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Abstract: Automated failure recovery plays an important role in improving Overall Equipment
Effectiveness and is a building block of industry 4.0. However, in an increasingly dynamic market,
failure recovery mechanisms need to be able to adapt to system changes. Starting with fault
diagnosis in automated Production Systems for assembly and logistics, this paper proposes a
novel approach to combining Model-based Reasoning on topological system models with Case-
based Reasoning. The topological models are leveraged for case adaption, which significantly
reduces the engineering effort of adding new fault types to the system, compared to signal-based
methods. Furthermore, the approach does not rely on complete fault models existing in advance;
thus, the case database can be continuously built up during operation.

Keywords: Fault diagnosis, Expert Systems, Case-based Reasoning, Model-driven Reasoning,
Model-driven Engineering, AutomationML

1. INTRODUCTION

In order to stay competitive in an increasingly dynamic
market, companies need to constantly adapt their pro-
duction systems (Westkämper, 2003). As a result, tradi-
tional approaches to hard-code system capabilities within
automation software lead to high engineering effort (Vogel-
Heuser et al., 2016). Automation software needs to be
able to adapt to new situations and requirements. This
new paradigm also applies to failure recovery mecha-
nisms, which are an important building block of industry
4.0. These mechanisms shorten stoppages and thereby
increase the Overall Equipment Effectiveness (OEE). New
approaches need to be developed that do not rely on
hard coded recovery routines or the previous existence of
complete behavioral models or fault trees.
Focusing on automated Production Systems (aPSs) for
assembly and logistics, one approach to increasing the
flexibility of fault recovery relies on leveraging the high
number of similar components or component types used in
these systems (e.g., pneumatic cylinders, linear actuators).
As a process for solving new problems based on the so-
lutions of similar past problems, Case-based Reasoning
(CBR) can leverage these similarities. Similarly to experts
who draw their knowledge from past experiences, CBR
leverages a database of previously occurred fault cases.
This method therefore allows the easy integration of ex-
isting expert knowledge. While CBR has been extensively
researched in the past, generalizing from stored cases to
new faults, i.e., case adaptation, remains a challenge.
Model-Driven Engineering (MDE) is another approach
aiming to simplify the development process of automation
software by leveraging abstract knowledge representations
such as topological system models. Due to past efforts

to standardize the exchange of these models across com-
panies, e.g., through AutomationML (AML), topological
data on aPS is becoming more widely available.
As the main contribution, this paper therefore proposes
the combination of Model-based Reasoning (MBR) on
topological system models and CBR for fault diagnosis
in aPS for assembly and logistics. It is shown that the
combination of both approaches overcomes the challenge
of case adaptation and reduces the effort of adding new
fault types to failure recovery systems. Furthermore, the
case database can be built up during operation and only
topological system models are required in advance.
The remainder of this paper is structured as follows: in
section 2, existing literature on failure recovery and CBR
is reviewed to identify the research gap to be addressed.
Section 3 introduces a failure recovery use case that is uti-
lized for the description (section 4) and evaluation (section
5) of the proposed approach. Finally, section 6 concludes
this paper and suggests directions for future research.

2. STATE OF RESEARCH AND CONTRIBUTION OF
THIS PAPER

This section provides an overview of the most impor-
tant approaches in the field of failure recovery using the
terminology defined by Isermann and Balle (1997). Fur-
thermore, the concept of CBR is introduced, and various
studies on CBR for fault diagnosis are reviewed. Based on
this review, a research gap is identified which is addressed
within this paper.

