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1. INTRODUCTION

The notion of input-to-state stability (ISS) was introduced
by Sontag (1989) for finite dimensional systems and is
now recognized to be very fruitful in many applications
of control and stability theory due to very well elaborated
characterizations for ISS and related weaker notions, Lya-
punov methods including small-gain results as well as their
extensions to different classes of systems. In recent years,
many of these extensions were developed for systems given
in terms of partial differential equations (PDEs), see for
example the works Dashkovskiy et al. (2013), Mironchenko
(2017), Mironchenko (2019), Mironchenko et al. (2019),
Karafyllis and Krstic (2019), Schmid et al. (2018) , Schmid
(2019).

ISS-like notions characterize how robust the asymptotic
stability of a system is when a disturbing signal enters
the system. In case of PDEs a disturbance can enter
in domain and/or at the boundary of the domain on
which the PDE is defined. The ISS framework for infinite-
dimensional systems is not as well-developed as for the
finite-dimensional case. In this work, we contribute some
new results in this direction.

Here we consider nonlinear parabolic equations having a
global attractor in the unperturbed case and study some
ISS-like properties with respect to this attractor in case
distributed perturbations enter to the system. In partic-
ular, we will show that under certain conditions on the
nonlinearity in our disturbed reaction-diffusion equations,
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the local input-to-state stability and the asymptotic gain
properties are satisfied with respect to this global attrac-
tor.

In this paper, we provide only sketches of proofs for our
main results – complete proofs and more general results
will be published elsewhere.

2. NOTATION

R denotes the set of real numbers and R+ := [0,∞). By L2

we denote the space of Lebesgue measurable and square
integrable functions and L∞ denotes the space of Lebesgue
measurable essentially bounded functions.

The distance of x ∈ X to a set Θ ⊂ X in a Banach space
X is defined by

‖x‖Θ := dist(x,Θ) := inf
θ∈Θ
‖x− θ‖ (x ∈ X), (1)

Br(Θ) := {x ∈ X : ‖x‖Θ < r},

Br(Θ) := {x ∈ X : ‖x‖Θ ≤ r},
as well as the notation

dist(M,Θ) := sup
x∈M
‖x‖Θ

for subsets M,Θ ⊂ X.

The following classes of comparison functions are used for
the characterization of different stability properties, see,
e.g., Sontag et al. (1996). We say that γ : [0,∞)→ [0,∞)
is of class K if it is continuous, strictly increasing and
γ(0) = 0. If additionally the function γ is unbounded,
then it said to be of the class K∞. By L we denote
the set of continuous and strictly decreasing functions
α : [0,∞) → [0,∞) such that α(t) −→ 0 as t → ∞. We
say that a function β : [0,∞)× [0,∞)→ [0,∞) is of class
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KL if it is continuous, with β(·, t) ∈ K for every t ∈ [0,∞)
and β(r, ·) ∈ L for every r ∈ (0,∞).

Finally, the upper right-hand Dini derivatives will be
denoted by

∂
+

t v(t) := lim sup
τ→0+

v(t+ τ)− v(t)

τ
.

3. CONTRIBUTIONS

In this paper, we are concerned with disturbed nonlinear
reaction-diffusion equations of the form

∂ty(t, ζ) = ∆y(t, ζ) + g(y(t, ζ)) + h(ζ)u(t) (ζ ∈ Ω)
y(t, ζ) = 0 (ζ ∈ ∂Ω)

(2)

on a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω,
where g ∈ C1(R) and h ∈ L2(Ω) and the disturbance u
belongs to U := L∞([0,∞)). It is well-known (Robinson
(2001)) that the corresponding undisturbed equation

∂ty(t, ζ) = ∆y(t, ζ) + g(y(t, ζ)) (ζ ∈ Ω)
y(t, ζ) = 0 (ζ ∈ ∂Ω)

(3)

has a global attractor Θ ⊂ X := L2(Ω) under suitable
growth and upper-boundedness conditions on the nonlin-
earity g and its derivative g′ respectively, see (7) below. As
usual, a global attractor for (3) is defined to be a compact
subset of X that is invariant and uniformly attracting
w.r.t. the semiflow generated by (3).

What we show in this paper is that the disturbed reaction-
diffusion equations (2) are locally input-to-state stable and
of asymptotic gain w.r.t. the global attractor Θ of the
undisturbed equation (3).

