
vehicle coordination.

d2(t)

d1(t)

S = (d1(0), d2(0))

G = (d1(∞), d2(∞))

A
B

v1�v2

de1<d
s
2

G

S

d2(t)

d1(t)

S = (d1(0), d2(0))

v1�v2

G

Sv2�v1

D

D = (d1(∞), d2(∞))

Fig. 4. Feasible trajectory space (blue shaded area) in the
d1-d2-space for two vehicles on a left turn from op-
posite directions. Left: consistent scheduling decision
with v1 � v2 for all commonly passed czs; Right: non-
consistent scheduling decision (v1 � v2 and v1 ≺ v2)
leading to a deadlock situation.

Table 2. Simulation parameters.

Name Parameter Value

# simulated vehicles Nv 6
sampling time Ts 0.1s
MPC horizon length M 50
state weights Qn

i diag(0, 5)
input weight Rn

i 12
velocity constraints [vi,min, vi,max] [0, 9m/s]
acceleration constraints [ai,min, ai,max] [−7m/s2, 4m/s2]

vehicle velocity references (m/s)
Scenario xr1,v xr2,v xr3,v xr4,v xr5,v xr6,v

1 5 6 5 7 8 9
2 5 5 5 5 5 5
3 5 5 9 5 5 5

5. NUMERICAL EVALUATION

In this section we illustrate the functionality of the intro-
duced RCPSP method in combination with the distributed
MPC laws. Furthermore, we discuss its benefit in compar-
ison to a first-come-first-served (FCFS) strategy on exam-
ple scenarios. Using the FCFS law, the vehicle’s crossing
order in the intersection area is determined according to
their distance to the entrance of the intersection. That
means, the closest vehicle reserves the critical zones it
passes first and similar for following vehicles organized by
ascending distance.

Figure 5 introduces the vehicle setups of the simulated
scenarios. Scenario 1 is presented in the top plot and
Scenarios 2 and 3 at the bottom. The plots show the
vehicle IDs, vi, i ∈ I1:6 and their respective maneuvers
in the intersection, with right turn r, left turn l, and
straight crossing s. Table 2 lists the simulation parameters.
It distinguishes the reference values xri,v of the velocity
state for vehicles vi, i ∈ I1:6 with respect to Scenarios 1−3.
Furthermore, the inter-vehicle safety distance ds = dcz+lv
is computed by considering the length of a route through
a critical zone, dcz, two vehicles have in common and the
length of a vehicle, lv, where we assume for simplicity that
all vehicles have same dimensions.

Now, we demonstrate the simulation results by applying
Algorithm 1 for Scenarios 1 − 3 in Figures 6,7, and 8,
respectively. In these figures the top plot represents the
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Fig. 5. Vehicle setup in simulation scenarios with respec-
tive vehicle maneuvers through the intersection, right
turn r, left turn l, and straight cross s. Top plot:
Scenario 1, bottom plot: Scenarios 2 and 3.
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Fig. 6. Scenario 1.

actual drive to activities using the distributed MPC laws
for a computed crossing order resulting form the RCPSP
solution. The lower plot represents the implemented FCFS
strategy and the bars in the middle part indicate the
actual cross duration of the vehicles for RCPSP and FCFS,
respectively.

As an example we state for Scenario 1 the estimated
duration of activities:

δ = (2.6s,1.4s, 3.8s,1.4s, 6.0s,0.6s, (25)

5.0s,1.0s, 5.2s,1.0s, 5.8s,1.0s), (26)

where the bold values are the estimated crossing duration
for vehicles v1...v6, respectively, and the other vales are the
estimated drive to duration. The resulting RCPSP order
decision set O is given by
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Fig. 7. Scenario 2.
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Fig. 8. Scenario 3.

O = {o1 = (v2, v6, v5), o2 = (v1, v2, v4, v5), o3 = (v4, v6),

o4 = (v2, v3, v5), o5 = (v1, v6)}.

Table 3 summarizes the simulation results by comparing
the proposed RCPSP method and the FCFS strategy.
Time represents the total simulated time until all vehicles
have crossed the intersection area, ∆ time lists the percent-
age of saved time by applying the RCPSP instead of FCFS.
Cost indicates the sum of all vehicle individual MPC costs
over the time of simulation, ksim, i.e.

∑ksim
k=1 V (x(t), u(t)),

and ∆ cost the saving, similar as above. We find that
the RCPSP method outperforms the FCFS strategy. This
becomes significantly visible in Scenario 3, where vehicle
v3 has a higher velocity reference value (xr3,v = 9) com-
pared to the other vehicles. The RCPSP method is able
to consider the individual vehicle interests (references or
weights), while the FCFS strategy is not aware of that.
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Table 3. Overall crossing time and cost evalu-
ation for different intersection scenarios.

Method Time (s) ∆ time (%) Cost ∆ cost (%)

Scenario 1

FCFS 10.9
6.4

3.75e4
16.8

RCPSP method 10.2 3.12e4

Scenario 2

FCFS 16.8
15.5

3.87e4
22.2

RCPSP method 14.2 3.01e4

Scenario 3

FCFS 16.8
32.7

7.06e4
62.6

RCPSP method 11.3 2.64e4

This leads to a more efficient crossing order decision with
the RCPSP.

6. CONCLUSION

In this paper we present a combined scheduling-control
methodology for intersection crossing of automated vehi-
cles. The scheduling problem, formulated as a resource-
constrained-project-scheduling problem, receives crossing
duration estimations via V2I communication form the
local vehicle MPC controllers. Based on its solution, a
crossing order in the intersection area can be found. This
information is then applied in the distributed MPC ne-
gotiation procedure. Thus, this method makes use of the
strength of scheduling problems by determining feasible
crossing orders and guarantee dynamic feasibility through
the locally distributed MPC problems. Furthermore, the
distribution between the central intersection management
unit (scheduling problem) and the local vehicles (dis-
tributed MPC) keeps the problem scalable and avoid the
computation of a non-convex optimization problem. Fi-
nally, the individual vehicle models can be kept privately
in each vehicle unit without the need to share it with other
vehicles or coordination units. We show the benefit of the
proposed method on numerical examples by a comparison
with a first-come-first-served strategy.

Future work shall investigate the effect of re-scheduling
during the crossing procedure. Moreover, computation
time and the optimality gap with respect to the central
solution will be subject of further research.
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