2.1 Existing approaches for fault diagnosis

The main methods used in the field of fault diagnosis have
been reviewed by several authors (Venkatasubramanian
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Table 1. Overview of existing work on CBR for fault diagnosis in aPS

Reference Method Application area Adaption Model type

Bregón et al. (2005) CBR General process industries No -

Berenji and Wang (2006) CBR with NN1 and PCA2 General process industries No -

Tsai (2009) CBR Injection molding No -

Nasiri and Khosravani (2019) CBR with Fuzzy Logic Injection molding No -

Feret and Glasgow (1997) MBR with CBR Robotic systems Yes Fault model

Portinale et al. (2004) MBR with CBR General industries Yes Behavioral mode

O’Farrill et al. (2005) MBR with CBR Electronics manufacturing No Test model

1 Neural Networks 2 Principal Component Analysis

et al., 2003c,a,b; Gao et al., 2015b,a; Bayar et al., 2015)
and can be categorized into model-based, signal-based, and
knowledge- or process history-based approaches.
Model-based fault diagnosis approaches rely on the avail-
ability of models describing the system behavior. For
discrete event systems which describe many automated
assembly and logistics systems, Automata and Petri-nets
are frequently used model types. However, in practice these
models are often unavailable. Besides, model-based meth-
ods require the explicit design of fault diagnosis algorithms
for each fault to be detected. While signal-based methods
do not rely on the existence of system models, they also
require the definition of signal patterns for each fault.
As shown by Vogel-Heuser et al. (2016), implementing
diagnosis schemes or signal patterns requires high software
engineering effort.
In contrast to model-based and signal-based methods,
knowledge-based approaches detect and diagnose faults
from historical data instead of using process models or
signal patterns. The application of machine learning meth-
ods has led to promising results in the area of quanti-
tative knowledge-based fault diagnosis (Lei et al., 2020).
However, these types of methods require large amounts
of training data, which are often not available, and do
not leverage existing qualitative information such as topo-
logical models or expert knowledge. In contrast, qualita-
tive knowledge-based fault diagnosis methods, e.g., expert
systems, completely rely on these qualitative data. Ex-
pert systems can be further categorized depending on the
reasoning concepts used. Rule-based Reasoning and Case-
based Reasoning are often used (Prentzas and Hatzilyger-
oudis, 2007).
Since every method has certain advantages and disadvan-
tages, research has lately focused on hybrid methods which
combine various approaches.

2.2 Case-based Reasoning for fault diagnosis

The idea behind CBR can be described in a process model
consisting of the steps Retrieve, Reuse, Revise, and Retain
(Aamodt and Plaza, 1994). Starting with a given problem,
the aim of the Retrieve phase is to extract one or several
similar cases from a case database. During the Reuse
phase, the retrieved cases are adapted in order to fit the
problem. The solution of the adapted case is verified in the
Revise phase by applying it to the real world. Corrections
are then made by domain experts. In the final Retain
phase, the new solution is added to the case database.
One of the advantages of using CBR for fault diagno-
sis is its ability to reason based on existing knowledge,

thereby leveraging the similarities between present and
known past faults. Especially in systems with a large
number of similar components and modules, fault pat-
terns show commonalities that can be leveraged with this
approach. Furthermore, the similarity between CBR and
the human reasoning process (experts also rely on past
experiences when solving complex problems) simplifies the
integration of expert knowledge into CBR-based systems
(Mitra and Basak, 2005). This similar reasoning process
additionally ensures that the diagnoses generated can be
easily comprehended by domain experts. In terms of real-
world implementation, CBR has the advantage that it can
reason with incomplete and imprecise data. One of the
major disadvantages of CBR is the high complexity of the
case adaptation in the Reuse phase. While some authors
address this challenge by combining CBR with other fault
diagnosis approaches, many proposed systems completely
omit case adaptation (Mitra and Basak, 2005).
Table 1 provides an overview of recent work on CBR for
fault diagnosis, categorized by methods used, application
areas, use of adaptation, and model-type (in case of com-
bination with MBR). The combination of CBR with MBR
is most often discussed in here. Feret and Glasgow (1997)
use CBR to increase or lower the confidence in MBR
results as well as to suggest diagnoses that might have been
overlooked when using the model-based method. Their
approach relies on detailed fault models, and is able to gen-
eralize cases to all components with a similar component
type. CBR has also been used to mitigate the effects of
model errors in MBR systems. In their approach, Portinale
et al. (2004) rely on CBR to accelerate the MBR process by
leveraging existing knowledge. The authors use CBR for
diagnosis tasks that are hard to solve with MBR, thereby
reducing computation time. For the adaptation of cases
retrieved from the knowledge base, the same behavioral
model that is also used for MBR is leveraged. Another
work by O’Farrill et al. (2005) extends an MBR system
for the diagnosis of circuit board faults with CBR in order
to enable the learning of new fault types without requiring
any adaptation of the underlying model. The authors use
detailed test models and do not adapt retrieved cases.

