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Abstract: Dynamic Networks are signal flow graphs explicitly partitioning structural infor-
mation from dynamic or behavioral information in a dynamic system. This paper develops
the mathematical foundations underlying this class of models, revealing structural roots for
system concepts such as system behavior, well-posedness, causality, controllability, observability,
minimality, abstraction, and realization. This theory of abstractions uses graph theory to
systematically and rigorously relate LTI state space theory, developed by Kalman and empha-
sizing differential equations and linear algebra, to the operator theory of Weiner, emphasizing
complex analysis, and Willem’s behavioral theory. New systems concepts, such as net effect,
complete abstraction, and extraneous realization, are introduced, and we reveal conditions when
acyclic abstractions exist for a given network, opening questions about their use in network
reconstruction and other applications.
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1. INTRODUCTION

Signal flow graphs have a rich history in the control liter-
ature. First introduced by Shannon, they were developed
and popularized by Mason resulting in Mason’s celebrated
Gain Formula, see Shannon (1993) and Mason (1952).
This technique enabled control engineers to compute the
transfer function from a particular input to a particular
output using easy-to-understand rules that exploited the
topological structure of the network of components com-
prising the system.

Later work eschewed this signal flow perspective, driven
especially by situations where there didn’t seem to be
natural definitions of inputs and outputs. This work,
dubbed Behavioral Control theory, focused on the idea
of systems as constraints and the resulting behavior of
admissible values manifest variables could adopt, see, for
example, Willems and Polderman (2013).

Nevertheless, the signal flow paradigm again appeared
with the emergence of dynamic networks, especially in
the context of network reconstruction: that is, identifying
the topology and dynamics of modules in the network
from data (Gonçalves and Warnick (2008)). Incorporating
various influences from information theory (Etesami and
Kiyavash (2014), Quinn et al. (2015), and Subramanian
et al. (2017)), computer science (Pearl (2014)), Bayesian
statistics (Koller and Friedman (2009)), and system iden-
tification (Dankers et al. (2014)), these methods revisited
the problem of characterizing signal flow in complex sys-
tems.

This paper takes a unique perspective to review some of
the most important results from the theory of dynamic

networks. Using graph theory as a vehicle to systematically
decouple structure and dynamics in the representation of
dynamic networks, this paper systematically builds the
theory of linear dynamic networks from basic definitions,
some of which are nonstandard and new to graph theory,
some of which are nonstandard and new to signal flow
graphs, and some of which are new to both. The basic
idea is that dynamics in the system appear through the
choice of algebraic field from which labels are chosen on
nodes and edges–all the graph results discussed here with
real-valued labels (for ease of exposition) become relevant
for dynamic networks when the field is changed to rational
functions of a complex variable.

In particular, contributions of this work include detailing
the structural roots behind key systems concepts such
as system behavior, well-posedness, causality, abstraction,
and realization. New results about the existence and
construction of acyclic abstractions are included, and
new concepts of the completeness of abstractions and
extraneousness of realizations that lay the foundation
for understanding the structural roots of controlabillity,
observability, and minimality are introduced. We end the
paper by asking how complete acyclic abstractions may
facilitate the reconstruction of complex cyclic networks.

2. FOUNDATIONS

Definition 1. A directed graph is a pair (V, E) where

• V, called the node set, is a finite, totally ordered set
and
• E ⊆ V × V is called the directed edge set.

Let n, called the order of the node set, be the cardinality
of V. 2
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Definition Summary

Node Labels and Edge Weights

Elements of an algebraic field, F. When F = R, the model
represents a standard weighted digraph. When F is the field of
rational functions over C then the model represents LTI
dynamic networks.

Well-Labeled Nodes Set of node weights that satisfies linear constraints imposed
by the edge weights.

Behavior of a Digraph The set of all well-labeled node labelings.
Well-Labeled Graph A graph whose behavior is constrained to be a unique value.
Ill-Labeled Graph A graph which is not well-labeled.

Net Effect The cumulative influence of node labels on each other. For
LTI dynamic networks this is the transfer function.

