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Abstract: In recent years, emotion recognition has attracted increasing interest from researchers from 

diverse fields. Because of their intrinsic correlation with emotions, physiological signals based emotion 

recognition method is not susceptible to the so-called social masking and thus more objective than 

traditional visual, audio or text data based methods. In particular, EEG signals are more responsive to 

emotion fluctuations than other peripheral physiological signals. In this paper, a 4-class EEG-based 

emotion classification problem is considered. Firstly the subjective data clustering is performed to 

identify the optimal number of emotional states. Then wavelet and nonlinear dynamics analyses are used 

to extract EEG features of emotions. Finally, we consider the brain areas for emotion generation and 

show that the use of only a small number of EEG electrodes placed on the frontal area of scalp can 

achieve a 4-class emotion classification accuracy of higher than 90%. 

Keywords: Emotion recognition; Electroencephalogram (EEG) signals; Wavelet; Nonlinear dynamics; 

Feature dimensionality reduction. 



1. INTRODUCTION 

Emotion recognition is a key component of affective 

computing. It is an interdisciplinary field that integrates 

computer science, psychology, neuroscience and cognitive 

science. Human emotions can be identified by facial 

expression, speech, behavior, or physiological signals 

(Petrushin, 1999; Anderson and McOwan, 2006; Pantic and 

Rothkrantz, 2000; Yin, Zhao and Wang et al., 2017). 

However, the first three methods of emotion recognition are 

somehow subjective. For instance, the subjects under study 

may deliberately conceal their true feelings, which may be 

inconsistent with their performance. In contrast, the emotion 

recognition by means of physiological signals is more 

reliable and objective (Wang, Nie and Lu, 2014). EEG 

signals are generated by the central nervous system (CNS) 

and respond more rapidly to emotional changes than other 

peripheral neural signals. Moreover, EEG signals have been 

shown to provide important features for emotional 

recognition (Petrantonakis and Hadjileontiadis, 2011; Li et 

al., 2009).     

Picard and her associates from the MIT collected four types 

of physiological signals (electromyography, pulse rate, 

galvanic skin response, and respiration) to recognize eight 

emotional states (Picard, Vyzas and Healey, 2001). They 

extracted the time- and frequency-domain features from those 

physiological signals respectively. The feature selection was 

performed by forward floating search method, Fisher 

projection method and the hybrid algorithm of the two. 

Finally, the KNN algorithm is used to perform classification. 

The results showed that the 3-class (anger, sadness, and 

happiness) classification accuracy achieved 88.3%, 

demonstrating the feasibility of using the physiological 

signals for emotional state recognition. Brady, Gwon, and 

Khorrami et al. (2016) used visual and auditory cues to 

induce emotion, collected four types of physiological signals, 

namely temperature, galvanic skin response, blood volume 

fluctuation, and electrocardiogram (ECG), and achieved an 

average classification accuracy of 61.8%. Chanel, Kronegg, 

and Grandjean et al. (2006) used the international emotional 

picture system to induce emotions in the subjects, and 

performed 100 high arousal and low arousal emotion 

induction on the four subjects, and recorded the EEG, blood 

pressure, and skin conductance response of the subjects. 

Heart rate, skin temperature and respiratory signals were 

extracted, and linear discriminant analysis and naive Bayes 

were used for emotion recognition. A classification accuracy 

of about 55% was reported. Koelstra, Mühl and Soleymani et 

al. (2012) used music video clips as stimulating material, 

instructing each of the 32 subjects to watch 40 pieces of 

music video material, and recorded the self-report (subjective 

ratings), facial expression, EEG and peripheral physiological 

signals. A classification accuracy of 0.67.7% was achieved. 

