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Abstract: In this paper the problem of a multidimensional optimization in unsupervised
learning and clustering is studied under significant uncertainties in the data model and
measurements of penalty functions. We propose a modified version of SPSA-based algorithm
which maintains stability under conditions such as a sparse Gaussian mixture model. This data
model is important because it can be effectively used to evaluate the noise model in many
practical systems. The proposed algorithm is robust to external disturbances and is able to
process data sequentially, “on the fly”. In this paper provides a study of this algorithm and its
mathematical justification. The behavior of the algorithm is illustrated by examples of its use
for clustering in various difficult conditions.
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1. INTRODUCTION

Standard machine learning algorithms work successfully
when they are trained on a large amount of labeled
data. There are relatively few such data sets available
for a relatively small range of tasks (recognition and
localization of objects, landmarks (Boiarov and Tyantov
(2019)) recognition of faces, emotions and postures of
a person, parallel cases for translating texts between
languages, etc.) Goodfellow et al. (2016). Each new task
requires the collection of a new dataset, which is a rather
time-consuming task and often requires the efforts of a
large number of people. However, in the world there is
(mainly due to the development of the Internet, social
networks and smartphones) a huge amount of unlabeled
data. One of the most important tasks associated with this
type of data is the unsupervised learning problem and one
of its special cases is the clustering problem. The lack of
a pre-known structure and markup of data is a source of
uncertainties. To work in such conditions, it is necessary
to develop new approaches.

For the successful operation of the main machine learning
algorithms, a clear data model, the ability to calculate
the gradient for the optimized loss function (quality func-
tional), and as many training data as possible close to
normally distributed are needed Polyak (1987). However,
under real conditions, these requirements are often not
fulfilled. For example, data can be inherently sparse (like
Gaussian mixture model with sparse parameters Dahlin
et al. (2018)). Therefore, standard universal methods re-
ceive a conservative estimate of the desired parameters.

1 The work was supported IPME RAS by the Russian Science
Foundation (project 16-19-00057).

Thus, for such cases, it is necessary to develop new meth-
ods that can work in such non-standard conditions.

The main part of many machine learning methods is
solving a multidimensional optimization problem (Polyak
(1987)). Under conditions of substantially noisy obser-
vational data, standard gradient optimization algorithms
demonstrate a significant deterioration in the quality of
their operation. On the other hand, stochastic approxi-
mation algorithms with input randomization remain op-
erational in many cases. Therefore, for training machine
learning methods in such conditions, it makes sense to
use recurrent adaptive data processing algorithms, among
which one often uses approaches based on stochastic ap-
proximation (SA).

In Boiarov and Granichin (2019) the general problem of
SPSA Gaussian mixture model (GMM) clustering was con-
sidered, and the sparse Gaussian mixture model statement
was mentioned, but without mathematical justification. In
this paper we focus only on the sparse GMM data model,
which was first proposed in Dahlin et al. (2018), and give
a mathematical result on the properties of estimates ob-
tained by the method from Boiarov and Granichin (2019),
as well as illustrate the performance of the proposed ap-
proach with several examples and compare it with some
other methods.

The paper is organized as follows: Section 2 provides
an overview of the main works related to the topic of
this paper. In Section 3 we describe Gaussian mixture
model with sparse parameters. Section 4 presents the
SPSA clustering algorithm in a case of sparse GMM
parameters and its mathematical analysis. In Section 5, we
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provide results of experiments of the SPSA sparse GMM
clustering. Section 6 concludes the paper.