Bipartite Digraph A weighted digraph whose nodes are partitioned into two
subsets. All edges are directed from the “input” subset.

Open Digraph

A well-labeled graphical union of some digraph with a bipartite
digraph. Allows for an interpretation of edges as computational
dependence. DNFs, DSFs and LDGs are all special examples
of open digraphs.

Abstraction A representation of an open digraph with fewer internal edges
that shares behavior and nodes with the digraph it represents.

Realization The open digraph we represent with an abstraction.

Complete Abstraction An abstraction that preserves a subset of nodes; for example,
all sink and source nodes.

Extraneous Realization
A realization of a non-complete abstraction; in the above
example, this would be a realization with at least one
sink or source node missing in its abstraction.

Table 1. A table summarizing the novel/non-standard definitions in this paper.

Definition 2. An undirected graph is a simple directed
graph, (V, E), with an additional undirected edge symmetry
constraint, that if (vi, vj) ∈ E then (vj , vi) ∈ E . 2

Definition 3. The set of labels or weights, F, is any field
with field operations + and ·, where we use standard
multiplication notation for the · operation, however it
may be defined, and other standard notation, e.g. for the
additive and multiplicative identities, 0 and 1, respectively.
Definition 4. A weighted (un)directed graph is the pair,
(V, E), with labeling functions x and w, where:

• x : V → F that assigns exactly one value in F to every
element of V. Notice that x is an element of a vector
space x ∈ X , Fn, where vector addition and scalar
multiplication are defined pointwise.
• w : E → F that assigns exactly least one value in F to

every element of E . 2

There is a body of work concerned with constructing
labeling functions x and w to meet various properties,
cf. Gallian (2009), such as graph coloring problems, etc.
In some respects this work also focuses on labelings that
satisfy particular conditions related to the role of graphs
in modeling distributed computation.

2.1 Well-Labeled Digraphs, Net Effect, and Graph Behavior

Recall from Definition 1 that V is a totally ordered set.
This means that we may index nodes according to this
ordering. Let vi ∈ V be the ith node.
Definition 5. Given a weighted directed graph, (V, E , x, w),
the matrix W ∈ Fn×n, called the weighted adjacency
matrix, where

Wij ,

{
w(vj , vi) if (vj , vi) ∈ E

0 otherwise,
2

Usually it will be convenient to refer to a weighted
(un)directed graph as (V, E , x,W ) instead of (V, E , x, w).
Also, note that there are two types of zero entries in
W . First, a zero can arise because a potential edge is
not part of the graph, indicating “missing” edges. We call
these zeros structural zeros. On the other hand, a zero can
arise because an existing edge in the graph is labeled with
the value of zero; these are called non-structural zeros.
Although there is no way to distinguish these different
types of zero from W alone, E makes the difference clear.

Weighted (un)directed graphs can be effective models of
distributed computation when the structure of the graph
induces constraints on the admissible values of node and
edge labels. We accomplish this by choosing values of node
and edge labels from the same field, and interpreting the
interaction of nodes and adjacent edges in terms of the field
operations. In particular, admissible labelings are those
where the value of every node label equals a quantity
computed from the values of edges that target the node
and the values of nodes in their source sets.
Definition 6. The nodes of a graph D = (V, E , x,W ) are
well-labeled if they satisfy:

x = Wx. (1)
2

Definition 7. The behavior, B, of an nth order digraph
D = (V, E , y,W ) is a subset of Fn given by:

B(D) = {y ∈ Fn|y = Wy}. 2

Example 1. Multidigraphs and Behavioral Equivalence.
In some applications one may consider Multidigraphs, that
is, digraphs that admit multiple parallel edges between
the same pair of nodes, such as that in Fig. 1. In this
case we see that the node labels are subject to additional
constraints defined by the parallel edges, but the algebraic
properties of the edge labels enable the construction of
a behaviorally equivalent simple digraph with edge label
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Fig. 1. Multidigraphs (left) can be associated with nominal
digraphs with corresponding edge weights (right) such
that the graphs are behaviorally equivalent. This is
possible because of the algebraic properties of the
label set F.

wji equal to the sum of all the parallel edge labels from
node vi to node vj in the multidigraph. In this way the
simple digraph can be seen to have the same behavior as
the original multidigraph. 2

Some well-labeled digraphs will not interest us because
they will not constrain the node labels to take on unique
values.

