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Abstract: To cope with certain exogenous stimuli, there have been inexorable advances of
technology, with an increased focus and fascination with the accuracy of diagnostic equipment.
This can become a difficult problem to solve as it warrants real-time monitoring whilst taking
up unnecessary measures to improve overall system reliability and maintainability. Intermittent
faults may be benign or malignant in nature and their overall impact on a system varies with
mission objectives and operating conditions. Major failures can often be averted if these problems
can be detected sufficiently in advance by observing them in dynamical behaviour. The phase
space trajectory reconstructed from a time series is known to elucidate such behaviours however
it is seldom applied for fault analysis. This article makes use of dynamic system theory and
investigates its application for fault estimation by analysing non-stationarities which arise due
to the changing dynamics under intermittent conditions. Intermittent fault detection presents
a challenge for traditional fault diagnostic equipment as they do not manifest themselves all
the time. The idea is to move away from the traditional approaches and investigate the use
of non-linear analysis by building a reference trajectory using the phase space reconstruction.
This is used as an objective measure for any deviations caused by intermittent phenomena. The
method is validated using simulated data and shows promise. The implications of the study
are to identify new fault isolation bounds necessary to improve diagnostic success rates and
potentially lead to early diagnosis of intermittent faults in electrical equipment.

Keywords: Condition monitoring, fault detection, diagnostics, non-linear analysis, decision
support.

1. INTRODUCTION

All systems are susceptible to faults during operation.
Some of these problems can occur within acceptable oper-
ating tolerances and hence result in subsequent inherent
diagnostic difficulties (Zhou et al. (2019)). This often leads
to several unsuccessful fault diagnosis which negatively
impacts critical system stakeholder requirements; includ-
ing system safety, dependability and life-cycle costs. It is
also the leading cause for No Fault Found problems (Khan
et al. (2014)). Some authors have argued that it is essential
to avoid such phenomena, or at the very least, reduce
the level of impact that unsuccessful diagnosis can have
on a business operation (De Kleer and Williams (1987)).
However, any fault diagnostic method will have a limited
capacity when dealing with the increasing complexities
of modern systems. E.g., in electromechanical systems,
many faults originate as intermittent occurrences rather
than a sudden event. Intermittent faults can result from
unsuccessful (or inefficient) troubleshooting regimes. But
since these problems rarely lead to a loss of complete
functionality of a system (even though their components
may be out of specification), it becomes important to
improve understanding of failures from a multidisciplinary
perspective; including the development of condition moni-
toring with advanced diagnostic capabilities. Intermittent

Fig. 1. Some prominent fault detection techniques

problems are often random in nature, but (sometimes)
their behaviours can be recurrent (Bakhshi et al. (2014);
Khan et al. (2018)).
According to Khan et al. (2014), there are typically
three causes of intermittent faults: (i) abrupt parameter
changes, (ii) structural changes, and (iii) sensor malfunc-
tions. As shown in Fig. 1, generic approaches can be
used for their detection. However, these methods vary
in their strengths in terms of their detection rates, diag-
nosability, robustness, adaptability, model/computational
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requirements, etc., to detect dynamic changes in the de-
terministic structure of a signal which may be instan-
taneous or relatively slow dynamic changes. Yet, most
of these methods provide no quantitative evaluation of
the conditions that will make the fault identifiable as an
intermittent fault (Bondavalli et al. (2000)). In contrast
to hard fault detection, intermittent faults do not have
any particular characteristics. The authors have not come
across any study which discusses this issue in detail; this
presents a unique opportunity to contribute to the field.
As a result, the following three activities are carried out:

• The ideal system behaviour is rearranged into phase
space, based on some delayed embedding. The evolv-
ing state of the system is traced as a reference trajec-
tory through this space;

• Future (predicted) operational trajectories are com-
pared against the reference; predictions are made
based on the k-nearest neighbours algorithm;

• The residual is subsequently computed to diagnose
the fault.