The local input-to-state stability means that there exist
comparison functions β ∈ KL, γ ∈ K and radii r0x, r0u > 0
such that

‖y(t, y0, u)‖Θ ≤ β(‖y0‖Θ, t) + γ(‖u‖∞) (t ∈ [0,∞))(4)

for every (y0, u) ∈ X × U , ‖y0‖Θ ≤ r0x, ‖u‖∞ ≤ r0u, and
the asymptotic gain property means that there exists a
comparison function γ ∈ K such that

lim sup
t→∞

‖y(t, y0, u)‖Θ ≤ γ(‖u‖∞) (5)

for every (y0, u) ∈ X × U .

In the relations (4) and (5) above, y = y(·, y0, u) denotes
the global weak solution of (2) with initial value y0 and
disturbance u ∈ U .

As far as we know, our results are essentially the first
input-to-state stability results w.r.t. global attractors of
infinite-dimensional systems like (2). All input-to-state
stability results for concrete PDE systems – like those
from Dashkovskiy et al. (2013), Jacob et al. (2018), Jacob
et al. (2018), Karafyllis et al. (2016), Karafyllis et al.
(2017), Mazenc et al. (2011), Mironchenko et al. (2019),
Mironchenko (2019), Schmid et al. (2018), Tanwani et al.
(2017), Zheng et al. (2017), Zheng et al. (2017) – es-
tablish either theoretical characterization of input-to-state
stability in terms of abstract conditions or input-to-state
stability only w.r.t. an equilibrium point of the respective
undisturbed system. In particular, the results from those
papers do not cover the Chaffee–Infante equation, for

example, that is, the reaction-diffusion equation (2) with
nonlinearity g given by

g(r) := −r3 + λr (r ∈ R),

just because the respective undisturbed system only has a
non-singleton attractor Θ 6= {0} (Section 11.5 of Robinson
(2001)). With our results, by contrast, we can cover the
Chaffee–Infante equation and many more nonlinearities.
We refer to Kapustyan et al. (2015), Gorban et al. (2014),
Gorban et al. (2015), Dashkovskiy et al. (2017) for other
interesting results about non-trivial global attractors of
nonlinear, impulsive, or even multi-valued semigroups.

4. A LOCAL INPUT-TO-STATE STABILITY RESULT

To establish our main results we have to consider the
family of problems (2) with initial data (s, ys) ∈ R+ ×X
∂ty(t, ζ) = ∆y(t, ζ) + g(y(t, ζ)) + h(ζ)u(t), t > s, ζ ∈ Ω
y(t, ·)|∂Ω = 0 and y(s, ·) = ys.

(6)

Suppose that for some p ∈ [2,∞), q ∈ (1, 2], 1/p+ 1/q = 1
there exist constants α1, α2, κ, λ ∈ (0,∞) such that for
every r ∈ R

−κ− α1|r|p ≤ g(r)r ≤ κ− α2|r|p, g′(r) ≤ λ. (7)

A simple class of functions g satisfying the three inequal-
ities from (7) is given by the polynomials of odd degree
with negative leading coefficient:

g(r) =

2m−1∑
i=0

cir
i (r ∈ R)

with c2m−1 < 0, where m ∈ N . (Choose p := 2m.) In par-
ticular, the nonlinearity of the Chaffee–Infante equation
given by g(r) := −r3 + λr falls into that class.

Suppose that (7) is satisfied and let s ∈ R+, ys ∈ X. A
function y ∈ C([s,∞), X) is called a global weak solution of
(6) iff y(s) = ys and for every T ∈ (s,∞) one has y|[s,T ] ∈
L2([s, T ], H1

0 (Ω)) ∩ Lp([s, T ], Lp(Ω)) and there exists a
(then unique) z ∈ L2([s, T ], H1

0 (Ω)∗) + Lq([s, T ], Lq(Ω))
such that

T∫
s

〈z(t), ϕ(t)〉dt = −
T∫
s

∫
Ω

∇y(t)(ζ) · ∇ϕ(t)(ζ)dζdt+

T∫
s

∫
Ω

g
(
y(t)(ζ)

)
ϕ(t)(ζ)dζdt+

T∫
s

∫
Ω

h(ζ)u(t)ϕ(t)(ζ)dζdt

(8)

for every ϕ ∈ L2([s, T ], H1
0 (Ω)) ∩ Lp([s, T ], Lp(Ω)), where

〈·, ·〉 stands for the dual pairing of H1
0 (Ω)∗ + Lq(Ω) and

H1
0 (Ω) ∩ Lp(Ω).