In particular, note that rearranging the equation y = Wy
yields

(I −W )y = 0,

suggesting that any combination of labels y that happen
to form a vector in the null space of (I −W ) will not only
be in the behavior of D, but so will any scaling of y with
an arbitrary element of F. As a result, labelings such that
(I−W ) is not full rank admit multiple solutions y, leading
to the following definition.
Definition 8. A graph D = (V, E , y,W ) is said to be well-
labeled if (I −W ) is nonsingular and ill-labeled otherwise.
Also, we associate a matrix G , (I−W )−1, called the net
effect matrix, with every well-labeled graph D. 2

Example 2. Net Effect vs. Transitive Closure. If V is a set
with nmembers, then a binary relation,R, on V is a subset
of V × V , and thus is associated with a corresponding
digraph, D(R). The transitive closure of R, denoted R∗, is
the smallest extension of R that is transitive. Graphically
this means that if there is a path from any node vi to any
node vj in D(R), then there is a direct edge (vi, vj) in
D(R∗). The graph characterized by the net effect matrix
G of D(R) usually is D(R∗), but sometimes the weights
in G can cancel just right leaving a net effect of zero even
though paths between the relevant nodes exist.

Consider, for example, a weighted digraph characterized
by weighted adjacency matrix

W =

[
0 0 0

w21 0 0
w31 w32 0

]
(2)

with net-effect matrix:

G =

[
1 0 0

w21 1 0
w21w32 + w31 w32 1

]
. (3)

Thus we see that when w31 = −w21w32 then g31 = 0, that
is, the net effect matrix has an exact cancellation even

though there are paths from v1 to v3, indicating that the
transitive closure has an edge from v1 to v3. 2

Graphs with a well-defined net effect matrix are precisely
those that lay the foundation of our analyses. Although the
only admissible node labeling of such graphs in isolation
is y = 0, the fact that this is the unique solution satis-
fied by the graph operating on the node labels becomes
foundational to subsequent results.

2.2 Bipartite and Open Digraphs

A special kind of digraph that will play an important role
in this analysis is one that partitions its nodes into two
sets with edges emanating only from one to the other.
By treating the labels of source nodes as independent
variables and those of target nodes as dependent variables,
these structures introduce a particular meaning to the
directionality of edges in our models, as described below.
Definition 9. A digraph of order p + m,

DB = (V, E ,
[
y
u

]
,W ),

is said to be bipartite if its node set, V, can be partitioned
into two subsets, V = {Y,U}, with corresponding node
labels, y ∈ Fp and u ∈ Fm such that the corresponding
weighted adjacency matrix W has the structure:

W =

[
0 V
0 0

]
, suggesting

[
y
u

]
=

[
0 V
0 0

] [
y
u

]
.

• Note the overloading of notation, where y generally
represents all node labels but is also used to represent
one part of the partitioned labels in bipartite graphs.
• It is easy to see that every bipartite digraph is well-

labeled, since I −W will always be full rank.
• The second set of behavioral equations above, enforc-

ing that u = 0, is inconsistent with the interpretation
of u as independent variables. As a result, we only
enforce the first set, redefining the behavior of a bi-
partite digraph to be the set

B(DB) , {[y′ u′]′ ∈ Fp+m|y = V u}
for any value u, thus making admissible values for y a
well-defined linear function of the (arbitrary) values
of u. Similarly, the net effect matrix of a bipartite
digraph is simply V , characterizing how u effects y.
The matrix V is the upper right hand entry of (I −
W )−1.
• This interpretation of y as dependent variables and u

as independent variables implies:
· The behavioral equation y = V u inherits the
interpretation of assignment, not merely equality,
· Directionality of edges in the graph thus corre-
spond to computational dependence,
· It is reasonable to interpret u as inputs and y as
outputs in the graph,
· While the only behavior of a well-labeled digraph
is y = 0, a bipartite digraph’s behavior is an
r-dimensional subspace in Fp+m, where r is the
rank of V .