2.3 Research gap and contribution of this work

The review of the existing literature on CBR systems for
fault diagnosis shows several limitations:

• Most existing work does not explicitly focus on aPS
for assembly and logistics.
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Fig. 1. Topological model of the Pick and Place Unit (PPU), and visualization of the case transfer across component
types. Only fault cases including attributes common to all cylinder types are transferred.

• Only a few suggested systems are able to automati-
cally adapt cases retrieved.

• In systems combining CBR with MBR, the former is
mostly used as an extension to compensate for the
limitations of the MBR approach.

• MBR-based approaches rely on detailed test models,
fault models, or behavioral system models that are
often unavailable in practice.

Therefore, the following part of this paper proposes a novel
approach to integrating CBR and MBR for fault diagnosis
in aPS for assembly and logistics. In contrast to existing
research, this approach uses CBR as the main method,
extended by MBR for the automated adaptation of re-
trieved cases. Furthermore, it relies purely on topological
system models. In contrast to behavioral data or other
models such as testing models or fault trees, topological
data is more widely available in industry. Without loss of
generality, the topological model used for the evaluation of
the approach suggested in this paper is provided via AML,
which is a standard engineering data exchange format
(International Electrotechnical Commission, 2015).

3. USE CASE FOR EVALUATION

As a use case for the evaluation of the suggested approach,
the PPU, a research demonstrator, is chosen (Vogel-Heuser
et al., 2014). The system resembles an aPS with a focus on
assembly and logistics tasks. The PPU consists of various
modules, i.e., a stack, a crane, a stamp, and a conveyor
belt, that has been built with industrial components. The
sensors and actuators (e.g., inductive sensors, pneumatic
cylinders) used are part of many industrial aPS. Fur-
thermore, similar sensors and actuators are used within
the modules; for example, the PPU contains a total of 6
monostable and 1 bistable cylinders. The system therefore
provides a good use case for evaluating CBR approaches

for fault diagnosis. Additionally, the PPU has been used
as an evaluation example in various other works (Legat
et al., 2013; Bareiss et al., 2016).
In order to use the PPU within this work, the existing
SysML models have been extended and converted to AML.
Fig. 1 includes an extract of the topological model for
the pneumatic cylinders, used within the crane and stamp
module, as well as for their pressure supply.
A common failure of these pneumatic cylinders is the
failure to extend or retract. The underlying faults causing
a failed extension can be leakage in the pneumatic system,
a defective compressor, or a mechanical blockage of the
cylinder. The causes of a failed retraction vary between
monostable and bistable cylinders. For the bistable cylin-
der, they are similar to those for the failed extension while
for the monostable cylinder, only the mechanical blockage
and a breakage of the retraction spring applies. Further
failures occur if an extension or retraction of both cylinder
types is not detected due to defective end position sensors.

4. AN APPROACH TO COMBINING CBR WITH
MBR

This section describes the suggested approach for fault
diagnosis, which combines MBR on topological system
models with CBR. After introducing the general system
architecture, an algorithm for retrieving and adapting
similar cases from the case database is developed.

4.1 Architecture

The proposed approach for fault diagnosis builds on a
fault detection scheme which utilizes operational states
with pre- and postconditions (Schütz et al., 2012; Priego
et al., 2015). One implementation of this operational states
concept for failure recovery has been suggested by Bareiss
et al. (2016). In their architecture, pre- and postconditions
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Fig. 2. Extension of architecture from Bareiss et al. (2016)
(Extended parts are shaded grey)