It is known (Chepyzhov et al. (2002)) that for every
s ∈ R+, ys ∈ X and u ∈ L2

loc([0,∞)) the initial boundary
value problem (6) has a unique global weak solution y(·) =
y(·, s, ys, u).

A semiprocess family on X is a family of maps Su : R2
d ×

X → X for every u ∈ U such that

Su(s, s, x) = x, Su
(
t, s, Su(s, r, x)

)
= Su(t, r, x),

Su(t+ τ, s+ τ, x) = Su(·+τ)(t, s, x)
(9)

for all (t, s), (s, r) ∈ R2
d, τ ≥ 0, x ∈ X and u ∈ U , where

we used the abbreviation R2
d := {(s, t) ∈ R+×R+ : t ≥ s}.
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See Chepyzhov et al. (2002) for more information on
semiprocess families.

Lemma 1. Suppose that (7) is satisfied. Then (Su)u∈U
defined by

Su(t, s, ys) := y(t, s, ys, u) (10)

is a semiprocess family on X and, additionally,

‖S0(t, 0, y01)− S0(t, 0, y02)‖ ≤ eλt ‖y01 − y02‖, t ∈ R+(11)

‖Su(t, 0, y0)− S0(t, 0, y0)‖ ≤ 2 e2λ ‖h‖‖u‖∞t, t ∈ [0, 1](12)

for all y0, y01, y02 ∈ X and all u ∈ U .

We remark for later reference that our semiprocess family
(Su)u∈U , like any other semiprocess family, satisfies the
following so-called cocycle property:

Su(t+ τ, 0, x) = Su(·+τ)

(
t, 0, Su(τ, 0, x)

)
(13)

for all t, τ ∈ R+, x ∈ X and u ∈ U . In particular, S0

satisfies the semigroup property

S0(t+ τ, 0, x) = S0

(
t, 0, S0(τ, 0, x)

)
, t, τ ∈ R+, x ∈ X.(14)

A global attractor of semigroup S0 is a compact set Θ ⊂ X
such that

(i) Θ is invariant, i.e., S0(t, 0,Θ) = Θ, t ∈ R+;
(ii) Θ is uniformly attracting, i.e., for every bounded

B ⊂ X one has

dist
(
S0(t, 0, B),Θ

)
= sup
x∈B
‖S0(t, 0, x)‖Θ −→ 0, t→∞.

It directly follows from this definition that a global attrac-
tor of S0 is minimal among all closed uniformly attracting
sets of S0 and maximal among all bounded invariant sets of
S0. And from this fact, in turn, it immediately follows that
if S0 has any global attractor then it is already unique.

It is well-known Robinson (2001) that under conditions
(7) the semigroup S0 generated by (3) possesses the global
attractor Θ. Moreover, it is connected stable subset of X
and the following structural formula holds

Θ = {x0 ∈ X | x0 lies on a complete orbit x(·)
such that dist(x(t),<)→ 0 as t→ −∞},

where < is the set of equilibria, that is, solutions of the
stationary problem

∆y(ζ) + g(y(ζ)) = 0 (ζ ∈ Ω)
y(ζ) = 0 (ζ ∈ ∂Ω)

The set Θ can be complicated even in the simplest cases.
For the particular example Chafee-Infante equation with
g(r) = −r3 + λr, Ω = (0, π) and n2 < λ < (n + 1)2 the
set < consists of 2n+ 1 equilibria and the dimension of Θ
equals n.

It is worth to be mention that in this case there is a natural
Lyapunov function

V (x) =

π∫
0

(1

2
(x′(s))2 +

1

4
x4(s)− λ

2
x2(s)

)
ds

But it is well-defined only in the phase space H1
0 (0, π). So

it cannot be useful for proving ISS property in the space
X = L2(0, π). Moreover, even in the space H1

0 (0, π) it can
serve as a ISS Lyapunov function only in the case λ = 0
when Θ = {0} (see Dashkovskiy et al. (2013)).