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

28



• We denote bipartite digraphs as

DB = (Y ∪ U , E ,
[
y
u

]
, V )

and identify properties of V with DB , specifically:
· When V is 1-1 we also call DB 1-1,
· When V is onto we also call DB onto. 2

Bipartite graphs allow the modeling of open systems by
relaxing constraints on u in the definition of their behavior
and treating them as independent variables driving the
behavior of y. This idea of an open system, driven by
independent variables u, can be generalized by considering
the graphical union of a (nominal, or closed) digraph with
a bipartite digraph.
Definition 10. A well-labeled, open (or just open for
short) digraph of order p + m is the graphical union of
a well-labeled (closed) digraph of order p and size N ≤ p2,
DC = (Y, EC , y,W ), and a bipartite graph of order p+m,

DB = (Y ∪ U , EB ,
[
y
u

]
, V ), yielding

DO = (Y ∪ U , EC ∪ EB ,
[
y
u

]
, [W V ]).

• We characterize the order of the open digraph, DO,
by the tuple, (p,m), and sometimes distinguish m as
the input order and p as the output order.
• The internal size of an open digraph is defined to be
N , the number of edges in DC .
• The net effect matrix of a well-labeled open digraph

is computed to be G , (I −W )−1V . The matrix G
characterizes how u affects y, and can be found as the

appropriate entry in the inverse of (I −
[
W V
0 0

]
).

• The behavior of the open digraph, DO, is given by
B(DO) , {[y′ u′]′ ∈ Fn+m|y = (I −W )−1V u}. 2

· Characterizing behavior of the open digraph is
only possible when the digraph is well-labeled,
ensuring that the relation between y and u has a
unique solution.
· Like in bipartite graphs, the behavior of a well-
labeled open digraph is an r-dimensional sub-
space in Fp+m, where r is the rank of the matrix,
G12 = (I −W )−1V .
· Interpretation of u as an independent variable
and y as an observed variable suggests direction-
ality of edges in the graph correspond to com-
putational dependence, and even the edges in W
inherit this interpretation from DB .

Different combinations of W and V may yield the same
net effect and behavior. For simplicity, we often may refer
to DO, by (y, u,W, V ) or just (W,V ), called the network
function, or sometimes the dynamic network function (i.e.
DNF) when F is a functional field, e.g. rational functions
of a complex variable. Dynamic network functions where
V = I and inputs u are (unobserved) independent random
processes are referred to as linear dynamic graphs (LDG)
by Materassi and Salapaka (2012).

Sometimes we only consider network functions with no self
loops, suggesting the diagonal elements of W are necessar-
ily zero. In this case we use the notation (Q,P ) for (W,V )
and call the pair (Q,P ) the structure function or the

dynamical structure function (i.e. DSF) when appropriate.
Dynamical structure functions for which the inputs are not
observable are also called linear dynamic influence models
(LDIM) after the work of Materassi and Salapaka (2019).

We often slightly abuse notation by using the network
functions, i.e. (W,V ), or (Q,P ), or (Q, I), to refer to the
open digraph characterized by these parameters. More-
over, notice that every well-labeled open digraph,

DO = (Y ∪ U , EC ∪ EB ,
[
y
u

]
, [W V ])

characterizes an associated bipartite digraph over the same
input and output node sets, given by:

DB = (Y ∪ U , EC ∪ EB ,
[
y
u

]
, (I −W )−1V ).

These digraphs share the same net effect and behavior,
leading naturally to the notions of compatibility, abstrac-
tions and realizations of open digraphs.