are passed from the process controller to a supervisor,
which checks whether the conditions have been fulfilled
and triggers a diagnosis and recovery module in case a
fault is detected. Faults can be detected by comparing
the current execution time of an operation to the average
execution time. If the current execution time exceeds the
average by a defined threshold, meaning an error has been
detected, a fault must have occurred. Pre- and postcondi-
tions are usually directly linked to sensor signals; e.g., the
post-condition for the extension of a pneumatic cylinder
could be the activation of the respective end-position sen-
sor DI Extended.
In order to utilize CBR for fault diagnosis, the architecture
suggested by Bareiss et al. (2016) is extended. A Case-
based Reasoner is used for the Diagnosis Module and an
interface is added to access topological system models and
historical fault cases. In order to use high-level program-
ming languages for the implementation of the Case-based
Reasoner, it is, without loss of generality, implemented on
the same hardware as the Supervisor instead of including
it in the (Extended) Process Controller. Fig. 2 provides an
overview of the extended architecture.
The main premise for the design of the case library is to
minimize the effort needed for the creation of new cases.
Therefore, cases are purely constructed of attributes that
are necessary to unambiguously describe the respective
fault case, as well as the conditions for the sensor and
control values. Attributes used encompass sensor values,
the control values of actuators, and the physical properties
of structural components. The shaded attributes in Fig. 1
are examples. The hierarchy of the attributes within the
case must be similar to the attribute’s hierarchy in the
topological system model. For example, the sensor value
of the crane module would be added to case1 in the case
library as case1.ppu.crane.liftingCyl.DI Extended. While
this seems to be tedious, all information is available in the
system’s topological model. Thus, the operation can be
easily implemented as a copy-and-paste procedure of the
respective attributes from the system model into the case.
Then, the conditions for the case-describing sensor and
control values need to be added manually to the attributes.
While cases can be stored in any format that is able to
represent topological data, AML is used for the evaluation
of the approach suggested in this paper. Each case is
represented as an InternalElement at the top level within
a special InstanceHierarchy functioning as a case library.
The conditions for the sensor and actuator values are
added as constraints to the attribute definitions.

a) System tree b) Case tree c) JointTree w. trigger

d) Component at fault e) Matching

Fig. 3. Illustration of graph operations used by the pro-
posed algorithm

4.2 Algorithm for retrieving and adapting similar cases

In contrast to most CBR systems discussed in section 2,
the approach suggested not only adapts the best matching
case but all retrieved ones. The similarity of the adapted
cases is then compared, and the one that matches best
is selected. The extend to which the cases are similar
is calculated based on attribute names, attribute values,
and context. The instance names of the attributes that
describe a fault need to match the ones from the similar
case and the attribute values need to be in the specified
range. A similar context is defined by matching instance
and class names of parent components as well as inter-
nal links. While similarities between parent components
help to identify similar modules (e.g., cylinder types), the
internal links allow the identification of similar module
groups (e.g., cylinders with connected valve blocks). This
similarity definition allows to identify components and
modules independent of their position in the system topol-
ogy, and can be seen as an extension of the one used by
Wolfenstetter et al. (2018).
The algorithm for retrieval and adaptation of cases relies
on the fact that the topological system model and the
fault cases can be represented as trees. Fig. 1 provides
an extract of the system model of the research demon-
strator, described in section 3, in the tree representation.
While the root of the tree is the complete system (e.g.,
the PPU), the leaves represent its attributes (i.e., its
sensor values, control values, or properties of structural
components). When considering internal links between
interfaces of components, e.g., the pressure supply for the
cylinders as illustrated by dotted lines, nodes of different
branches become connected, and the representation be-
comes a directed graph. While the link is created between
the interfaces of components, the connection within the
graph is directly created between the components, e.g.,
the liftingCyl connects to the BlockCrane. This complies
with the representation of internal links in AML.
The algorithm can be divided into four main steps. While
steps 1-3 focus on the retrieval and adaptation of cases, as
well as the calculation of their similarity, and are therefore
executed for each case in the case library, step 4 covers
the selection of the best matching case. The following
part of this section describes each step in detail using the
PPU as an example. Additionally, graph operations are
explained based on the illustrations provided by Fig. 3.
Fig. 4 presents the complete algorithm in pseudo code.
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1 For Case in CaseLibrary :
2 Find in s t ance names o f case t r e e l e a v e s with in system t r e e l eaves , and copy r e s p e c t i v e