Schmidt and Trainor (2001) used music to induce four 

emotions and found that when using positive musical 

materials, the EEG activity in the frontal areas of left 

hemisphere was enhanced, while the EEG activity in the 

frontal areas of right hemisphere is enhanced when using the 

negative music materials. They concluded that there is a 

strong correlation between the frontal areas of human brain 

and the emotion. Wagner, Kim and Andre (2005) collected 

four types of physiological signals (ECG, galvanic skin 

response, EOG, and respiration). Three feature selection 

methods were compared, namely variance analysis, Fisher 

projection method, and sequence forward drifting selection 

algorithm. Three classifiers, namely K-nearest neighbor, 

linear discriminant analysis, and multi-layer perceptron, were 

used to identify the four emotions of joy, happiness, anger 
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and sadness, and encouraging classification results were 

achieved. 

In this paper, we study the emotion recognition problem 

using EEG signals with an aim to analyze the complex 

correlation between EEG signals and emotional states in 

humans. Firstly, the subjective-rating data were clustered to 

determine the target emotion classes. Then we perform 

feature extraction based on wavelet and nonlinear dynamics 

analyses of the EEG signals. Finally, in order to find the 

brain areas that are most relevant to emotions and to select 

the optimal number of EEG electrodes, we use the mRMR 

and Relieff algorithms to rank the importance of electrodes 

on brain topography. 

2. DATASET AND EEG SIGNAL PROCESSING 

2.1  Emotion Elicitation Experiment and Signal Acquisition 

In this section, the DEAP database is described. Based on the 

2D model of emotions, Koelstra, Mühl and Soleymani et al. 

(2012) used 40 music videos to elicit emotions of 32 subjects 

(half male, half female; aged between 19 and 37 with mean 

of 26.9 y/o) and recorded their physiological signals and 

facial expressions. There were 40-channel physiological 

signals, including 32-channel EEG and 8-channel peripheral 

physiological signals (such as galvanic skin response, 

respiration, skin temperature, ECG, blood volume, EMG, and 

EOG). The experimental procedure is shown in Fig. 1. 

There were 40 trials of emotional stimulation experiment for 

each subject (each trial corresponding to watching one of the 

40 music video clips). Each trial consists of four steps: 

Step 1: Before each video starts, display the video number for 

2 s. 

Step 2: Record the 5s baseline EEG data. 

Step 3: Play the 1-min music video. 

Step 4: Collect subjective ratings on four rating scales: 

arousal, valence, liking, and dominance. 

The flowchart of EEG-based emotion recognition algorithms 

is shown in Fig. 2. 

2.2  Data Preprocessing 

EEG signals respond to the change of emotional state more 

rapidly than other peripheral physiological signals, therefore 

in this paper we focus on using EEG signals for emotion  

classification. In the data acquisition experiment, the original 

EEG signals were collected at a sampling rate of 512 Hz and 

then down-sampled to 128 Hz. The EOG artifact is removed 

from the EEG recordings by using a 4 - 45 Hz band-pass 

filter. The pre-processed EEG data includes the 60s emotion-

related EEG data (during music video watching) and 3s 

baseline data (prior to watching the music video). Subjects 

were asked to take 2min break after watching two videos. 

The pre-processed EEG data includes emotion-related and 

baseline (emotionless) EEG data. In order to minimize the 

influence of the previous stimulus material on the current 

emotional state and the effect of cross-subject variability of 

physiological signals, the pre-stimulus baseline EEG features 

(prior to the emotional stimulation) are subtracted from the 

post-stimulus EEG features and the resultant differences are 

normalized within the unit interval [0, 1]. 

 

 

Fig. 1. The procedure of emotion induction experiment. 

 

 

Fig. 2. Flowchart of EEG-based emotion recognition system. 

The 60s EEG signal is segmented into 15 equal, non-

overlapping segments. Here, 4s is taken as the length of the 

time window. After such processing, the number of samples 

is 40*15=600 per subject. For 32 subjects, 32*600=19200 

samples are available.  