2.3 Digraphs as Models of Dynamic Systems

Digraphs are effective models of linear dynamic systems
when one chooses F to be a functional field, such as rational
functions of a complex variable. In this case, values of node
variables should be understood as the Laplace transform
of the corresponding value of of the node variable as a
function of time, and values of edge weights should be
interpreted as the transfer function of the corresponding
single-input, single-output dynamic system. In this way
digraphs can represent dynamic systems in the frequency
domain, and their net effect matrix is each system’s
corresponding transfer function matrix.

Alternatively, one could choose F to be the set of time
distributions obtained as the inverse Laplace transforms
of rational functions, with multiplication understood as
convolution. Then the digraph would represent a dynamic
system in the time domain, and its net effect matrix
becomes the system’s convolution kernel matrix.

Thus we see that the graph formalism described here
enables a study of the structural properties of systems,
regardless of details about whether the model is defined
over the frequency domain or the time domain, or whether
the system is dynamic or not, or stochastic or not, etc. As
long as the labels belong to a field, all of the properties
derived here, and in the subsequent analysis, will hold.

3. ABSTRACTIONS AND REALIZATIONS

Open digraphs include closed and bipartite digraphs as
special cases, and thus they become the focus of our
analysis. For example, a closed digraph characterized by
adjacency matrix W is well modeled by an open digraph
with network function (W, I), where I is the appropriate
sized identity matrix. We see here that in both cases the
net effect is given by (I −W )−1. Similarly, a bipartite di-
graph characterized by adjacency matrix V is well modeled
by an open digraph with network function (0, V ), as both
will have the same net effect matrix, given by V . The key
to modeling one system with another is that the net effect,
and hence the behavior, is preserved.
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Spectrum of Abstractions

Fig. 2. A dynamic network (i.e. “Original"), character-
ized by the DNF, (W,V ), generates a rich spectrum
of abstractions, characterized by fewer internal (i.e.
blue) edges. The most extreme of these abstractions
is a unique bipartite network, the black box repre-
sentation of the system, characterized by the DNF,
(0, (I −W )−1V ) and no internal (i.e. blue) edges.
Along the way are (generally) both cyclic and acyclic
abstractions; examples of each are shown.

Given any network function, (W,V ), there are many other
combinations, (W̄ , V̄ ), that characterize the same behav-
ior. We think of these digraphs as different computation
structures that result in the same behavior, the way a
transfer function and its different state-space realizations
all have the same input-output behavior.

In particular, notice that given any network function,
we can form a spectrum (see Figure 2) of behaviorally
equivalent network functions spanning from the original to
its unique digraph with minimal internal structure, given
by (0, (I − W )−1V ). Every step along this spectrum is
characterized by the number of internal edges, preserved
from W , which leads us to the notions of abstraction and
realization.
Definition 11. (Abstraction and Realization). Given two
open digraphs characterized by DR = (WR, VR) and DA =
(WA, VA), DA is an abstraction of DR if:

(1) (Nodes) DA’s input and output node sets are (not
necessarily strict) subsets of the input and output
node sets of DR,

(2) (Behavior) The net effect of DA equals the appropri-
ate submatrix of the net effect of DR, and

(3) (Internal Size) the internal size (i.e. number of inter-
nal edges, see Definition 10) of DA is strictly less than
the internal size of DR.

When DA is an abstraction of DR, then DR is called a
realization of DA. 2

One way to characterize the three points of the definition
of an abstraction is through full row-rank matrices Cy

and Cu, whose rows are orthogonal indicator vectors.
Then, given open digraphs DR = (yR, uR,WR, VR) and
DA = (yA, uA,WA, VA), DA is an abstraction of DR if:

(1) CyyR = yA, CuuR = uA,
(2) Cy(I −WR)−1VRC

T
u = (I −WA)−1VA and

(3) NA < NR.

When Cy and Cu are appropriate sized identity matrices,
we see that (0, (I − WR)−1VR) is a special abstraction,
because it is 1) unique, 2) bipartite, and 3) an abstraction

of all other abstractions of DR, making it the “most ab-
stract” of all. This “black box” representation of the system
grounds the spectrum of behaviorally equivalent networks
constructed as subgraphs from the original digraph.

