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Abstract: One method for managing the complexity of a dynamic network is to abstract some
of this complexity away by using a simpler, yet behaviorally equivalent, mathematical model.
A theory for such abstractions is currently under development (cf. Kivits and Van den Hof
(2018) as well as Woodbury and Warnick (2019)). While recent work has considered concepts of
controllability and observability for networked dynamic systems (cf. Xiang et al. (2019) and Liu
and Barabási (2016)), this paper analyzes these concepts for abstractions of dynamic networks.
In particular, we present the notion of a complete abstraction and an extraneous realization of a
dynamic network and show that these concepts characterize the controllability and observability
properties of a class of abstractions of dynamic networks.
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1. INTRODUCTION

Dynamic networks are a useful representation of dynamic
systems. They not only reflect the behavior of the sys-
tem, but also capture a notion of structure in the way
the system computes its behavior. In particular, nodes in
a dynamic network represent variables, or signals, while
edges between nodes describe dynamic relationships be-
tween signals. In linear time invariant (LTI) systems, these
edges are labeled with SISO transfer functions (or their
time-domain equivalent, a convolution kernal) character-
izing the dependency of one variable on another. When
considering directed edges, we align the direction of an
edge with the causal dependency among variables.

A number of interesting systems questions can be posed
in terms of dynamic networks. For example, work on char-
acterizing informativity conditions for discovering network
structure and edge dynamics under various conditions has
been analyzed in Gonçalves and Warnick (2008), Adebayo
et al. (2012), Chetty and Warnick (2017), Chetty et al.
(2013) and Paré et al. (2013). Likewise, a rich body of
literature is emerging on the identification of part or all of
a dynamic network, see Materassi and Innocenti (2010),
Materassi (2011), Quinn et al. (2015), Weerts et al. (2016)
and Van den Hof et al. (2013). Distributed control prob-
lems have been explored where the dynamic network of
the controller is constrained to have a particular network
structure (see Rai and Warnick (2013)), and the security
of cyber-physical-human systems has been explored in
terms of the underlying dynamic network characterizing
the system in Rai et al. (2012), Chetty et al. (2014) and
Grimsman et al. (2016).

Another set of interesting questions deals with the rela-
tionship between the graph structure of a dynamic net-
work and its behavior. Some of these questions include
structural controllability and reachability (first introduced
in Lin (1974)), which extend the classic notions of control-
lability and observability of state-space models. Structural
controllability analysis may be applied to all the fields
where controllability is relevant and is especially of inter-
est as exact knowledge of the model parameters are not
required Xiang et al. (2019).

However, the complexity and scale of modern-day net-
works means that such analysis can be prohibitively ex-
pensive. Several strategies for managing this complexity
arise from considering abstractions (behaviorally equiv-
alent, though structurally simplified models) of dynamic
networks. A rich theory of such abstractions is currently
under development, see Johnson and Warnick (2020),
Woodbury and Warnick (2019) and Kivits and Van den
Hof (2018).

This paper highlights key similarities and differences be-
tween dynamic networks and networked dynamic systems,
a prominent model class for considering structured com-
plex networks. It then contributes definitions and char-
acterizations of network controllability and observability
of abstractions of linear dynamic networks. These results
highlight the advantages of considering network abstrac-
tions when modeling, as well as conditions (we namely
consider an abstraction condition called completeness) on
which doing so fundamentally changes the interpretation
of the abstracted (simplified) model.
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2. BACKGROUND

The terms networked dynamic systems and dynamic net-
works are used in the literature to mean very different
things. Likewise, different notions of controllability and
observability have also been developed for networks. This
section briefly surveys these concepts and establishes the
focus of the results presented in this paper.

2.1 Networked Dynamic Systems vs. Dynamic Networks

Networked dynamic systems are interconnections of sub-
systems that result in a larger, more complicated system
(Chetty and Warnick (2017); van Waarde et al. (2019)).
Often such models are used to describe multi-vehicle sys-
tems (Murray (2007)), power systems (Hill and Chen
(2006)), or other systems interconnected by communica-
tion networks (Neely (2010)). The typical linear model for
such a system would consider linear state equations for
each agent,