In most previous studies, the number of emotion classes is 

usually small. For example, in the DEAP-based emotion 

recognition, many studies focused on the binary (positive vs. 

negative valence or high vs. low arousal) classification 

problem and obtained the target emotion labels by hard 

threshold of subjective data (Yin, Zhao and Wang et al., 

2017; Petrantonakis and Hadjileontiadis, 2011; Daimi and 

Saha, 2014; Yoon and Chung, 2013). In order to determine 

reliably the target emotional classes, we use the following 

method. By performing k-means clustering of subjective 
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ratings on the arousal and valence rating scales, we can 

determine the target emotion class for each data point on the 

2D (arousal and valence) emotion plane. The clustering 

results are shown in Fig. 3. Fig. 4 shows the 2D emotion 

plane, where LV represents low valence (negative emotion), 

HV represents high valence (positive emotion), LA 

represents low arousal, and HA represents high arousal. The 

cluster centers when k=4 are given in Table 1. 

 

Fig. 3. The k-means clustering result. 
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Fig. 4. A two-dimensional model of emotions. 

When k-means algorithm is used for clustering, it is 

necessary to set the initial clusters. The setting of the initial 

cluster centers is mainly based on two considerations: 1) 

whether the target classes obtained by data clustering can be 

reasonably explained by the two-dimensional emotion model, 

i.e., the clusters obtained can be found on the 2D emotion 

plane; 2) the Silhouette coefficient (Rousseeuw, 1987) is 

used to evaluate the clustering performance since the true 

labels of clusters are unknown. 

The Silhouette coefficient is defined by: 

  
max( , )

b a
S

a b


                                       (1) 

Where a represents the average distance of the sample from 

other samples in the same cluster, b represents the average 

distance of the sample from all samples in the closest 

(different) cluster, S denotes a measure of the clustering 

quality. Generally, the larger the S, the higher the clustering 

quality. 

Fig. 5 depicts the Silhouette coefficient and the 

corresponding sum of squared errors (SSE) when the value of 

k is varied from 2 to 8. It can be seen that the largest 

Silhouette coefficient (0.42) is reached when k=3 and the 

second largest Silhouette coefficient is 0.40 when k=4. On 

the other hand, the two-dimensional emotion plane can be 

divided into four types of emotions by the threshold method. 

Therefore, the number of clusters is set as 4. 
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Fig. 5. The Silhouette coefficient. 

3. EEG FEATURE EXTRACTION 

In this work, we use two methods for EEG feature extraction: 

one is wavelet transform (time-frequency analysis) and 

another is nonlinear dynamics analysis (approximate entropy 

and sample entropy). 

3.1  Wavelet Transform 

Wavelet decomposition is a typical and practicable time-

frequency analysis method. It is a localized analysis method 

based on time window and frequency window. The EEG 

signal is non-stationary and is characterized by slow change 

of the lower-frequency components and fast variability of the 

higher-frequency components, so wavelet transform is ideally 

suited to its signal analysis. The multi-scale analysis of EEG 

signals using wavelet transform allows for the EEG signal to 

exhibit both details and approximations at different wavelet 

scales. By wavelet decomposition of EEG signals, a series of 

wavelet coefficients can be obtained at different scales. These 

coefficients can completely describe the characteristics of the 

signal and thus can be used as a feature set of the signal. 

For EEG signal from each channel, three features are derived 

from the wavelet coefficients of each sub-band, including 

wavelet energy (the sum of squared wavelet coefficients of 

each order), wavelet energy ratio (the ratio of each sub-band 

energy in the total energy of all sub-bands), and wavelet 

entropy which are defined as follows: 

 wavelet energy:  
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3.2  Nonlinear Dynamics Analysis 

EEG signals are highly complex and nonlinear. In recent 

years, nonlinear dynamics analysis (e.g., entropy and other 

complexity measures) has been widely used in the analysis of 

EEG signals (Zhang, Wang and Fu, 2014; Vijith, Jacob and 

Iype et al., 2016; Guido, 2018). Among them, two nonlinear 

dynamics methods, approximate entropy and sample entropy, 

are important tools for quantifying the complexity of time 

series (Zhang, Chen and Wang, 2019).  

3.3  EEG Feature Reduction/Selection 

Dimensionality reduction of EEG features is an important 

step in EEG-based emotion recognition. Selecting an 

effective feature reduction and selection algorithm can 

improve not only the efficiency of model training, but also 

the accuracy of model prediction. Feature reduction and 

selection is usually required to: 1) help with data 

visualization and understanding; 2) reduce the training time 

of the model; 3) overcome the curse of dimensionality, 

thereby improving the model prediction performance (or 

generalizability). 