We finally note that the above definition and characteriza-
tion of abstraction is consistent with a number of network
abstractions discussed in the literature. For example,

(1) An edge abstraction is an abstraction where Cy and
Cu are both square,

(2) A node abstraction is an abstraction where Cy and/or
Cu are not square,

(3) A hollow abstraction is an edge abstraction where WA

is a hollow matrix,
(4) An immersion is a node abstraction followed by

a hollow abstraction, if necessary, to end up with
no self-loops. See Woodbury (2019), Dankers et al.
(2016), Dankers et al. (2017), Linder and Enqvist
(2017), and Woodbury and Warnick (2019) for more
details on these abstractions.

3.1 Complete Abstractions and Extraneous Realizations

Abstractions provide a systematic way to produce struc-
turally simplified representations of complex systems. Nev-
ertheless, they can retain full information about the sys-
tem’s effect, but not all do. This section details one of the
most important property of abstractions: completeness.
Definition 12. An abstraction, DA = (yA, uA,WA, VA)
of DR = (yR, uR,WR, VR) is complete with respect to y∗R
and u∗R, where y∗R is a subset of nodes in yR, i.e. y∗R ⊂ yR,
and u∗R ⊂ uR, if yA contains all the nodes y∗R and uA

contains all the nodes in u∗R. 2

When an abstraction, DA, of a given network DR is
complete with respect to all nodes uR and all the sink
nodes in yR, then we say it is a complete abstraction, and
DR is a non-extraneous realization of DA. If DA is not
a complete abstraction of DR, then DR is an extraneous
realization of DA.

The basic intuition about complete abstractions is that
information about the edges in the original network is
never entirely lost in the abstraction process; it is only
compressed and moved around within the network. On the
other hand, extraneous realizations of a network add new
edge information that was lost in the given network as an
abstraction of these realizations.

For example, consider Figure 3. Suppose DR is the original
network with DB and DC as two separate abstractions.
The weighted digraph DB is a complete abstraction; note
that the resulting edge weight of the single edge in the
abstraction contains information from both of the realiza-
tion’s edges (A,B) = a and (B,C) = b. However, the edge
weight in the abstraction DC , which is not complete, con-
tains no information about edge (B,C) from the original
network, DR.

Non-extraneous realizations are critical to understanding
network minimality. If the realization of a network is
extraneous, it has introduced additional (hence extrane-
ous) information into the network that was not present
in the original network. Thus, a minimal network realiza-
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Fig. 3. A network DR with an abstraction that is complete
(DB) and an abstraction that is not complete (DC).

tion must necessarily be non-extraneous, see Johnson and
Warnick (2020).

4. ACYCLIC ABSTRACTIONS

Abstractions are structurally simplified representations of
systems that preserve net effect, or the behavior of the
system. One way to simplify the structure of a system
is to remove cycles, resulting in an acyclic abstraction.
Acyclic structures are critical for many graph algorithms,
and so developing acyclic abstractions may be a first step
in applying such algorithms to dynamic systems. This
section details when such abstractions can be constructed,
when they’re complete, and how to build them.

4.1 Acyclic Subgraphs of Digraphs

Definition 13. A directed acyclic graph (DAG) is a
weighted digraph D which admits a node ordering so that
the adjacency matrix of D is lower triangular. 2

Definition 14. Any node in a digraph, v′ ∈ V, such that
∀v ∈ V, (v, v′) 6∈ E , is a source node. 2

Definition 15. An arborescence is a connected, directed
acyclic graph, D′, in which any two nodes are connected
by at most one path with only one source node, called the
root node. 2

