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Abstract: Heavy duty gas turbines have long played an important role in energy production.
Advanced turbine designs are expected to be highly efficient, able to quickly ramp the output
power up and down and promptly tolerate loading variations without breaching emissions
regulations. Control design plays an important role in ensuring high efficiency and performance
of gas turbines. This paper proposes a fractional order fuzzy-PID approach for a heavy-duty gas
turbine. The controller gains are optimized using a Firefly algorithm enhanced with a dynamic
parameter selection. This latter is used to speed up the convergence rate of the Firefly algorithm,
optimize the gains of the fractional order fuzzy-PID and enhance the performance and efficiency
of the gas turbine. The proposed approach is implemented to the speed loop of a gas turbine in
order to maintain the output temperature and the turbine’s speed within their desired values
during either a sudden change in loading or a drop in frequency. A comparison analysis with a
standard Firefly algorithm-based approach was carried out to further assess the performance of
the proposed evolved firefly algorithm-based approach.

Keywords: Heavy-duty gas turbine, Speed control, Fuzzy Fractional order, Dynamic firefly
algorithm

1. INTRODUCTION

Though renewable energy sources have made huge strides
over the past decade, grid integration challenges such
as intermittency, lack of synchronous inertia, frequency
and voltage interruptions are primary factors contributing
to the continuous use of traditional power generation
technologies (GlobalData (2018)).

Gas turbines are one of the main elements of combined
cycle power plants (CCPP) for electric power genera-
tion (Forbes (2018)). They owe their popularity to the
high power-to-weight ratio, ability to operate during peak
power demand, flexibility and low cost compared to steam
turbines (MKT (2018)). Accurate modeling, parameters
estimation, and frequency (speed) and output voltage sta-
bilization in the presence of load variations are key factors
in the efficient operation and performance of gas turbines
(Haji Haji et al. (2019a)).

Various controllers are proposed by researchers to keep
the turbine speed at a desired level against the plant
uncertainty and external disturbance. A PID controller is
presented for the governor gas turbine system in Zhang
(2000). However, the proposed controller’s performance is
highly dependent upon gain tuning, which is performed

via trial and error. In Haji Haji et al. (2017) a fractional
order fuzz-PID controller is implemented to control the
speed output of a CCPP within an appropriate interval
under uncertainties and output disturbances. A neuro-
fuzzy controller is presented for a gas turbine plant in
Jurado et al. (2002). The authors use a neural network
to tune the fuzzy logic controller gains. The dynamic
behavior and efficiency of a gas turbine plant during
frequency drops are considered in Kakimoto and Baba
(2003).

Most recently, it was shown that the use of fractional calcu-
lus for control and modeling combined with swarm intelli-
gence (SI) and evolutionary algorithms, including particle
swarm optimization (PSO), genetic algorithm (GA), and
differential evolution (DE), enhances the efficiency of the
classical controllers. Among the swarm-based approaches,
the Firefly algorithm (FA) has shown excellence perfor-
mance in solving various complex optimization problems.
Yang et al. (2011) used FA to provide an optimal solution
for economic dispatch problems. Senthilnath et al. (2011)
applies FA for clustering problems. That paper uses stan-
dard benchmark functions and compares the effectiveness
and performance of proposed FA with ABC and PSO
algorithms. In Haji Haji and Monje (2018a), the dynamic
selection approach was used to enhance the convergence
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rate and final optimization value of the FA algorithm. In
that paper, authors clearly show the superiority of DFA
compared to other state of the arts algorithms.

This paper proposes a Dynamic FA (DFA)-based frac-
tional order fuzzy-PID (fuzzy-FOPID) controller for the
speed loop of a gas turbine unit. The main contributions
of this paper are as follows:

• A fractional order fuzzy-PID approach that is able
to maintain the turbine’s speed and exhaust gas
temperature within their desired values under load
demand disturbances.
• An enhanced Firefly algorithm with dynamic param-

eter selection to quickly auto-tune and optimize the
controller gains.
• A highly efficient design that can promptly mitigate

sudden frequency drops.