branches in to new JointTree
3 I f Jo intTree conta in s Faul tTr igger :
4 For TriggerNode in Fau l tTr igger ( from l e a f ) :
5 Get a l l Leaves o f TriggerNode in Jo intTree c o n s i d e r i n g In t e r n a l L i n k s
6 I f l e a v e s from case are part o f Leaves :
7 Set FailedNode = TriggerNode and e x i t loop
8 Ca lcu la te s i m i l a r i t y between branches from case t r e e and branches from system t r e e

conta in ing the FailedNode , and bu i ld p a i r s us ing maximum weight matching
9 Compare s enso r and c o n t r o l va lue s with c o n d i t i o n s from case f o r pa i r s , and c a l c u l a t e

share o f matching c o n d i t i o n s
10 Suggest case with h i ghe s t matching and FailedNode that i s c l o s e s t to l e a f

Fig. 4. Pseudo-code of the algorithm suggested for retrieving and adapting similar cases

1) Retrieval of a case (line 2-3) In the first step, the
algorithm selects a single case from the case library and
extracts the relevant elements for this case from the topo-
logical model. To start with, it identifies all attributes of
the case within the system tree using the instance name as
matching criteria. The branches containing the matching
attributes are added to a new tree named JointTree (line 2
in Fig. 1). Fig. 3a-c illustrates this process. The JointTree
in Fig. 3c only includes the branches of the system tree
(3a) the leaves of which are part of the case tree (3b),
which are light or dark grey.
Next, the sensor signal for which the post-condition
has not been fullfilled, i.e., the fault trigger, needs to
be checked to determine whether it exists within the
JointTree (line 3). The trigger of a fault detected by the
nonactivated end-position switch DI Extended, which is
part of the crane’s liftingCyl, would look like ppu.crane
.liftingCyl.DI Extended. If the fault trigger exists in the
JointTree, the fault case is considered to be retrieved and
the algorithm continues with its adaptation. In Fig. 3c the
fault trigger is illustrated by the bold branch.

2) Adaptation of the retrieved case (line 4-7) A case
adaptation is generated by identifying the component of
the fault trigger, the children of which (including all grand-
children) encompass all attributes of the case. Therefore,
the algorithm compares those attributes that are part of
the subtree of each fault trigger component, starting with
the one closest to the leaves, with the ones from the case
(lines 4-6). For the comparison of attributes, internal links
between components are considered, i.e., the JointTree is
transformed into a directed graph. In the research demon-
strator, the attributes of the liftingCyl therefore also en-
compass the AI PressureSensor. This approach allows the
diagnosis of faults, the features of which include attributes
of other components. For example, the fault of a cylinder
that does not extend due to leakage in the pneumatic
system can only be diagnosed by considering the sensors of
the cylinder itself as well as the sensors of the valve block.
The first component, i.e., the one closest to the leaves,
that encompasses all attributes is then selected (line 7).
This component can be seen as the best choice for the
failed component when considering the selected case. In
Fig. 3d, a bold outline highlights the failed component
that has been identified. It is the first node in the fault
trigger (bold branch) that has the case attributes (grey
nodes) as children, when also considering the links (dashed

connections). The failed component’s subtree represents
the adapted case.

3) Similarity calculation for the adapted case (line 8-9)
In the third step, the values of the attributes from the
adapted case at failure time are compared with the condi-
tions from the original case taken from the case database.
First, the attributes of the adapted case are matched to
the attributes of the original case using maximum weight
matching (Galil, 1986) (line 8 in Fig. 4). An undirected
graph is built by connecting each attribute of the adapted
case with each attribute of the original case. A weight
on each connection represents the similarity between the
instance names, classes, and internal links of the two
connected attributes and their branches. For the instance
names and classes, the maximum number of connected
similar nodes, starting from the attributes (i.e., the leaf of
the branch), Ni and Nc is calculated. For the internal links,
the total number of nodes in a branch with similar internal
links Nl is determined. For example, if the instance names
of node one, two, and four match, Ni is set to 2. If the
internal links match for node 1 and 3, Nl is also set to
two. The weight is then defined as

w = Ni + Nc + aNl, (1)