DAGs lend themselves to a number of applications such as
allowing one to preform a topological sort on the network,
to execute special algorithms such as belief propagation,
and to conduct critical path analysis. The problem of
deriving the largest acyclic subgraph of an arbitrary graph,
D (referred to as the maximal acyclic subgraph problem),
has been proven to be NP-hard, see Karp (1972). Some
focus in the literature has been to derive polynomial time
techniques for choosing a subgraph with proven bounds
on the number of remaining edges, see Berger and Shor
(1990), Hassin and Rubinstein (1994) and Charikar et al.
(2007).
Definition 16. A digraph spans node set V if there exists
a node, v′ ∈ V for which there is a path from v′ to every
other node in V.
A spanning subgraph of digraph, D, is a digraph, D′ so that
V = V ′, E ⊂ E ′ and D′ spans V. 2

Another existing class of acyclic subgraph finding prob-
lems is that of finding the minimal spanning arborescence.
This problem is source centered, one chooses a root node of
a graph and then computes an arborescence which spans
the node set from which there are paths from the root
node. This is the digraph version of the minimal spanning

tree problem. It has had a polynomial solution since the
1960’s, see Chu (1965) and Edmonds (1967).

4.2 Single-Source Open Digraphs and DAG Subgraphs

Given a closed digraph, D∗, we choose a node, v′, and then
attach an input node, v0, with a weight 1 edge, making an
open digraph. We call it D.
Definition 17. A single-source open digraph of a closed
digraph, D∗, is a closed digraph, D, which consists of D∗
composed with a single input node, v1 attached to a single
node, v′ ∈ V∗ by a single unit-weight edge. 2

In this section we consider a DAG subgraph D′ ⊂ D in
which v0 is the only source node. This resulting digraph
shares node labels and its edges are a subset of the edges
of D. We demonstrate that when there is a path from v0
to every other node in D′ that there exists a labeling of
the edge weights in D′ which makes D′ an abstraction of
D.

4.3 Directed Acyclic Abstractions

Once we have chosen our acyclic subgraph, D′, we consider
if it is possible to choose weights so that the net effect of
D′ equals the appropriate column of the net effect of D.
Lemma 1. Every spanning subgraph arborescence of a
single-source open digraph has a labeling which makes its
net effect equal to the appropriate column of the net effect
of the open digraph. 2

Proof Let E be the set of edges in the original open di-
graph, and let E ′ be the subset of the edges in the spanning
subgraph arborescence. We note that the source node of
the open digraph is the root node of the arborescence.

We now choose the weight of each edge in E ′ as follows. We
start by choosing the weight of every edge (v1, vj1) where
vj1 is distance 1 from v1 to be Gj11. Thus, W ′j11 = Gj11.

We then assign each link from v1 to vj2 where vj2 is
distance 2 from v1 to be: W ′j21 =

Gj21

Gk1
. Where k is the

index of the node so that (vk, vj2) is in the unique path
from v1 to vj2 .

We repeat this process until we have reached the set of
nodes of maximal finite distance from v1.

At this point we have that, for any index k, if we let j
the distance of vk from v1 and mi be the index of the ith

vertex on the unique path from v1 to vk, then

G′k1 =

j∏
i=1

Gmi+11

Gmi1
= Gk1

and so G = G′. �
Theorem 1. Every spanning subgraph DAG of a single-
source open digraph has a labeling which makes its net
effect equal to the appropriate column of the net effect of
the open digraph. The resulting DAG with this labeling is
an abstraction of the original digraph. 2

Proof We note first that every spanning subgraph DAG
has a subset of edges which constitute a spanning subgraph
arborescence. We partition the set of edges in the spanning
subgraph DAG into this subset and the remaining edges.
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Let E be the set of edges in the original open digraph, and
let E ′ be the subset of the edges in the spanning subgraph
DAG.