2. RELATED WORKS

The SA algorithm was first proposed by Robbins and
Monro in Robbins and Monro (1951) and was developed to
solving the optimization problem by Kiefer and Wolfowitz
(KW) in Kiefer et al. (1952). This approach, based on finite
difference approximations of the gradient vector for the
loss function, was extended to the d-dimensional (multidi-
mensional with d > 1) case in Blum (1954). The method
uses 2d observations on every iteration to construct a
sequence of estimates: two observations to approximate
each component of the d-dimensional gradient vector. Spall
in Spall et al. (1992) introduced a simultaneous pertur-
bation stochastic approximation (SPSA) algorithm with
only two observations at each iteration which recursively
generates estimates along random directions. It was turned
out that for a large d the probabilistic distribution of
appropriately scaled estimation errors is approximately
normal and the SPSA algorithm has the same order of
convergence rate as the KW-procedure, even though in
the multidimensional case noticeably fewer (by the factor
of d) observations are used. Granichin in Granichin (1992)
and Polyak and Tsybakov in Polyak and Tsybakov (1990)
proposed stochastic approximation algorithms with input
randomization that use only one (or two) value of the
function under consideration at a point (or points) on a
line passing through the previous estimate in a randomly
chosen direction. When unknown but bounded distur-
bances is added to the observed data, the quality of clas-
sical methods based on the stochastic gradient decreases.
However, the quality of SA search algorithms remains high
Granichin et al. (2015).

For clustering problems, Lloyd first described the classical
k-means method in Lloyd (1982), whose simplicity and
stability made it popular. However, its main disadvantage
is that it processes all data simultaneously, so increasing
the amount of data will require an increase of the memory
available in the computer. In order to alleviate these
drawbacks, several approaches were proposed based on
the idea of online learning. Algorithm Sculley (2010) uses
mini-batches (subsamples from training data) to reduce
the computational time required to converge to a local
solution, while minimizing the same objective function.
The results obtained in this way are only slightly worse
than the corresponding results of the original algorithm.
Another online clustering method based on an ensemble of
trained agents is discussed in Katselis et al. (2014). A more
robust variation of k-means is the k-medoid method (and
its implementation called Partitioning Around Medoids,
PAM), which is described in Kaufman and Rousseeuw
(2009). A randomized search SA algorithm solving the
k-means problem was proposed, justified and extended
in Boiarov and Granichin (2019).

A Gaussian mixture model (GMM) is a probabilistic model
that assumes that all data points are generated from a
mixture of a finite number of Gaussian distributions with
unknown parameters. We will consider GMM as a general-
ization of clustering using the k-means method. The well-
known EM (expectation-maximization) algorithm (Demp-
ster et al. (1977)) is traditionally used to find unknown

parameters of the GMM. It is based on maximizing the
likelihood in case when the model depends on hidden
variables. The Variational Bayesian Gaussian mixture in-
ference algorithm is an extension of the EM algorithm
that can also automatically find the number of compo-
nents in a mixture (see Bishop (2006)). This algorithm
includes regularization by integrating information on prior
distributions, which makes it more robust but slower than
EM. Among online GMM clustering methods we note
the flow method based on density estimates (Song and
Wang (2005)). An interesting new version of the Gaussian
mixture model with sparse parameters (sparse GMM) was
presented in Dahlin et al. (2018) and considered as a model
describing various noises.

3. PROBLEM STATEMENT

Consider an input data set X = {x1,x2, . . .}, which is
a subset of the Euclidean space Rd, and the probability
distribution P(X) defined on X. We assume that the input
dataset X is divided into k, k > 0 unknown subsets

{X?
1, . . . ,X

?
k} : X = ∪i∈1..kX

?
i

in such a way that the probability distribution of P(X) can
be represented using a mixture of distributions:

P(X) =

k∑
i=1

piP(X?
i )

where pi (pi > 0) and P(X?
i ), i = 1, . . . , k, are the cor-

responding probabilities and distributions. The clustering
problem is to find the optimal partition X of the input
dataset X into k nonempty clusters

X (X) = {X1, . . . ,Xk} : X =

k⋃
i=1

Xi,Xi ∩Xj = ∅, i 6= j.

Denote the best such partition as X ? = {X?
1, . . . ,X

?
k}.

To solve this clustering problem we introduce some penalty
function (quality function) qi that defines the “closeness”
to cluster i, i ∈ 1..k. Denote vectors θi, i ∈ 1, . . . , k as cen-
ters of clusters, or centroids, and matrices Γi, i ∈ 1, . . . , k
as covariance matrices, then to obtain optimal clustering
we need to minimize the functional

F (X ) =

k∑
i=1

∫
Xi

qi(θi,Γi,x)P(dx)→ min
X

. (1)

Here Θ = (θ1, θ2, . . . , θk) is (d × k) matrix, and Γ
is a set consisting of k matrices Γ1,Γ2, . . . ,Γk, where
Γi ∈ Rd×d, i ∈ 1, . . . , k.