The remainder of the paper is organized as follows. The
dynamic model of the gas turbine is briefly described in
section II. The proposed DFA-based fractional order fuzzy-
PID approach is described in Section III. The performance
of the controller is assessed in Section IV. Comparison
analysis to a classical FA-based fractional order PID
approach is also carried over in this section. Conclusions
are finally drawn in Section V.

2. GAS TURBINE MODEL

The block diagram for a single-shaft gas turbine plant is
depicted in Figure 1. This latter is mainly comprised of a
compressor, a turbine, and a combustion chamber. Using
the Rowen’s simplified model, the exhaust temperature TX
and the generated turbine torque Ttr can be expressed as
follows (Rowen (1983)):

TX = f1 = 550(1−N) + TR − 700(1−WF ), (1)

Ttr = f2 = 0.5(1−N) + 1.3(WF − 0.23), (2)
where TR is the turbine rated exhaust temperature, WF

denotes the per unit (pu) fuel flow, and N is the turbine
rotor speed (pu). The model of the gas turbine includes the
acceleration, temperature, and speed control loops. The
speed control loop, which is the aim of this study, changes
the fuel flow to compensate for any output frequency
deviation. The temperature control loop acts through the
fuel supply to prevent the turbine’s overloading and severe
overheating. The acceleration control loop is activated
during the gas turbine’s startup to reduce fuel flow and
limit the rate of the shaft acceleration. The system param-
eters are illustrated in table A.1 (Rowen (1983); Mansouri
Mansourabad et al. (2013)).

3. DFA-BASED FRACTIONAL ORDER FUZZY-PID
CONTROLLER

Fractional calculus provides more flexibility in the de-
sign of the controllers and enhance the system control
performance. Riemann-Liouville (Equation 3) and Caputo
(Equation 4) are two main definitions that are widely used
in literature (Efe (2011)).

Dα
y = y(α) :=

1

Γ(q − α)
(
d

dt
)q
∫ t

0

y(ξ)

(t− ξ)α+1−q dξ, (3)

Dα
y = y(α) :=

1

Γ(q − α)

∫ t

0

yq(ξ)

(t− ξ)α+1−q dξ, (4)

Table 1. Control Rules.

dµe
dtµ

e
NB NM NS ZO PS PM PB

PB ZO PS PM PM PB PB PB

PM ZS ZO PS PS PM PB PB

PS NM NS ZO PS PM PM PB

ZO NM NM NS ZO PS PS PM

NS NB NM NM NS ZO PS PM

NM NB NB NM NS NS ZO PS

NB NB NB NB NM NM NS ZO

where

Γ(x) =

∫ ∞
0

yx−1e−ydy (5)

is the Gamma function, t is upper limit, D := (d/dt),
α ∈ <, and q is an integer (q − 1 ≤ α < q).

The fractional order PID or PIλDµ (FOPID) extends the
conventional PID controller, whose integral order λ and
derivative order µ are not integer (Podlubny (1999)). The
relationship between the control output u(t) and the error
signal e(t) for the FOPID controller is described as:

u(t) = KP e(t) +KID
−λe(t) +KDD

µe(t), (6)

where KD, KI and KP denote the derivative, integral
and proportional gains, respectively, and λ, µ > 0 are the
fractional orders.

Using the above control framework, we propose the fuzzy-
FOPID control scheme illustrated in Fig. 2. Here r(t) is
the speed reference, u(t) is the control input and y(t) is
the rotor speed. The fuzzy-FOPID control scheme is a
combination of a fuzzy PI and fuzzy PD controller, which
are respectively the input and output to the fuzzy logic
controller (FLC). Where Kd and Ke are the derivative and
proportional gains of the PD controller and Kβ and Kα

are the integral and proportional gains of the PI controller.
The best values for the control gains Ke, Kd, Kα, Kβ ,
along with the integral and derivative orders λ, and µ are
determined using the proposed DFA, which will be detailed
in section 4.1.