The authors demonstrate the applicability of the technique
with simple examples for developing deterministic qualita-
tive (and quantitative) observations which can be used in
detecting observable intermittent variations. This strategy
differentiates from the majority of existing techniques by
its peculiar theoretical perspective as it does not:

• Make any specific assumptions on the mathematical
structure of data;

• Rely on assumptions of stationarity, i.e., statistical
properties (such as mean, variance, etc.) do not have
to be constant over time;

• Need to consider the data as the output of a linear
dynamical system.

The remainder of the paper is organised as follows: Section
2 explains the theory behind non-linear analysis. Section
3 builds on these concepts using examples on how it can
be used for intermittent fault detection. Finally, some
conclusions are reached from the preceding analysis.

2. NON-LINEAR ANALYSIS

2.1 Phase space reconstruction

Elements within dynamical systems can be reconstructed
by observing their output. As the system evolves with
time, the state vector traces out a path in the phase
space, known as the orbit of state trajectory, providing
a phase portrait of the system at a given instant. It can
map a time series to higher dimensional space so that
all possible states of a system can be represented (with
each possible state of the system corresponding to one
unique point in the phase space). This shape (of the phase
diagram) provides qualities of the system which may not
have been apparent otherwise, such as hidden periodici-
ties, non-stationary or the systems qualitative behaviour;
indicating that higher complexities would require higher
dimensions to describe the states of a given dynamical
system completely. The criteria for reconstructing a phase
space using a time delay method assumes a time series,
x1, x2, ..., xN , which is transformed into a phase space with
vector zi = xi, xi+τ , ..., xi+(d−1)τ , where τ is the time

Fig. 2. Phase space reconstruction of a time series using
the time-delay embedding theorem

delay and d is the embedded dimension. This process is
illustrated in Fig. 2. A time series can be reconstructed
accurately only if its embedding dimension and delay time
values are correctly chosen.

2.2 Reducing singularities

Subsequent data points are connected to establish some re-
lationship by structure and information. This relationship
is highly dependent on the sequence of time as it reveals
the typical dynamic behaviour of related variables. This
is in contrast to random noise which will not exhibit any
structure. If the delay and embedding dimension parame-
ters are not optimal, the phase space trajectory will lead to
ambiguities called singularities. A low number of singular-
ities indicates that data points can be isolated across the
trajectory and the system becomes highly predictable. A
high number of singularities are not good and hence a lot
of time is spent at reducing them as much as possible. As a
result, the optimum parameters which have the maximum
predictability can be calculated using Takens theorem and
the False Nearest Neighbour algorithm.

2.3 Finding the optimal time-delay

According to Takens (1981), almost every value of time
delay should work in achieving an attractor that closely
follows the behaviour of a system. Yet, due to practical
limitations (such as finite data length, finite precision and
the presence of noise), choosing a time delay can become
problematic. As each signal can contain new information
within their successive measurements of time, the focus is
placed on producing independent delayed coordinates in
their reconstructed phase space. This is because, if the
delay is too small (compared to the time scale of the
system), it will produce highly correlated delayed vectors,
restricting it to the diagonal of the reconstructed phase
space. On the other hand, if the delay is too large, all the
delayed vectors will become completely uncorrelated and
the reconstructed phase space will not represent the true
dynamics of the system. This makes the proper selection
of the time delay of prime importance in using the time
embedding technique as it preserves the essential dynamics
required to reconstruct the trajectories. This paper makes
use of the autocorrelation function for its calculation (Kim
et al. (1999)):

cT =
1
N

∑N
i=1(xi − x̂)(xi+τ − x̂)

σ2
(1)
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Fig. 3. Principle of the non-linear analysis method

where N is the number of data samples, x̂ = 1
N

∑N
i=1 xi

is the sample mean and σ2 = 1
N

∑N
i=1(xi − x̂)2 is the

sample variance. The time at which the autocorrelation
function reaches its first zero-crossing indicates that the
two coordinates are linearly uncorrelated and hence is
taken as a good estimate to use as an embedding time
delay.