where a is a large number, e.g., a = 1000. This weight
definition ensures that nonmatching internal links cannot
be compensated by matching instance names or classes.
Matching internal links, i.e., the connection to the same
type of pressure source, provide a stronger indication for
similarity than the existence of identical parent modules.
Fig. 3e illustrates the undirected graph for the matching
algorithm, which consists of the attributes of the illustra-
tions 3b and 3d. The bold lines highlight the pairs that
are identified via the maximum weight matching.
For each resulting attribute pair that describes a sensor or
control value, the value at the time of failure is compared
to the conditions from the case (line 9). The similarity is
then calculated by dividing the number of matching values
by the total number of sensor and control values.

4) Selection of the most similar case (line 10) After
executing the previous steps for each case in the case
library, the case with the closest sensor and control value
match (1 for an exact match) is suggested. In case of
multiple matches, the case with the failed component that
is closest to the leaves is chosen. Multiple matching can
occur since the algorithm compensates for mismatching
attributes of dissimilar cases by suggesting a failed com-
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ponent on a higher hierarchy level. In an extreme case, the
root is selected as the component at failure since it always
encompasses all case attributes. This is also illustrated in
Fig. 3d, where not only the highlighted node but also the
root has all the grey attributes as (grand-)children.

5. EVALUATION BASED ON THE USE CASE

This section focuses on evaluating the proposed approach
using the research demonstrator described in section 3.
First, the approach is assessed for its ability to transfer
fault types across component instances and component
types. Next, the suggested system and signal-based fault
diagnosis methods are compared to determine the effort
of adding additional fault types for diagnosis. Finally, the
approach’s transferability and scalability are discussed.
For evaluation purposes, the system model and case library
are implemented in AML (CAEX version 2.15) using
the AML editor. The Case-based Reasoner executing the
algorithm described in Fig. 4 is implemented in Python.
The fault trigger is provided as a string while the sensor
values are read from an external Java Script Object
Notation (JSON) file.

5.1 Transfer across component instances and types

This section evaluates the transfer of faults across com-
ponent instances and types. Therefore, it validates the
algorithm’s ability to differentiate between common faults,
which are transferable to all cylinder types, and type-
specific faults. As described in section 3, the demonstrator
contains monostable and bistable cylinders. This evalua-
tion focuses on the four common faults, which need to be
diagnosed for both cylinder types, and the two faults that
only apply to the bistable cylinder. The attributes required
to build the cases for the common and bistable cylinder-
specific faults are shown in the topological model of the
PPU provided by Fig. 1.
The common faults, i.e, a failure to extend or retract due to
a mechanical blockage, as well as a failed extension due to
a defective compressor or a leakage in the pneumatic sys-
tem, are characterized by the sensor signals DI Extended,
AI Position, AI PressureSensor, and the interface Pres-
sureInputExtract, which are part of all monostable and
bistable cylinders. Thus, one case per fault is sufficient
to diagnose these faults across the PPU.
For the two faults that are specific to the bistable cylinder,
i.e., a failed retraction due to a defect compressor or a
leakage in the pneumatic system, two additional cases are
necessary. These cases include the interface PressureInpu-
tRetract, which only exists for the bistable cylinder. Thus,
the case is not transferred to the monostable cylinders.
The evaluation shows that the algorithm is able to differen-
tiate between common and type-specific faults. Common
faults are successfully transferred across component types.

5.2 Software development effort

Next, the proposed approach is assessed for its ability to
reduce the software development effort of adding addi-
tional fault types for diagnosis. CBR and the traditional
approach of diagnosing faults through signal-based meth-
ods within the control code as implemented by Vogel-
Heuser et al. (2016) are here compared to determine the