The output of the fuzzy logic controller (FLC) is fuel flow
and the inputs are the turbine speed deviation and its
derivative. The fuzzy rules for the proposed fuzzy-FOPID
speed controller are illustrated in table 1, where NB, NM,
NS, ZO, PS, PM, PB are the fuzzy linguistic values and
refer to negative big, negative medium, negative small,
zero, positive small, positive medium, and positive big, re-
spectively. The FLC output and error inputs membership
functions are illustrated in Fig. 3.

4. FIREFLY ALGORITHM

FA is a swarm-based algorithm inspired by the flashing be-
havior of fireflies (Yang et al. (2011)). A simplified pseudo
code of the FA is provided in Fig. 4. The attractiveness β of
fireflies as a function of the distance r can be computed by
the following generalized equation (Haji Haji and Monje
(2018a); Yang et al. (2011)):

β(r) = β0e
−γr2 , (7)

where γ refers to the fixed light absorption coefficient, and
β0 is the attractiveness at r = 0. The Euclidian distance
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Firefly Algorithm
Define γ, β0, and α

Cost function f(x), x = (x1, ..., xd)T

Generate random fireflies xi(i = 1, 2, .., n)

Determine light intensity Ii at xi by f(xi)

While (t < Maximum−Generation)

For i = 1 : n

For j = 1 : n

If (Ij > Ii)

Move firefly i towards j based on the (9)

EndIf

Attractiveness varies with distance r via exp[−γr2]

Evaluate new solutions and update light intensity

EndFor j

EndFor i

Rank all fireflies and choose the best one

EndWhile

Fig. 4. Pseudo code of the conventional firefly algorithm.

among ith and jth fireflies at location xi and xj is (Yang
et al. (2011)):

rij = ‖xi − xj‖ =

√√√√ d∑
k=1

(xi,k − xj,k)2, (8)

where xi,k and xj,k represent two different fireflies and d
is the problem dimension. The movement of the fireflies is
determined by Yang et al. (2011):

xi = xi + α(rand− 0.5) + β0e
−γr2ij (xj − xi), (9)

where α denotes the step size scaling factor and rand refers
to a random number in the range of [0, 1].

4.1 Dynamic Firefly Algorithm

In a typical algorithm, the control parameters play an
essential role to solve the optimization problem.

In this work, a dynamic process is used to offer the best
combination of PS, α, β0, and γ in a firefly optimiza-
tion problem. The simplified pseudo code of the DFA
is shown in Fig. 5 (Haji Haji and Monje (2018a)). The
DFA starts with a random population size PS ∈ PSset =
{PS1, PS2, ..., PSnps} (PSi is assumed to be larger than
PSi−1) and a random combination of α ∈ αset =
{α1, α2, ..., αnα}, β0 ∈ β0,set = {β0,1, β0,2, ..., β0,nβ0}, and
γ ∈ γset = {γ1, γ2, ..., γnγ} for each individual in the
population, where nps, nγ, nβ0, and nα are the cardinality
of the set PS, γ, β0, α, respectively. Based on the success
rate SR and for a fixed number of generations (CS),
the best combinations are used for the next generations.
This procedure is called a cycle. The fireflies move by the
following equation:
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xi = xi + β0,ie
−γir2ij (xj − xi) + αi(rand− 0.5). (10)

It is noticeable that the success rate of the combination
SRy is increased as SRy = SRy + 1 only if the firefly’s
new position xi is better than its last position. Here, y
is a selected combination of parameters, y ∈ yset, and
yset includes all combinations of αset, β0,set, and γset. The
population size of fireflies reduces to PSnps−1 and the
remained individuals are archived after CS generations.
The ranking of each combination is calculated as follows:

Ranky =
SRy

the times that a combination y is used
. (11)

Based on (8) the total number of combinations (TC) of
yset are divided to the half and combinations with higher
Ranky are used for the next generations. After CS × nps,
based on (9) the best size of population is selected from
PSset and used for (η−nps)×CS next generations, while
η is given by (10).