ẋi(t) = Aixi(t) + Biui(t)
yi(t) = Cixi(t)

where i ∈ 1, 2, ..., N indicates the agent index (in a system
with N agents); xi(t) ∈ Rni is the agent’s internal state
vector; the agent’s input vector, ui(t) ∈ Rmi , receives
input signals from either external sources or neighbors in
an interconnection (possibly directed) graph, G, character-
izing the structure of the entire system; the agent’s output
vector, yi(t) ∈ Rpi , sends information to pi neighbors
defined by the same interconnection graph, G; and t may
be either continuous or discrete (in the discrete case, ẋ(t)
should be interpreted as x(t+ 1) instead of dx

dt ). Note that
stacking the equations for each agent leads to a linear state
space model characterizing the entire system, although the
structure of G might get lost in such a representation. In
such networks, nodes of G represent systems while edges
carry signals transmitting information from one subsystem
to another. We often call G the subsystem structure of the
network, since it represents the interconnection structure
of subsystems.

Dynamic networks, on the other hand, are representations
of dynamic systems that also appeal to a graph, G, to
characterize their structure, and they have been used to
model biochemical reaction networks (Yeung et al. (2015)),
financial networks (Materassi and Innocenti (2009)), the
attack surface for the security of cyber-physical-human
systems (Grimsman et al. (2016) and Chetty et al. (2014)),
and to address different network reconstruction and identi-
fication problems, see Weerts et al. (2018), Talukdar et al.
(2017), Materassi and Salapaka (2015) and Gonçalves and
Warnick (2008). Nevertheless, in these graphs, in contrast
to networked dynamic systems, nodes represent signals
while edges represent systems. Such systems are charac-
terized by equations of the form

y = Wy + V u

where y is a vector of length p and represents manifest
measurements from the system and u is a vector of length
m representing stochastic or deterministic inputs to the
system. Note that, similar to networked dynamic systems,
these equations may be considered in either the time or
frequency domain and over discrete or continuous time.
Thus, for example, to model a continuous time system in

the frequency domain, entries of y, u, W and V would
be real rational functions of the Laplace variable, s ∈ C,
while modeling a discrete time system in the time domain
suggests that entries of these variables are functions of
(discrete) time, t ∈ Z, and multiplication would become
the convolution operation. The graph structure, in this
case, however, is revealed by the adjacency structure of W
and V , and entries of these matrices reveal the dynamics
associated with the system, called a module (see Weerts
et al. (2015)), represented by each edge of the graph.
Because we restrict our attention to causal modules and
well-posed representations (see Woodbury et al. (2017)),
the resulting graph G can be interpreted as revealing the
causal dependencies among the signals y and u; thus we
call G the signal structure of the system.

Every causal, linear time invariant system has both a
subsystem structure and a signal structure, but in general
these structures are different, see Yeung et al. (2010). One
example of this difference is due to the possibility of a
shared hidden state between modules, while subsystems
do not share states. The existence of shared hidden state
implies that distinct modules on the dynamic network
may not be separated in the dynamic system from which
the dynamic network was computed; this may complicate
the interpretation of a dynamical network as a physical
system.

2.2 Structural Controllability and Observability

Consider an LTI state-space model:
ẋ = Ax + Bu

y = Cx.
(1)

We call this model (A,B,C) for convenience.

We restate the classic definition of structural controllabil-
ity given by Lin (1974) via the notion of structural zeros 1

explained in Johnson and Warnick (2020).

To consider the structural controllability of (A,B,C) from
a graph-theoretic standpoint we represent the system with
a weighted digraph. We do so by considering the states, x,
and the inputs, u, to be graph nodes and then characterize
the system graph as the graph composition of a bipartite
digraph with weighted adjacency matrix Wu and a second
digraph with weighted adjacency matrix Wx, where

Wu =

[
0 B
0 0

]
and Wx =

[
A 0
0 0

]
.

This gives us a new graph to consider, whose weighted
adjacency matrix is of the form:

Wx+u =

[
A B
0 0

]
.

The first n nodes in this resulting digraph are the state-
variables, x, the remainingm nodes are the inputs, u. Each
zero entry in A or B can either correspond to an edge with
a zero weight or to a non-existent edge. One can think of
each non-existent edge on this graph as a structural zero.
Definition 1. (Structurally Controllable). The model in
Equation 1 is structurally controllable if there exists a con-
1 Loosely speaking, structural zeros correspond to the absence of
a connection between variables as opposed to the existence of a
potentially zero-strength connection.
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trollable system (Ā, B̄, C̄) which has the same structural
zeros as the system (A,B,C). 2

Graph structure conditions on when a system is struc-
turally controllable (specifically path connectivity from
input nodes and the absence of graph dilations) are then
given for the graph structure in Lin (1974).