2.4 Determining the embedding dimension

It is known that the embedding dimension, d, has to be, at
least, twice the dimension of the real-world solution, i.e.,
d ≥ (2D+1). Here, D is the original system dimension. If d
is larger than it should, the dimension of the reconstructed
system will contain redundant information. If d is smaller
than it should, then the points near the space coordinates
may be due to the folding effects of the projection and
not the data in the original dynamic system. In this case,
any predictions made using this phase space will not be
good enough. In the simulations used in this paper, the
False Nearest Neighbour (FNN) algorithm is used for
estimating d. The main idea is to examine how the number
of neighbours of a point along with a signal trajectory
changes with increasing embedding dimension. Therefore,
an appropriate selection for the embedding dimension is
when the percentage of FNN approaches to zero (Rhodes
and Morari (1997)).

2.5 Prediction in phase space

After an appropriate trajectory is obtained, predictions
of future sensor measurements must be made. KNN can
be used to locate the data points that are closest to
the value we want to predict. This is a non-parametric
approach which relies on observes the future values of these
neighbours and take their average from the past states of
the system. This helps to predict the next value 1 . As a rule
of thumb, K is chosen to be d+ 1. The principle is shown
in Fig 3. Of course, these predictions assume that most of
the state information is readily available in the past data.
This places an emphasis on the importance of ensuring the
quality of past data that can represent all possible future
conditions, to obtain the state definitions and the number
of nearest neighbours (Smith et al. (2002)). It should be
noted that the predictions can be improved by making use
of some weighting regime, e.g., assigning more weight to
the most recent neighbour and so on. The authors made
1 It should be noted that other approaches such as AR, ARIMA
models often outperformed the average k-nearest neighbour method.

(a) Predicting the system response

(b) The behaviour in phase space; blue: system response,
red: predictions

Fig. 4. The system response (unfiltered)

use of the Inverse Distance Weighting (IDW) interpolation
method, which is a deterministic spatial interpolation
approach often used to estimate an unknown value using
known values with corresponding weighted values:

X =
weight1x1 + weight2x2 + ...+ weightnxn

weight1weight1...weightn
(2)

where weightn = 1
distancen

is being used to calculate each
respective weight.

3. SIMULATIONS

Example 1: Acquiring the phase space representation.
Consider the noisy system response in Fig. 4a. The delay
and embedding dimensions are estimated to be 5 and 3,
with k = 4. The result in Fig. 4b emphasises the need
to denoise the data in order to make cleaner predictions
on the system responses in the phase space; figs. 5a and
5b reflect much better results after a filtering process.
If a fault (or drift) is encountered, the model would
be able to diagnose any deviations from the expected
predictions; which are calculated by simply averaging 4
nearest neighbors of the data sample.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10441



(a) Predicting the system response

(b) The behaviour in phase space (filtered); blue: system
response, red: predictions

Fig. 5. The system response (filtered)

Fig. 6. Predicting a chaotic time-series (predictions in red)

Example 2: Making better predictions. Predicting a non-
linear time delay differential equation - the Mackey-Glass
equation, to generate complex dynamics 2 :

ẋ =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (3)

2 The time series is obtained by using the fourth-order Runge-Kutta
method to find the numerical solution to the previous equation. It
assumes that x(0) = 1.2, τ = 17, and x(t) = 0 for t < 0.

Fig. 7. Single-phase voltage source switch-mode rectifier

This trajectory is chaotic with no definitive time period.
As the series does not converge or diverge, it is highly
sensitive to initial conditions. The delay is set at 5, with
an embedding dimension of 6. The result of the prediction
is illustrated in Fig. 6. The initial 880 samples are used
to map the signal trajectory in the phase space, while the
rest of the 120 samples are used to validate the predictions.
This example makes predictions by using Equ. 2.
Example 3: Calculating the fault likelihood. In order to
demonstrate the use of the strategy for fault diagnostics,
a model of an AC/DC single-phase converter is used as
presented by Pires and Silva (2002), and depicted in Fig.
7. The system is simulated using the parameter values R0