RankPSi =

∑CS
1

∑TC
k=1 SRy

PS2
k

, (12)

η ≈ log(TC)

log(2)
. (13)

After η × CS iteration, the procedure starts over again
with all possible combinations in yset.

5. SIMULATION RESULTS

In this section, we implement the proposed fuzzy-FOPID
in the speed control loop of the gas turbine. For compar-
ison purposes, we tuned the controller gains using the FA
and DFA algorithms. The DFA parameters are: maximum
iterations = 70, CS = 30, η = 3, PS ∈ {5, 10}, α ∈
{0.1, 0.3, 0.5, 0.7, 1}, β0 ∈ {0.8, 1}, and γ ∈ {0.1, 1, 10}.
Similarly, the tuning parameter of FA are: PS = 10,
β0 = 1, α = 0.9, and γ = 1.

The well-known integral time squared error (ITAE) and
integral time absolute error (ITSE) cost functions are
considered to evaluate the superiority of the presented
DFA-based controller compared to the controllers obtained
using conventional FA algorithm. The gains of the speed
controller are obtained using the time indices ITSE and
ITAE as:

J1 = ITSE =

∫ ∞
0

t.(ES2(t) + t.EP 2(t))dt, (14)

J2 = ITAE =

∫ ∞
0

t.(|ES(t)|+ t.|EP (t)|)dt, (15)

where ES and EP are the speed and power error sig-
nals, respectively. The optimum gains and time indices
parameters of the proposed factional fuzzy-PID controller
using different algorithms are shown in table 2 and table 3,
respectively. Figure 6 depicts the convergence rate of the
FA and DFA algorithms for ITAE and ITSE errors. The
best, worst, and average simulation results obtained in 10
runs are presented in table 4. As table 4 shows, the DFA
can improve FA in order to offer the best average of cost
function. For ITSE, Fig. 6 shows that the FA algorithm
provides a fast convergence, but not faster than the DFA.
From table 4 and Fig. 6, for ITAE, it is evident that the
DFA offers a very low cost function.

Dynamic firefly algorithm
Define ipop = nps, αset, β0,set, γset, and PSset

Cost function f(x), x = (x1, ..., xd)T

Determine population of fireflies xi(i = 1, 2, .., n)

Determine Light intensity Ii at xi using f(xi)

While (t < Maximum−Generation)

Assign a random combination from yset

For i = 1 : n fireflies

For j = 1 : n fireflies

If (Ij > Ii)

Move firefly i towards j

If new vector is better, then SRy = SRy + 1 ;EndIf

EndIf

EndFor j

EndFor i

period = period+ 1;

PSprd = PSprd + 1;

Rank each Firefly and find the best

If period < (η ∗ CS) and mod(period, CS) = 0

Select the best half combination and update yset

ElseIf mod(period, η ∗ CS) = 0

Set each period = 0 and SRy = 0

EndIf

If mod(PSprd, CS) = 0 and ipop > 0

Calculate RankPSipop
using (12)

set ipop = ipop − 1

If ipop ∼= 0

Archive the worst (PSipop+1 − PSipop) individuals

Set PS = PSipop

EndIf

end If

If PSprd = nps ∗ CS and ipop = 0

Set PS to the best population size

Use necessary fireflies from the archive

EndIf

If PSprd = η ∗ CS
Set PS = PSipop , ipop = nps, and PSprd = 0

Use necessary fireflies from the archive

Clear all fireflies from the archive

EndIf

EndWhile

Fig. 5. Pseudo code of the dynamic firefly algorithm.

The dynamic power responses against load variations
from 0.8 to 0.95 for the gas turbine controlled with the
fractional fuzzy-PID controllers based on ITSE and ITAE
cost functions are shown in Fig. 7. Based on the table
3 and Fig. 7, for the ITSE, the fuzzy-FOPID tuned by
DFA algorithm offers a very low overshoot whereas the
settling time and rise time are bigger than those with the
FA algorithm. In terms of ITAE function minimization,
Fig. 7 and table 3 show that the fractional fuzzy-PID-
based FA algorithm provides a lower overshoot compared
with the DFA algorithm.