Natural partition into clusters, which minimizes (1), leads
to the following rule for assigning x to a particular cluster:

l = argmini=1,...,k qi(θi,Γi,x),

where l = l(Θ,Γ,x) is a label function of the cluster
to which the data point x is assigned. Denote el ∈ Rk
as a vector consisting of zeros, with one at position l.
Functional (1) can be rewritten as follows:

F (Θ,Γ) =

∫
X

eT
l q(Θ,Γ,x)P(dx)→ min

Θ,Γ
, (2)
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Fig. 1. Sparse GMM: Left: type 1; Center: type 2; Right: type 3.

Fig. 2. Vanilla SPSA k-means centroids convergence: Left: type 1; Center: type 2; Right: type 3.

Fig. 3. Vanilla SPSA k-means traces of centroids estimates: Left: type 1; Center: type 2; Right: type 3.

where q(Θ,Γ,x) ∈ Rk is the vector of values qi(θi,Γi,x),
i ∈ 1, . . . , k.

An important special case corresponds to the uniform
distribution of P(·) and the penalty function, which is the
square of the Mahalanobis distance

qi(θi,Γi,x) = (x− θi)TΓ−1
i (x− θi). (3)

3.1 Gaussian Mixture Model

As the model for describing the data, we will use one of the
most common such models, namely the Gaussian Mixture
Model (GMM):

f(X ,x) = f(Θ,Γ,x) =

k∑
i=1

piG(x|θi,Γi), (4)

where G(x|θi,Γi) is the density of the Gaussian distri-
bution with mean θi ∈ Rd and covariance matrix Γi,
i ∈ 1, . . . , k.

Consider the following problem: By an input data sequence
{x1,x2, . . .} and a given value k, find parameters θi ∈ Rd
and Γi, i ∈ 1, . . . , k of Gaussian distributions whose
mixture has generated the input data sequence. This
definition fits the clustering problem introduced above and
thus functional (2) according to (3) takes the form

F (Θ,Γ) =

k∑
i=1

∑
xj∈Xi

(xj − θi)
TΓ−1

i (xj − θi)→ min
Θ,Γ

. (5)

3.2 Sparse Gaussian Mixture Model

According to proposition in Dahlin et al. (2018) consider
sparse Gaussian Mixture Model (sparse GMM) with mean:
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θi ∈ Rd, θil ∼ N (0, σ2
i ), σi ∼ C+(0, 1), l ∈ 1, . . . , d, (6)

where C+(0, 1) denotes the Cauchy distribution restricted
to be positive with location 0 and scale 1.

And diagonal covariance matrices is given by

Γi = diag(σ2
1 , σ

2
2 , . . . , σ

2
d), σj ∼ C+(0, 0.5), j ∈ 1, . . . , d,

(7)
where C+(0, 0.5) is the half-Cauchy distribution.

Weights pi ∼ D(e0, . . . , e0), i ∈ 1, . . . , k assumes a
Dirichlet prior, where parameter e0 ∼ G(αp, kαp) is
from a Gamma distribution with mean k−1 and variance
(αpk

2)−1, αp = 10.

In sparse GMM we can distinguish three main types of
the behavior of clusters (consider case with k = 3, d = 2)
(Fig. 1). In this models often there is a situation when
one cluster lies inside another what makes the clustering
procedure difficult.

Authors of Dahlin et al. (2018) used this approach to sim-
ulate a variety of different interesting noise distributions.
SPSA for clustering, evaluating only the centroids of the
clusters Θ (similar to the k-means algorithm), shows weak
results for data obtained from the sparse GMM model (see
Section 5). Fig. 2 shows the plots of L2-norms of distances
between true centers of the clusters and their estimates
obtained at each step of the algorithm. Fig. 3 demonstrates
traces of these centroids estimates. As we can see from
these plots, SPSA k-means shows weak convergence.