The EEG signals has 32 channels, the signal from each 

channel is decomposed into five levels, and the wavelet 

coefficients corresponding to the five frequency bands are 

obtained. Then three features are derived using wavelet 

coefficients: wavelet energy, wavelet energy ratio, and 

wavelet entropy. If the features of all frequency bands are 

considered simultaneously, the dimensionality of the 

wavelet-based feature vector is 32*5*3=480, whereas the 

feature dimensionality of each frequency band is 32*3=96. 

Similarly, if the ApEn and SampEn are used simultaneously 

in the feature set, the nonlinear dynamics feature 

dimensionality is 32*2=64. Based on our recent work 

(Zhang, Chen, Nichele and Yazidi, 2019; Zhang, Chen and 

Wang, 2019), we will compare three dimensionality 

reduction algorithms (KSR, LPP, and PCA) and two feature 

selection algorithms (mRMR, Relieff) on EEG features. Here 

PCA is used as a reference for comparison of other 

algorithms. The kernel spectral regression (KSR) 

discriminant analysis algorithm is very effective when 

dealing with big massive data (Cai, He and Han, 2011). 

3.4  Random Forest (RF) Classifiers 

In order to obtain accurate recognition, we adopt the ML 

classifier, random forest (RF). RF is a classifier formed by 

combining decision trees. It is an ensemble learning 

algorithm based on the idea of bagging. The output of RF is 

determined by voting of all decision trees (Breiman, 2001). 

4. EMOTION RECOGNITION USING SELECTED EEG 

ELECTRODES 

This section discusses the brain regions that are most 

correlated to emotions, with an aim to use fewer EEG 

electrodes to achieve satisfactory emotion classification. In 

Sect. 4.1, the EEG measurement electrodes were grouped 

according to different brain regions where they fall in. EEG 

features were extracted from each group of electrodes (placed 

on a distinct brain region) and then emotion classification 

were performed. In Sect. 4.2, all the 32 electrodes are ranked 

according to their relative importance quantified by the 

feature selection algorithms. The visualization of the relative 

importance of the electrodes on brain topography allows for 

identification of the brain areas that are mainly responsible 

for generating emotions. 

4.1  Emotion-relevant Brain Areas 

Physiological studies showed that the cerebral cortex is 

primarily responsible for the high-level emotional function in 

humans. The cerebral cortex can be roughly divided into 

frontal lobe, parietal lobe, occipital lobe and temporal lobe. 

The task here is to find the brain areas that are closely 

relevant to emotions through EEG-based emotion 

recognition. The 32 EEG electrodes are grouped according to 

the respective cerebral cortex where they are distributed. The 

placement of the electrodes is shown in Fig. 6, where red 

ones are distributed on the frontal cortex, green ones on the 

parietal cortex, blue ones on the occipital cortex, yellow ones 

on the temporal cortex, and squares on the central area. The 

specific electrode groups are shown in Table 1. 

 

Fig. 6. The groups of EEG electrodes. 

From Fig. 7, we can see that despite the use of partial 

channels of EEG, the emotion classification accuracy is 

acceptable. If only comparing the five brain regions of 

Frontal, Parietal, Occipital, Temporal, and Central, we can 

find that the classification accuracy of the frontal cortex 

group is the highest. Nonetheless, as there are different 

number of electrodes placed on different brain regions, it is 
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hard to determine the brain regions that are most relevant to 

emotions only by comparing the emotion classification 

accuracy. We will select the most dominant EEG electrodes 

by an importance ranking procedure in next section. 

Table 1. Brain areas and the groups of EEG electrodes. 

Area No. (sub)groups of electr. 