For these LTI systems, the same graph results on struc-
tural observabillity may be defined on a sort of graphic
dual of Wx+u. By graphic dual we mean the n + p node
graph (where nodes are the states and outputs) with the
weighted adjacency matrix of the form:

Wx+y =

[
A 0
C 0

]
.

Structural observability can then be posed as a structural
controllability problem on the transpose digraph given by

WT
x+y =

[
AT CT

0 0

]
.

Thus we extend our definition of structural controllability
to cover structural observability.
Definition 2. (Structurally Observable). The model in
Equation 1 is structurally observable if there exists a con-
trollable system (ĀT , C̄T , B̄T ) which has the same struc-
tural zeros as the system (AT , CT , BT ). 2

2.3 The Computational Dynamic Network Function

The computational dynamic network function for LTI
systems is a model derived from Equation 1, as follows. By
taking the Laplace transform (or Z transform depending
on if time is continuous or discrete) of Equation 1 and
assuming zero initial conditions we get:

sX = AX + BU

Y = CX

Now, dividing by s yields:

X =
1

s
AX +

1

s
BU

Y = CX.

(2)

The equation tuple (X = 1
sAX + 1

sBU, Y = CX) is
the computational dynamic network function (DNF) of
(A,B,C).

We now define structural controllability and observability
on the computational DNF. Since there is a one-to-one
correspondence between the LTI system (A,B,C) and its
computational DNF, it inherits structural controllability
and observability from the LTI system it corresponds to.
Definition 3. The computational DNF, (X = 1

sAX +
1
sBU, Y = CX), is structurally controllable if (A,B, I) is
structurally controllable, and it is structurally observable
if (AT , CT , I) is structurally controllable. 2

The computational DNF may be interpreted as a digraph
with the same structure as (A,B,C), but with the weights
in A and B scaled by 1

s , a first-order dynamic system.

2.4 General LTI Dynamic Networks

General LTI dynamic networks may be interpreted as ar-
bitrary digraphs whose edge weights are themselves SISO

Fig. 1. Example of graphical representations of the state-
space, computational DNF and computational DSF
models of an LTI system. Note that there is a one-
to-one correspondence between a state-space model
with C = I and its computational DNF, thus the two
perfectly share network controllability characteristics.
Note in this case that the state-space (and therefore
computational DNF) model has no dilations and has
path connectedness from the input to all states, so all
three models (including the computational DSF) are
structurally controllable.

LTI systems (typically represented by rational polynomials
over C). One such example is the computational dynami-
cal structure function (DSF), see Gonçalves and Warnick
(2008).
Example 1. Consider the state-space system:[

ẋ1

ẋ2

ẋ3

]
=

[
0 0 0
a21 0 0
a31 0 a33

][
x1

x2

x3

]
+

[
b1
0
0

]
u1

[
y1
y2
y3

]
=

[
1 0 0
0 1 0
0 0 1

][
x1

x2

x3

]
.

This system’s computational DSF is the tuple (Q(s), P (s)),
where Y (s) = Q(s)Y (s) + P (s)U(s). It is computed by
taking an immersion (see Definition 4) with CA = I.
Specifically:[

Y1(s)
Y2(s)
Y3(s)

]
=

1

s

 0 0 0
a21 0 0
a31s

s− a33
0 0

[Y1(s)
Y2(s)
Y3(s)

]
+

1

s

[
b1
0
0

]
U1(s).

Note that the self-loop in the computational DNF has now
been incorporated into the relationship between Y1 and Y3.
This means that the network is structurally controllable
(like the state-space model and computational DNF it was
computed from), although the graph contains a dilation.2
Figure 1 demonstrates the digraphs associated with a
simple LTI system, its computational DNF and its com-
putational DSF.

3. NETWORK ABSTRACTIONS AND
REALIZATIONS

A theory of abstraction has been developed for dynamic
networks. This theory results in a spectrum of represen-
tations linking input-output or behavioral descriptions to
state space models of the same underlying system, see
Woodbury (2019) and Weerts et al. (2019). Moreover,
while previous work has considered the controllability and
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observability of networked dynamical systems (such as
Xiang et al. (2019), Liu and Barabási (2016) and Cowan
et al. (2012)), this work considers how these concepts relate
to dynamic networks, in general, and their corresponding
spectrum of abstractions in particular.