= 100Ω, C0 = 10000µF , Ls = 10µH, Rs = 0.01Ω, Vs

= 220V . The switching was designed to be in phase with
the input voltage (50Hz sinusoid). The optimal parameters
are determined to be a delay of 32, with an embedding
dimension of 3. Two different conditions were trialled:
normal which has no change and intermittent fault where
Sa1 fails between t = 1.1s− 1.3s.
The intermittent fault is modelled as an impulse function
and applied across Sa1 representing a damaged transistor.
This impulse is applied during the systems steady-state
operating phase and with the drop-in signal lasting 0.2 sec-
onds as shown in Fig. 8. Using this method, it is also pos-
sible to identify hard faults, albeit enough information is
available. This is because even though there is a fault and
the phase space is expected to deviate from the healthy
values; there might be no dynamic changes throughout
the observed process period. This is in contrast to the
intermittent case which will clearly identify a change. Fur-
thermore, if there is a need to investigate the underlying
implications of collective anomalies, a threshold can now
be applied to the residual to indicate a fault. This will
make it less sensitive and, depending on the application,
reduce the number of false alarms. This is done by making
use of a sliding window that calculates the moving mean
µ, and variance σ2, of the residual within that window. For
fault detection purposes, this is followed by computing the
fault likelihood, FL, as the complement of the Gaussian
tail probability, Q (Khan et al. (2019)):

FLt = 1−Q(
µ̂− µ

σ
) (4)

where µ̂ is the median. By placing a threshold on FLt, it
can be used to report a fault incident. This equation serves
as an estimate on how accurate the model is able to detect
collective deviations, in context to the history within the
assigned window. In most cases, it will (almost) always
provide a distribution of results that will have smaller
variances and be centred near 0. If any sudden jumps are
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(a) Fault appearing in Sa1

(b) The phase space representation with no fault and
with an intermittent fault

Fig. 8. Circuit behaviour in phase space

encountered in the residuals (as in fig. 9a), it can be used
by the anomaly likelihood to generate an alarm each time
a predefined threshold is crossed. Fig. 9b illustrates this
concept for intermittent fault detection.
Example 4: Diagnosing intermittent faults in a DC motor.
The authors have taken a simplified view of the system
dynamics using a transfer function of a DC motor as
illustrated in Fig. 10. Three intermittent faults are injected
by interrupting the current supply to work at 50% at
90, 120 and 290 seconds. These interruptions last for 10
seconds each. The signal and its phase space reconstruc-
tion result is illustrated in Fig 11. It can be seen that
although signal phase follows its typical path in Fig 11b,
there are instances where it deviates from the expected
trajectory. Across the time series, a 100 sample window is
used to make predictions of the expected trajectory of the
signal phase. This is used to generate the residual from the
predicted vs actual response. A number of deviations can
be identified in 12a, which are used to register the alarms
in 12b. The anomaly likelihood is calculated over a moving
mean of 10 samples; increasing this number can result in
a much smoother outcome, but it will also reduce reaction
time 3 . Therefore, a trade-off must be reached on accuracy
vs speed.

3 as it will have more samples to consider in the window.

(a) The residual of the system response

(b) Fault likelihood

Fig. 9. Probability of a (intermittent) fault

Fig. 10. Simulink diagram of DC motor: L = 0.1H,
Kϕ = 0.3, J = 0.1Kg/m2, b = 0.01, R = 2Ω

4. CONCLUSION

The paper proposed the use of non-linear analysis for
fault diagnosis in electromechanical systems to address
the problem of intermittent faults. These methods are
well established in their application in mechanical systems
with limited research found for the case of intermittent
faults. The results here confirm that its use is applicable
for electronic systems where the phase space can be
used to study changes between normal and non-stationary
occurrences. This also demonstrates the possibility of
isolating where these problems occur in the time-series
when analysing non-linearity.
The authors are further exploring the following research
avenues:
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(a) The motor current signal
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(b) Signal phase space with d = 2 and τ = 5

Fig. 11. The signal’s behaviour with intermittent response
deviations

• Investigating the impact of higher dimensions;
• Optimising the time windows to locate the intermit-

tent occurrences accurately in time;
• Comparisons with conventional approaches.

Note: The Matlab codes and simulink models have been
released on the lead author’s Github page: https://
github.com/drsamirkhan/nonlinear_prediction/
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