Frontal 13 Fp1,Fp2,AF3,AF4,F7,F8,F3,Fz,F4,FC5,FC1,FC2,FC6 

Frontal_1 2 Fp1, Fp2 

Frontal_2 2 AF3, AF4 

Frontal_3 5 F7, F3, Fz, F4, F8 

Frontal_4 4 FC5, FC1, FC2, FC6 

Parietal 9 CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8 

Parietal_1 4 CP5, CP1, CP2, CP6 

Parietal_2 5 P7, P3, Pz, P4, P8 

Occipital 5 PO3, PO4, O1, Oz, O2 

Occi._1 2 PO3, PO4 

Occi._2 3 O1, Oz, O2 

Temporal 2 T7, T8 

Central 11 FC5,FC1,FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6 
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Fig. 7. The emotion recognition accuracy using different 

groups of EEG electrodes. 

 

4.2  Selection of Emotion-relevant EEG Electrodes 

In order to further study the relationship between brain 

regions and emotional states, using the two feature selection 

algorithms mRMR and Relieff, we can sort out the EEG 

electrodes according to the importance of the features in 

decreasing order (from extremely important to unimportant). 

We gradually increase the number of electrodes and use KSR 

for feature dimensionality reduction and RF classifier. The 

order of importance of the electrodes sorted out was not 

exactly the same across subjects, but it was similar in general. 

The results for subject 1 is shown in Fig. 8. It can be found 

that when the number of EEG electrodes is increased beyond 

a certain threshold, the increase trend of classification 

accuracy tends to reach a plateau. In Fig. 8(a), when the 

number of electrodes is 12, the classification accuracy 

reaches 90%, and when the number of electrodes is 27, the 

classification accuracy reaches a maximum of 97.33%. In 

Fig. 8(b), when the number of electrodes is 13, the 

classification accuracy reaches 90.67%, and when the number 

of electrodes is 26, the classification accuracy reaches a 

maximum of 98%. In Fig. 8(c), when the number of 

electrodes is 23, the classification accuracy reaches 80%, and 

when the number of electrodes is 32, the classification 

accuracy reaches a maximum of 85.33%. In Fig. 8(d), when 

the number of electrodes is 21, the classification accuracy 

reaches 81.83%; When the number of electrodes is 32, the 

classification accuracy reaches the maximum 86.17%. The 

above results indicate that emotion classification can be 

performed by using the EEG features from only a part of the 

brain. In particular, when using nonlinear dynamics features 

(i.e., sample entropy and approximate entropy), by using only 

12-channel EEG signals which are mainly measured from the 

frontal area of brain, we could achieve a 4-class emotion 

classification accuracy of 90%. 

Since the order of importance of the electrodes is different 

across subjects, the results for all the 32 subjects are 

analyzed. Firstly, the mRMR and Relieff algorithm were used 

separately to obtain the order of importance of the 32 EEG 

electrodes. The electrodes are then assigned different 

weights. For example, if the electrode ranked highest in the 

first test is F7, then it is assigned a weight of 32; if the lowest 

ranked electrode is Pz, then it is assigned a weight of 1. In 

this way, we can also obtain the subject-average weight of 

each EEG electrode. The electrodes ranking obtained by the 

mRMR and Relieff algorithm is shown in Table 2. 

In order to intuitively show the importance of each electrode, 

the brain topography is shown in Fig. 9, where the average 

importance of the 32 electrodes is marked. 

In this section, mRMR and Relieff algorithms are used to sort 

out the electrodes based on the importance of the features 

selected. It can be found that for the same subject, the 

electrode ranking obtained by using two different feature 

extraction algorithms is slightly different. However, in 

general some electrodes on the frontal cortex (such as F7, F3, 

Fp1, and F8) are always highly ranked regardless of which 

feature selection algorithm is used. Other highly ranked 

electrodes include Po3, P8, P3, and O2. These results are in 

good agreement with the general finding in physiological 

literature that the prefrontal cortex plays an important role in 

emotion generation. 
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Fig. 8. The 4-class emotion classification accuracy vs. the 

number of EEG electrodes (subject 1): (a) entropy features + 

mRMR; (b) entropy features + Relieff; (c) wavelet features + 

mRMR; (d) wavelet features + Relieff. 