Fig. 2. A visual demonstration of the concept of a network
abstraction. We apply an immersion and an input
immersion. By ignoring nodes U3, Y6, and Y7, we
reduce the number of parameters needed to learn the
simplified network model from data. Note that the
edge weights (which are dynamic systems) between
the two models often will not be the same.

An abstraction of a dynamic network is a behaviorally
equivalent model with fewer structural parameters. While
there are many forms of abstractions, we will concern
ourselves with immersions in this work. Formally we define
an immersion as follows (note the relationship of this
definition to those given by Woodbury and Warnick (2019)
and Weerts et al. (2019)).
Definition 4. (Immersion and Realization). An immer-
sion of an LTI network model, (WR(s), VR(s)), with input
nodes uR(s), manifest nodes xR(s) and transfer function
GR(s), is a second LTI network model (WA(s), VA(s)),
with input nodes uA(s), manifest nodes xA(s) and transfer
function GA(s) where:

(1) WA is hollow (has zeros on the diagonal),
(2) xA(s) = CAxR(s) and
(3) GA(s) = CAGR(s),

where CA is a set of rows from a permutation matrix of
appropriate size.

We call (WR(s), VR(s)) is the realization of (WA(s), VA(s)).2
Additionally, to simplify one’s network models one may
abstract away a network input (many things could moti-
vate the desire to remove or ignore a network actuator).
To do so we define a second form of abstraction.
Definition 5. (Input Immersion and Realization). An in-
put immersion of an LTI network model, (WR(s), VR(s)),
with input nodes uR(s), manifest nodes xR(s) and trans-
fer function GR(s), is a second LTI network model
(WA(s), VA(s)), with input nodes uA(s), manifest nodes
xA(s) and transfer function GA(s) where:

(1) WR is hollow (has zeros on the diagonal),

(2) uA(s) = CAuR(s) and
(3) GA(s) = GR(s)CT

A ,

where CA is a set of rows from a permutation matrix of
appropriate size.

We call (WR(s), VR(s)) is the realization of (WA(s), VA(s)).2

3.1 Structural Controllability and Observability of Dynamic
Networks and their Immersions

The graphical results characterizing structural controlla-
bility and observabillity (originating with the introduction
of structural control in Lin (1974)) do not extend to a
reasonable definition of structural control on general dy-
namic networks (a parallel argument for the failure of these
results to extend is given for networked dynamic systems
in Cowan et al. (2012)).

Indeed, when we define structural control to be the ex-
istence of edge dynamics that permit a structurally con-
trollable realization, we find that path connectedness is
the only notion required for structural control. However,
LTI systems that are not structurally controllable may be
represented (as abstractions) by Dynamic Networks that
are path connected.

To see that past graph results on structural controllability
do not directly carry over to LTI dynamic networks, ex-
amine the dynamic network given by the DSF in Example
1 and shown in Figure 1. When one examines the graph
topology of the DSF there appears to be a graph dilation,
which implies that structural controllability of the network
is impossible, a conclusion shown in Lin (1974). However,
when one examines the computational DNF, or the state-
space model which can be realized from the same network,
there is no dilation (due to the existence of a self-loop on
X3), and the system is therefore structurally controllable.

Alternatively, we can restrict our definition to constrain
the choice of edge dynamics with the same graph structure
and then consider if a realization of the current dynamics
is itself structurally controllable. But, even this working
definition has its issues. It still allows a network that
was derived from a structurally uncontrollable state-space
model to be realized as structurally controllable. See
Example 2 and Figure 3. Further restriction on which
realizations we may consider for structural controllability
is necessary.
Example 2. (Uncontrollable System, Controllable Real-
izations) Consider the structurally uncontrollable state-
space model

(A, b) = (

[
0 0
0 0

]
,

[
1
1

]
).

Taking the trivial immersion of the system results in,

(QA(s), PA(s)) = (

[
0 0
0 0

]
,

1

s

[
1
1

]
).