Table 2. Comparison of the number of added
cases, adjusted functions, or adjusted function

blocks to add new fault types for diagnosis

Approach Common
fault

Monostable
cylinder-specific
fault

Signal-based (non-modular) 6 5

Signal-based (modular) 2 1

Case-based Reasoning 1 1

effort of implementing one additional fault type. For the
evaluation, two faults are considered. The first fault is
the undetected cylinder extension due to a defective end
position switch, which is common to all cylinder types.
The second fault, a failure to retract due to a defective
spring, only applies to monostable cylinders.
Utilizing the proposed approach, both additional faults
can be implemented for the six cylinders and the five
monostable cylinders, respectively, by adding one case for
each fault to the case library. Assuming that no modular
control code design is used, a traditional signal-based
diagnosis within the controller requires one function to
be adapted for each cylinder. For the PPU, these are six
functions for the common faults and five functions for the
monostable cylinder-specific fault. In case of a modular
control code design, the adaptation effort scales with the
number of component types for which the fault needs to
be diagnosed. The common fault therefore requires the
adaptation of two function blocks, while only one function
block needs to be adapted for the second fault. A summary
of this comparison is provided by table 2. Due to the strong
differences in the implementation of the diagnosis schemes,
i.e., the creation of a case in AML versus the adaptation of
control code, a more granular comparison (e.g., of added,
changed, removed lines of code) is not feasible.
The comparison shows that the approach suggested
strongly reduces the implementation effort, compared to
traditional approaches which lack a modular control code
design, if systems include a large number of similar com-
ponents. As shown by Fischer et al. (2018), non-modular
control code design is still widely applied in practice. In
case of a modular design, CBR also provides an advantage
if faults occur across different component types. Compo-
nent specific faults show no advantage compared to the
traditional approach with modular code design.

5.3 Transferability and Scalability

This section discusses the transferability and scalability
of the proposed approach. It also differentiates between
transferability to other components and fault types, as
well as transferability from the research demonstrator
to industrial use cases. In terms of scalability, the time
complexity of the suggested algorithm as well as the
manageability of the case library is discussed.

Transferability In order to diagnose not only the faults of
pneumatic cylinders within the PPU but of all components
used in industrial aPS, the proposed approach must be
able to uniquely identify any component type within the
system model, as well as be able to differentiate fault types
for a given component. To ensure this, the proposed ap-
proach relies on characteristic attributes which encompass
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sensor values, control values, and the physical properties
of structural components to identify similarities between
occurred faults and historical cases. Any physical compo-
nent can be uniquely described by its physical properties
and therefore identified by the proposed approach, as long
as the topological model provides sufficient details. All
available sensor and control values of the failed component
as well as all other components (through internal links) can
be included in the fault cases. Thus, the approach is able
to uniquely diagnose any fault that can be diagnosed with
the available sensor and actuator values of the system. The
approach is therefore not limited to pneumatic cylinders
and can be applied to all components within aPS.
Besides, the proposed approach should allow for cost effi-
cient integration into industrial environments. On the one
hand, the approach suggested does not require a specific
format for the topological data and, therefore, allows the
use of existing models, e.g., models stored in Product
Lifecycle Management (PLM) systems. On the other hand,
the support for AML as a standardized engineering data
exchange format limits the effort needed to integrate the
approach into industrial tool chains. The case database can
be built up during operation, since CBR is able to reason
based on incomplete information. In contrast to many
MBR approaches, no complete fault model is required in
advance. However, if partial or complete fault models are
available, they can be easily converted into cases.
Thus, the proposed system should transfer well from the
research demonstrator to industrial use cases.

Scalability To evaluate whether the execution time of
the algorithm suggested and, thus, the system’s ability
to diagnose faults in ”real time” is a limitation in terms
scalability, the algorithm’s time complexity is analyzed.
The most complex operations within the algorithm in-
clude the creation of the JointTree as well as maximum
weight matching. The creation of the JointTree has a
complexity of O(NM), where N is number of nodes in
the system tree and M the number of nodes in the case.
For the worst case, where the case includes the whole
system, the complexity becomes O(N2). The worst case
complexity of the maximum weight matching algorithm
used in the prototype is O(N1.5), where N is the number
of nodes (i.e., modules, components, and attributes) in
the system tree (Galil, 1986). While the execution time
for the retrieval and adaptation of a single case scales
with the size of the system model and case, the overall
executing time also scales with the number of cases in the
case database. However, once created, the JointTree for
each case can be stored in memory in order to avoid the
need to recreate it during each diagnosis activity. Thus,
for the worst case, that the JointTree of each case in the
case database includes the fault trigger, the complexity
of the maximum weight matching algorithm O(N1.5) is
scaled with the number of cases in the database. However,
steps 2 and 3 of the algorithm, which include maximum
weight matching, are only executed for the retrieved cases.
In practice, it is not expected that every case will be
retrieved during a single diagnosis activity. Thus, the only
operation that is expected to scale with the whole number
of cases in the database is the check that determines
whether the JointTree includes the fault trigger, which
has a complexity of O(n). Considering these remarks, and