4. SPARSE GMM SPSA CLUSTERING

To improve the quality of the SPSA clustering algorithm
on sparse GMM, we offer the following modifications.
Firstly, we define the clustering algorithm from Boiarov
and Granichin (2019). For all input point xn and for any
chosen pair Θ,Γ we can get noisy observation of penalty
functions

yni (Θ,Γ) = qi(θi,Γi,x
n) + vni , i ∈ 1, . . . , k,

where noise vni is bounded: |vni | ≤ cv, or if it is
random then it does not depend on our choice of Θ,Γ
and E{vni } < ∞, E{vni 2} ≤ (σn)2. Denote k-vectors of
values yni (Θ,Γ) and vni as yn(Θ,Γ) and vn respectively;

Θ̂n, Γ̂n are estimates of centers and covariance matrices
of the clusters on the n-th step of the algorithm (i.e. for
xn) respectively; ln is an index of the cluster to which the
data point xn is assigned.

Let ∆n ∈ Rd, n = 1, 2, . . . be vectors consisting of
independent random variables with Bernoulli distribution,
called the test randomized perturbation, k is the number

of clusters, Θ̂0 ∈ Rd×k is the matrix of centroids initial

values, Γ̂0 is the set of initial covariance matrices, {αn}
and {βn} are sequences of positive numbers. Let λ be
a natural number and ωn is also a sequences of positive
numbers. Then the SPSA clustering algorithm builds the
following estimates


yn± = yn(Θ̂n−1 ± βn∆neT

ln , Γ̂
n−1),

Θ̂n = Θ̂n−1 − eT
lnα

ny
n
+ − yn−
2βn

∆neT
ln .

(8)

Ξln =


ωn

(θ̂n−1
ln − xn)(θ̂n−1

ln − xn)T − Γ̂n−1
ln

n
, n > λ,

Id, otherwise.

Γ̂nln = Γ̂n−1
ln + Ξln , (9)

where Id is identity d× d matrix.

Secondly, we add a L2 regularizer Hoerl and Kennard
(1970) to the quality function qi to make centroids
θi, i = 1, . . . , k closer to centers in sparse GMM:

ψn ‖θln − ξ‖2 , (10)

where

ξ ∈ Rn, ξl ∼ N (0, σ2), σ ∼ C+(0, 1), l ∈ 1, . . . , d;

ψn is a sequences of increasing positive numbers.

Third, we add a L1 regularizer Tibshirani (1996) to the
quality function qi for each dimension of centroids to make
them closer to a sparse mean (6):

τn
d∑
i=1

k∑
j=1

|Θ̂ij |, (11)

where τn is a sequences of increasing positive numbers.

Thus, the new quality function takes the form:gln = qln + ψn ‖θln − ξ‖2 + τn
d∑
i=1

k∑
j=1

|Θ̂ij |,

gt = qt, t = 1, . . . , k, t 6= ln.

(12)

Thus, in a modified SPSA clustering algorithm, the noisy
measurement of the penalty function is defined as

yni (Θ,Γ) = gi(θi,Γi,x
n) + vni , i ∈ 1, . . . , k.

Assumption. As can be seen from the Fig. 1, in the sparse
GMM model, clusters are not always strictly separable.
For this condition to be satisfied, the quality functions
must have a different form. We consider here the case
when they depend only on θi and Γi (for example (3)).

We are interested in the convergence of estimates {Θ̂n}.
Therefore, we will consider a model in which assumption
3 for the theorem from Boiarov and Granichin (2019) is
satisfied.

Theorem 1. Let assumptions from Boiarov and Granichin
(2019) and following conditions hold
(1) The learning sequence x1,x2, . . . ,xn, . . . consists of
identically distributed independent random vectors that
take values in each of k classes in the attribute space X
with a nonzero probability;
(2) ∀n ≥ 1 the random vectors v1,v2, . . . ,vn and
x1,x2, . . . ,xn−1 do not depend on xn and ∆n, and the
random vector xn does not depend on ∆n;
(3)

∑
n α

n = ∞ and αn → 0, βn → 0, αnβn−2 → 0 as
n→∞, ωn → 1 as n→∞, λ < C.
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Fig. 4. Type 1: Left: centroids convergence; Center: traces of centroids estimates; Right: Sparse GMM SPSA clustering
partition.