Furthermore let E∗ be the edges which are part of the
spanning arborescence rooted at vi and let Ė be the rest
of the edges in E ′.
Begin by adding all the edges in E∗ and choose their
weights as in the proof of Lemma 1 so that G′ = G. At
this point we add, one at a time, the edges of, Ė . Each
time we add an edge, call it (vs, vt), we first calculate the
weight of (vs, vt) to be 1

es
, where es is the (current) net-

effect of vi on vs (a finite sum of products, since we are
working with a DAG) and then, recursively recalculate the
weight of each edge (vs1 , vt1) ∈ Ė − {(vs, vt)} the same
fashion including recalculating the weight of each edge in
(vs2 , vt2) ∈ Ė −{(vs, vt), (vs1 , vt1)} and so on and so forth.
The recursion will never result in circular dependencies as
the graph is a DAG. Thus in each iteration we preserve
the relation that G = G′. �
Corollary 1. Every spanning subgraph DAG of an open
digraph has a labeling which makes it an abstraction of
the open digraph. 2

Proof We simply note that every spanning subgraph
DAG with a labeling which makes its net effect equal to the
appropriate column of the net effect of the open digraph
fulfills the definition of an abstraction. �

4.4 DAG Abstractions and Conditions on Completeness

We now return to the DAG abstraction defined in Section
4 discuss completeness of such abstractions. We note that
DAG abstractions are edge abstractions, meaning that C1

and C2 are both square.
Theorem 2. (Completeness of DAG Abstractions). A
spanning subgraph DAG abstraction with a path from
the source node to every other node in the digraph is
complete. 2

Proof Let WR and WA represent the weighted adjacency
matrices of the original single-source weighted digraph and
the DAG abstraction respectively. With HR the net effect
matrix of the original digraph.

There is only one source node in the DAG abstraction, v1.
For every entry [WR]ij there exists one entry in HR which
is a function of [WR]ij . Since there is a path from v1 to
every other node in the DAG abstraction, for all index
k, there exists at least one edge in the DAG abstraction
whose corresponding label in WA is a function of [GR]k.
Therefore, for all [GR]ij there is at least one entry of
WA which is a function of [WR]ij and the abstraction is
complete. �

The following result is a consequence of Theorem 1. It
implies that every dynamic network spanned by a DAG
has an abstraction whose edges match those of said DAG.
Corollary 2. Given any source node of a DSF there
exists a single-input DAG abstraction of the DSF which is
complete with respect to all nodes spanned by the source
node. 2

Fig. 4. On the left is a dynamic network and on the right a
single-input DAG abstraction. Note that the graphical
union of all three such abstractions includes all edges
in the original network.

Fig. 5. On the left is a dynamic network and on the
right are its two single-input DAG abstractions. Note
that their graphical union does not include all loop
dynamics.

5. CONCLUSION

This paper demonstrated how open digraphs can represent
dynamic networks through careful choice of algebraic field
from which to draw node and edge labels. New notions of
net effect and behavior were introduced, leading to defi-
nitions of abstraction and realization and the associated
spectrum of abstractions, effectively linking (in the case
of linear time invariant dynamic networks) state space
realizations to their transfer functions.

Completeness of abstractions was also defined, along with
the associated concept on non-extraneous realization, and
graphical characterizations of these properties were given.
These notions were argued to be essential for minimality
and their associated concepts of controllability and ob-
servability of a network, although these ideas are detailed
elsewhere (see Johnson and Warnick (2020)).

Finally, directed acyclic graphical abstractions were in-
troduced. Methods for generating DAG abstractions, and
conditions for their completeness, were also given.

Note that the structural information contained in each
single-input DAG abstraction can be combined to infer
several acyclic structures. In some cases, the combined
information reveals the entire topology. Figure 4 illustrates
this point for a ring structure. In others (see Figure 5) some
or none of the cyclic structure may be inferred.

Previous work has given passive data-driven algorithms
for the reconstruction of acyclic networks (see Materassi
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and Innocenti (2010), Materassi and Salapaka (2012) and
Materassi and Salapaka (2013) for such work on LDGs).
However, there are strong indications that such techniques
when used on a network with cycles need not reconstruct
a true DAG abstraction of the network (see, for example
Chetty and Warnick (2015)).

Thus we pose to two related questions for future work:

(1) What information regarding cyclic structure can be
acquired from complete acyclic abstractions of a dy-
namic network?

(2) To what extent can acyclic reconstruction techniques
give us true acyclic abstractions of a reconstructed
cyclic network?
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