The transfer function of this immersion is: G(s) = P (s).
However, we may realize this system as an abstraction of
the system

(A,B) = (

[
0 0
0 0

]
,

[
1 1
1 0

]
),

which is clearly controllable (B is full row rank).
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Note that the transfer function of this controllable realiza-
tion,

GCR(s) =
1

s

[
1 1
1 0

]
,

has a higher Smith McMillan degree than that of the
original model with transfer function GA(s) = PA(s).
This difference in Smith McMillan degree motivates the
below definition of structural controllability of a dynamic
network. 2

Fig. 3. In this example we see that one network can be
derived from a structurally uncontrollable state-space
model, but also be the abstraction of a network that
was derived from a structurally controllable state-
space model (hence the same network is also derivable
from a structurally controllable state-space model).
We thereby justify holding the Smith McMillan De-
gree constant when considering state-space realiza-
tions of our abstractions.

A definition of structural controllability for dynamic net-
works needs avoid situations like that demonstrated in
Example 2. To avoid this issue we propose restricting the
set of admissible realizations to those which share the same
Smith McMillan degree. This will allow the realization
of a class of systems which captures the same dynamic
information as our network in a clear, tractable way.
Definition 6. (Structural Controllability). An LTI dy-
namic network, (WA(s), VA(s)), is structurally controllable
if there exists a structurally controllable computational
dynamic network function in the set of all possible real-
izations of (WR(s), VR(s)) which are of the same Smith-
McMillan degree of (WA(s), VA(s)). 2

Under any of the definitions we considered above (includ-
ing the one we chose) we cannot necessarily trust all the
basic graph conditions (see Figure 1) used to characterize
structural controllability on general LTI dynamic networks
because the model we reference may be derived from an
equivalent model with a more complex graph structure.
However, we can ask the question of when properties like
structural controllability carry over from realization to
immersion. As a prelude to some results that answer this
question we introduce the notion of a complete immersion
and an extraneous realization.

4. COMPLETE IMMERSIONS

We argue that not all network immersions are equal in
their effect on the resulting model. There are some immer-

sions which require no more than the removal of rows and
columns from WR(s) and rows from VR(s), and there are
some input immersions that require no more than removal
of some columns of VR(s). We will refer to these as in-
complete immersions. Incomplete immersions dramatically
obfuscate the structural controllability and observability
of dynamic networks by removing both structural and
dynamic information from the resulting model.

Complete immersions, on the other hand, preserve un-
derlying dynamics and, while they may appear to create
dilations in the network, loop dynamics are encoded on to
the edges and path connectivity is never disrupted.
Definition 7. (Complete Immersion). An (input) immer-
sion, (WA(s), VA(s)) is complete with respect to a subset
of nodes in wR(s), w∗

R(s), and a subset of nodes in uR(s),
u∗
R(s), if wA(s) contains all the nodes w∗

R(s) and uA(s)
contains all the nodes of u∗

R(s). 2

Fig. 4. An example of an incomplete and a complete
immersion with respect to the set of sink nodes of
the same computational DNF. When performing an
immersion we throw out the abstracted nodes (hence
the abstracted node is represented in gray). Note
that the complete immersion required the creation of
new edges. The dynamics corresponding to the edges
leading in to and out of Y1 are placed on the edges
p21(s) and p31(s) to maintain equivalent transfer
functions from the realization to the immersion. The
preservation of these dynamics on these new edges
keeps key information in the simplified model.

Example 3. (Complete and Incomplete Immersion).
Consider the state-space model given in Example 1.
We perform two distinct immersions on that state-space
model. The first with

CA =

[
1 0 0
0 1 0

]
and the second with CA =

[
0 1 0
0 0 1

]
.

The first is an incomplete immersion with respect to the set
of sink nodes. It results in the DSF (QI(s), PI(s)), where

QI(s) =
1

s

[
0 0
a21 0

]
, PI(s) =

1

s

[
b1
0

]
.

Note that Q1 and P1 are each submatricies of the Q and P
associated with the computational DSF of this state-space
system. This implies that no information from the edges
into and from Y3 have been included in this immersion.

The second is a complete immersion with respect to the
set of sink nodes. It results in the DSF (QC(s), PC(s)),
where
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QC(s) =

[
0 0
0 0

]
, PC(s) =

1

s2

[
b1a21
b1a31
s− a33

]
.

In this model the entries in PC are distinct from those of
P from the computational DSF. The edge weights in PC

have been modified to encode the dynamics of the entire
model. 2

By definition all input immersions are incomplete with
respect to source nodes.