Fig. 5. Type 2: Left: centroids convergence; Center: traces of centroids estimates; Right: Sparse GMM SPSA clustering
partition.

Fig. 6. Type 3: Left: centroids convergence; Center: traces of centroids estimates; Right: Sparse GMM SPSA clustering
partition.

If estimate sequences {Θ̂n} and {Γ̂n} generated by algo-
rithm (8) and (9) with penalty function (12) satisfy the
relation

lim
n→∞

(
eT
ln ,g(Θ̂n−1, Γ̂n−1,xn)

)
≤ dmax + cv,

then {Θ̂n} converges in the mean-square sense:

limn→∞E{‖Θ̂n − Θ?‖2} = 0 and {Γ̂n} converges in

probability: Γ̂n
p→ Γ?.

Furthermore, if
∑
n α

nβn2 + αn2βn−2 <∞,
then Θ̂n → Θ? as n→∞ with probability 1.

Proof.

1. Let’s proof that the gradients of g satisfy the Lipschitz
condition. Denote (10) as L2(·) and (11) as L1(·). Then
‖∇θg(θ1)−∇θg(θ2)‖ =
= ‖∇θq(θ1)+∇θL2(θ1)+∇θL1(θ1)−∇θq(θ2)−∇θL2(θ2)−
−∇θL1(θ2)‖ ≤ ‖∇θq(θ1)−∇θq(θ2)‖+ ‖∇θL2(θ1)−
−∇θL2(θ2)‖ ≤MC‖θ1 − θ2‖,
with some constants M and C independent of x. Moreover
g is a convex function as sum of convex functions.

2. Assumption 2 of the theorem from Boiarov and
Granichin (2019) is satisfied by definition of matrices
Γi, i ∈ 1, . . . , k.
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3. Assumption 3 of the theorem from Boiarov and
Granichin (2019) is satisfied by Assumption before this
Theorem.

Thus, all conditions of the theorem from Boiarov and
Granichin (2019) are satisfied.

5. EXPERIMENTS

For experiments sets k = 3, d = 2, N = 3000. Parameters
for the SPSA clustering:

γ = 1/6, αn = 0.25/nγ , βn = 15/n
γ
4 ,

ωn = tanh(nλ ), ψn = 1e−5, τn = 1e−4 tanh(nλ ).

As metrics for algorithms comparison was chosen Ad-
justed Rand index (ARI) and mean L2-distance between
centriods of algorithm and true centers. Comprasion of
vanilla SPSA k-means, SPSA clustering for sparse GMM
and some standard clustering algorithms after 1000 exper-
iments is presented in Table 1 (Mean ARI — high is better;
Mean L2 distance — smaller is better).

Table 1. Sparse GMM clustering: ARI and L2

distance

Algorithm Mean ARI Mean centers L2

k-means 0.480 2.487

Online k-means 0.482 2.338

PAM 0.512 2.152

SPSA k-means 0.134 1.830

Sparse GMM-SPSA 0.518 1.617

Consider results of using modified SPSA clustering al-
gorithm in various types of sparse GMM. For Type 1
sparse GMM the new algorithm get: ARI=1.0, L2 centers
distance=0.130 (Fig. 4).

For Type 2 sparse GMM the new algorithm get: ARI=0.521,
L2 centers distance=0.923 (Fig. 5).

For Type 3 sparse GMM the new algorithm get: ARI=0.277,
L2 centers distance=2.051 (Fig. 6).

6. CONCLUSIONS

In this work, we have presented a new modification of
SPSA clustering algorithm for the case of sparse parame-
ters of the Gaussian mixture model. Such type of model
can be used to simulate a variety of different noise distribu-
tions. We have demonstrated that the algorithm remains
operational under conditions of sparse GMM.

The few-shot learning task Lake et al. (2015) is close to
the considered in this paper problem. Therefore, a further
promising area of research is the study of the application
of SPSA-based methods to this problem.
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