the fact that fault diagnosis is often a manual operation,
execution time does not limit the approach’s scalability.
Besides, the creation of new cases, as well as the man-
agement of existing cases, needs to remain simple even for
large system models and case libraries. The use of topolog-
ical models with hierarchical structure assures, that it is
possible to have an overview of large system models. Fault
cases follow the same structure and the option of building
cases with copy-and-paste operations allows for a simple
case creation independent of the system model size.
In conclusion, the proposed approach is expected to scale
well to the size of common industrial use cases.

6. CONCLUSION AND OUTLOOK

This paper proposed a novel approach to fault diagnosis in
aPS for assembly and logistics combining MBR on topo-
logical system models with CBR. The models are provided
via the standard engineering data exchange format AML,
which is also used for storing cases of past faults. Building
on the failure recovery architecture of Bareiss et al. (2016),
the approach suggested relies on pre- and postconditions
for fault detection. In contrast to many CBR systems from
literature, all retrieved cases are adapted and case selection
is based on the similarity to these adapted cases. An
algorithm for retrieval and adaptation of similar cases that
relies on tree and directed graph representations of the
topological system model provided is described. The ap-
proach is evaluated on a research demonstrator resembling
an aPS with a focus on assembly and logistics tasks. It is
shown that the suggested CBR system strongly reduces
the implementation effort compared to signal-based fault
diagnoses approaches without a modular code design. Even
with modular code design, the implementation effort is
reduced if faults occur across different component types,
e.g., across monostable and bistable cylinders. In contrast
to many model-based approaches, the system suggested
is able to reason from incomplete fault data. The case
database can be built up continuously during operation
and there is no need for complete fault models to exist
in advance. Existing fault data can still be used after its
conversion into fault cases. The approach is expected to
transfer and scale well to real-world industrial use cases.
There are several directions in which this work could be
extended in the future. While this paper focuses on CBR
for fault diagnosis, the natural next step would be an
extension to fault recovery. The integration of automatic
recovery routines into the cases and their automatic adap-
tation to fit similar cases would be an interesting research
area. Since the proposed CBR system has been only im-
plemented as a prototype relying on sensor data provided
via JSON files, a production-ready implementation of the
system and an integration into the physical PPU would
be another research direction. Despite the similarities be-
tween the PPU and industrial aPS for assembly and lo-
gistics, further evaluation of the approach’s accuracy and
diagnosis speed in more complex and real-world industrial
use case should be conducted in the future.
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Bareiss, P., Schütz, D., Priego, R., Marcos, M., and Vogel-
Heuser, B. (2016). A model-based failure recovery
approach for automated production systems combining
SysML and industrial standards. In 2016 IEEE 21st
International Conference on Emerging Technologies and
Factory Automation (ETFA), 1–7. IEEE.

Bayar, N., Darmoul, S., Hajri-Gabouj, S., and Pierreval,
H. (2015). Fault detection, diagnosis and recovery
using artificial immune systems: A review. Engineering
Applications of Artificial Intelligence, 46, 43–57.

Berenji, H.R. and Wang, Y. (2006). Case-based reason-
ing for fault diagnosis and prognosis. In 2006 IEEE
International Conference on Fuzzy Systems, 1316–1321.
IEEE.

Bregón, A., Simón, M.A., Rodŕıguez, J.J., Alonso, C.,
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H. (2018). Introducing TRAILS: A tool supporting
traceability, integration and visualisation of engineering
knowledge for product service systems development.
Journal of Systems and Software, 144, 342–355.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8322