5. RESULTS

Below we present preliminary results on the structural con-
trollability of immersions and realizations of LTI dynamic
networks.
Result 1. (Edge Weights in Incomplete Immersions). Any
single-node immersion, (WA(s), VA(s)), of an LTI dynamic
network, (WR(s), VR(s)), that is incomplete with respect
to sink nodes where CAwR(s) = wA(s) may always satisfy
WA(s) = CAWR(s)CT

A .
Proof Without loss of generality assume that we ab-
stract away the last node and it is a sink node. So

WR(s) has the block structure: WR(s) =

[
W11 0
W12 w22

]
,

with VR(s) =

[
V1

V2

]
, where W12 and V2 are row vectors.

So the transfer function of the realization is: GR(s) = (I −W11)−1V1
1

1− w22
(W12(I −W11)−1V1 + V2)

, while GA(s) = (I −

W11)−1V1. This may be achieved by an abstraction of the
form: WA(s) = W11(s) and VA(s) = V1(s). �
Result 2. (Edge Weights in Incomplete Input Immersions).
Any single-node input immersion, (WA(s), VA(s)), of an
LTI dynamic network, (WR(s), VR(s)), where CAuR(s) =
uA(s) may always satisfy VA(s) = VR(s)CT

A .
Proof Without loss of generality assume that we abstract
away the last input node. So VR(s) has the block structure:
VR(s) = [V1 V2], where V2 is a column vector. So the
transfer function of the realization is: GR(s) = (I −
WR)−1 [V1 V2], while GA(s) = (I−WR)−1V1. This may be
achieved by an abstraction of the form: WA(s) = WR(s)
and VA(s) = V1(s). �

Note that results 1 and 2 imply that in these cases
the Smith McMillan Degree of the network necessarily
decreases as poles in the transfer function associated with
the abstracted edges will not be used to compute any other
input-output relationship in the abstraction.
Result 3. (Complete Smith McMillan Degree). The Smith
McMillan degree of a single-node immersion (WA(s), VA(s)),
of a weakly connected LTI dynamic network, (WR(s), VR(s))
equals that of (WR(s), VR(s)) if and only if it is complete
with respect to its source and sink nodes.
Proof We prove the first direction by the contrapositive.
Assume that the immersion, (WA(s), VA(s)), is not com-
plete with respect to the set of source and sink nodes.
Without loss of generality assume that we abstract away
the last input node. So WR(s) has the block structure:

WR(s) =

[
W11 W12

W21 w22

]
and VR(s) = [V1 V2], where W12

and V2 is a column vector and W21 is a row vector. Then,

we have two cases. In the first case we have abstracted
away at least one source node, so W21 = 0. In the second
case we have abstracted away at least one sink node, so
W12 = 0. In both cases, results 1 and 2 imply that the
transfer function of the abstraction is of a lower Smith
McMillan degree than the original network.

Now assume that (WA(s), VA(s)) is a complete immersion
with respect to source and sink nodes of (WR(s), VR(s)).
Then, to preserve transfer function equivalence, all the
dynamics of the abstracted edges pass over to the transfer
function of the abstraction and so the Smith McMillan
degree is the same. �
Result 4. (Structural Control of Complete Immersions).
Complete immersions with respect to source nodes of a
structurally controllable LTI dynamic network are struc-
turally controllable.
Proof This is true because the Smith-McMillan degree of
the immersion is that of the realization and the immersion
and the immersion dynamics are consistent (the transfer
function entries are equal), so the realization may be
constructed from the immersion. Since that realization was
structurally controllable so is the immersion. �

Analogous results for structural observability may be ac-
quired by applying immersions to dynamic networks gen-
erated from the dual network.

6. CONCLUSIONS

We have explored the difference between networked dy-
namic systems and dynamic networks. We have high-
lighted how dynamic networks have an established theory
of abstraction which allows one to greatly reduce the
topological complexity of their use and of learning them
from data. However, the interpretation of the abstracted
model (especially immersions of the original model) may
have a significant difference in interpretation due to the
existence of shared hidden state. Regardless, such ab-
stractions preserve all of the predictive power of their
topologically complex realizations when they retain the
property of completeness. Specifically, we defined struc-
tural controllability of dynamic networks and noted how
completeness is a necessary requirement for preserving
structural controllability through the abstraction process.
This informed application of dynamic network abstraction
theory identifies how graph-based model topology simpli-
fication methods influences the interpretation of models of
networked dynamic systems.
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