(a) (b)

(c) (d)

 
Fig. 9. The brain topography with EEG electrodes importance 

ranking (subject 1): (a) entropy features + mRMR; (b) 

entropy features + Relieff; (c) wavelet features + mRMR; (d) 

wavelet features + Relieff. 

 

Table 2. The EEG electrodes ranking obtained by mRMR and 

Relieff. 

Rank mRMR Relieff Rank mRMR Relieff 

1 F7 Po3 17 P7 Af4 

2 P8 F8 18 Af4 Af3 

3 O1 Fp1 19 Cp2 C3 

4 F8 P3 20 Pz P7 

5 C4 Fp2 21 Fc5 Cp5 

6 T7 F3 22 Af3 P4 

7 Po3 O2 23 Fc6 C4 

8 Fp1 P8 24 C3 Cp6 

9 Fp2 Oz 25 Po4 F4 

10 O2 F7 26 Cp5 Po4 

11 P3 T8 27 Fc1 Cp1 

12 Fz Cz 28 Oz Fc1 

13 T8 Fc5 29 Cp6 Fz 

14 Cz Fc6 30 Cp1 O1 

15 F3 T7 31 P4 Fc2 

16 F4 Pz 32 Fc2 Cp2 

 

       

Fig. 10. The EEG electrode importance ranking obtained by: 

(left) mRMR and (right) Relieff. 

 

4.3  Discussions 

In order to explore the brain regions most relevant to 

emotions, the importance of the electrodes is ranked by using 

the mRMR and Relieff algorithms, as shown in Fig. 10. It is 

found that we can achieve comparable classification accuracy 

by using fewer important EEG electrodes. Brain topography 

was drawn, on the basis of the importance of the electrodes, 

to find out the brain regions where more important electrodes 

are placed. Through the study of the relationship between 

brain areas and emotion, it is found that the EEG features 

from the frontal cortex lead to higher emotion classification 

accuracy than those from other brain regions. After ranking 

the EEG electrodes based on the mRMR algorithm, we can 

use  only 12 EEG electrodes mainly from frontal cortex (out 

of 32) to achieve an emotion classification accuracy of 90%. 

5. CONCLUSIONS 

In this paper, we study the EEG-based emotion recognition 

problem using the DEAP dataset. We consider feature 

extraction, feature reduction/selection, ML classifiers, as well 

as the brain areas that are most related to emotions. The novel 

contributions of this work are as follows: 

(1) In most literature on DEAP-based emotion recognition, 

labeling the emotion data is based on the threshold method. 

Moreover, in many literatures only binary classification (of 

each dimension of emotion, like arousal and valence) 

problem is considered. In this paper, we use k-means 

clustering algorithm to determine the target/actual emotion 

classes on 2D plane of emotion (arousal and valence 

dimensions). 

(2) In many previous studies on emotion recognition, 

researchers only use the EEG data in emotional state while 

ignoring the baseline (emotionless) EEG data. In this paper, 

the EEG features were extracted as the difference between 

the baseline EEG feature and the emotionally aroused EEG 

feature. The results show that when using the relative change 
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(difference) as the features, rather than the absolute values of 

the EEG features under emotional stimuli, the emotion 

classification accuracy can be effectively improved. 

(3) The emotion classification accuracy of using only a part 

of the EEG electrodes (not all 32 electrodes) is analyzed. We 

found that using only 12 EEG electrodes placed on frontal 

cortex can achieve emotion classification accuracy of 90%. 

This work may provide basis for real-time application of the 

EEG emotion recognition techniques developed. 

The future work along this line of research may include: 

(i) The 3D or even higher-dimensional emotion model can be 

considered to perform classification of more types (i.e., more 

than 4) of emotions. 

(ii) It may be possible to determine the target classes by 

incorporating the content of the emotion-stimulus material. 

(iii) We need to combine heterogeneous physiological signals 

by certain data/information fusion method to realize multi-

modal emotion recognition. 

(iv) In real-world applications, a subject-independent (or 

called generic) emotional recognition model would be of 

paramount importance. However, the subject-independent 

emotion classifier must incorporate transfer learning 

technique in order to obtain stable emotion recognition 

accuracy across subjects. 
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