Figure 8 provides the speed deviations of the gas turbine
model based on the objective functions of ITAE and ITSE
for both the FA and DFA algorithms. Note that in the case
of ITSE, the DFA algorithm offers a lower final error and
deviation than the FA algorithm, whereas this latter shows
a lower final error in the case of ITAE error. From the
results analysis, both FOPID controllers are able to bring
back the speed into an appropriate level within a minimum
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Table 2. Optimized FOPID gains determined using different algorithms.

Algorithms Ke Kβ Kd λ µ Kα

J1 = ITSE

FA 7.6024 0.0049 7.99 0.729 0.011 3.3885

DFA 7.455 0.0074 7.991 0.6893 0.012 3.3548

J2 = ITAE

FA 7.992 0.0099 7.989 0.5291 0.013 3.2978

DFA 7.4882 0.0064 7.991 0.6895 0.011 3.4262

Table 3. Obtained objective function and time indices parameters using different algorithms.

Algorithms Overshoot(%) Rise Time(sec) Settling Time(sec) Objective Function

J1 = ITSE

FA 64.8084 0.4322 7.9675 2.8182

DFA 60.7037 0.4533 8.0153 2.8077

J2 = ITAE

FA 65.0955 0.4311 7.9549 130.8322

DFA 67.3275 0.4214 7.9437 130.3823
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Fig. 6. Convergence rates of the ITAE and ITSE functions for DFA and FA algorithms.
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Fig. 7. Power responses of the gas turbine fuzzy-FOPID controllers based on the ITAE and ITSE functions.

time frame. The variations of the best parameters γ, β0, α
during the algorithm iterations are presented in Fig. 9 for
the ITAE and ITSE functions, respectively. According to
this figures, it is obvious that there is no a best predefined

combination for the entire evolution procedure. Figure 10
shows the responses of the gas turbine power plant for an
3% frequency drop, both for the ITSE and ITAE functions,
respectively. Note that the fuzzy-FOPID approach is able
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Fig. 8. Speed responses of the gas turbine fuzzy-FOPID controllers based on the ITAE and ITSE functions.

Table 4. Obtained objective function for J1 and
J2 in 10 runs.

Algorithms Best Worst Average

FA(J1) 2.81827 2.88191 2.85569

DFA(J2) 2.8077 2.87034 2.8283

FA(J1) 130.8322 134.2166 131.6446

DFA(J2) 130.3823 131.2111 130.8739

to quickly recover from the sudden frequency drop and
bring back the frequency to its desired level.

6. CONCLUSION

This paper proposed a Fractional Order Fuzzy-PID ap-
proach for the control of the speed loop of a heavy-
duty gas turbine. The gains of the fuzzy-FOPID controller
are optimally tuned using an enhanced firefly algorithm.
This latter implements a dynamic procedure to choose
the most appropriate combinations of the population size,
the absorption coefficient, the attractiveness coefficient,
and the step size scaling factor to quickly auto-tune and
optimize the controller gains. Analytical and simulation
results confirmed the superiority of the dynamic approach
and its ability to enhance the convergence rate and final
optimization value of the FA.
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Fig. 9. Best obtained parameters for the ITAE and ITSE functions during the evolution procedure.
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Fig. 10. Output speed for a 3% frequency drop.

Appendix A. GAS TURBINE MODEL PARAMETERS

Table A.1. Gas Turbine Model Parameters.

Parameter Value

Fuel demand lower limit (Min) -0.1

Fuel demand upper limit (Max) 1.5

Fuel system coefficient (b) 0.05

Fuel system coefficient (c) 1

Fuel system coefficient (a) 1

Fuel system time constant (TF ) 0.4

Fuel system feedback (KF ) 0

Turbine and exhaust delay (ETD) 0.04

Compressor discharge volume time constant (TCD) 0.2

Combustion reaction time delay (ECR) 0.01

Temperature controller integration rate (TT ) 450 (oC)

Turbine rated exhaust temperature (TR) 950 (oC)

Turbine rotor time constant (TI) 15.64
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