Theorem 2. Suppose that (7) is satisfied and let Θ be the
global attractor of the undisturbed system S0. Then the
disturbed system (Su)u∈U is locally input-to-state stable
w.r.t. Θ, that is, there exist comparison functions β ∈ KL
and γ ∈ K and radii r0x, r0u > 0 such that

‖Su(t, 0, x0)‖Θ ≤ β(‖x0‖Θ, t) + γ(‖u‖∞), t ∈ R+ (15)

for all (x0, u) ∈ X ×U with ‖x0‖Θ ≤ r0x and ‖u‖∞ ≤ r0u.

Proof. We give here only the key steps of the proof.

Step 1. The global attractor Θ is uniformly globally
asymptotically stable for S0, that is, there exists a com-
parison function β0 ∈ KL such that

‖S0(t, 0, x)‖Θ ≤ β0(‖x‖Θ, t) t ∈ R+, x ∈ X. (16)

Indeed, it immediately follows from the invariance of Θ
under S0 and from the estimate (11) that for every ε > 0
and every T ∈ (0,∞) there exists a δ ∈ (0, 1] such that for
every t ∈ [0, T ] and x ∈ Bδ(Θ)

‖S0(t, 0, x)‖Θ ≤ inf
θ∈Θ
‖S0(t, 0, x)− S0(t, 0, θ)‖ < ε.

And from this and the uniform attractivity of Θ for S0 ,
in turn, it follows that for every ε > 0 there exists a δ > 0
such that

‖S0(t, 0, x)‖Θ < ε (t ∈ R+) (17)

for every x ∈ Bδ(Θ).

Also, it is well-known that

‖S0(t, 0, x)‖2 ≤ e−2ωt ‖x‖2 +
λ|Ω|
ω

(t ∈ R+), (18)

where ω > 0 is the smallest eigenvalue of −∆ in H1
0 (Ω).

Since
‖S0(t, 0, x)‖Θ ≤ ‖S0(t, 0, x)‖+ ‖Θ‖

and
‖x‖ ≤ ‖x‖Θ + ‖Θ‖

with ‖Θ‖ := supθ∈Θ ‖θ‖, it follows from (18) that there
exists a comparison function σ ∈ K and a constant c ∈
(0,∞) such that

‖S0(t, 0, x)‖Θ ≤ σ(‖x‖Θ) + c (t ∈ R+) (19)

for every x ∈ X. In the terminology of Mironchenko
(2017) , the relations (17) and (19) mean that Θ is
uniformly locally stable and Lagrange-stable for (Su)u∈U0 ,
respectively. And therefore, Θ is uniformly globally stable
for (Su)u∈U0 = S0 by virtue of Remark 2.9 of Mironchenko
(2017) , as desired.

Step 2. The undisturbed system (3) has a local Lyapunov
function, that is, for every r0 > 0 there exists a Lipschitz
continuous function

V : Br0(Θ)→ R+

with Lipschitz constant 1 and comparison functions
ψ,ψ, α, σ ∈ K∞ such that for every x ∈ Br0(Θ), u ∈ U

ψ(‖x‖Θ) ≤ V (x) ≤ ψ(‖x‖Θ), (20)

V̇u(x) := lim sup
t→0+

1

t

(
V (Su(t, 0, x))− V (x)

)
≤ −α(‖x‖Θ) + σ(‖u‖∞).

(21)
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We prove this fact using function β0 from (16) and
arguments from Henry (1981) (Theorem 4.2.1). More
precisely, we can prove properties (20),(21) for the function

V (x) :=

∞∑
k=1

2−kV 1/k(x) (x ∈ Br0(Θ)),

where for every given ε > 0

V ε(x) := e−(λ+c0)T (ε) sup
t∈[0,∞)

(
ec0t ηε

(
‖S0(t, 0, x)‖Θ

))
,

c0 ∈ (0,∞) is an arbitrary constant, ηε(r) := max{0, r−ε}
and T (ε) be a time such that

β0(r0, t) ≤ ε (t ∈ [T (ε),∞)).

Indeed, V ε : Br0(Θ) → R+
0 is a well-defined map (with

finite values) and

V ε(x) ≤ e−λT (ε) sup
t∈[0,T (ε)]

(
ηε
(
‖S0(t, 0, x)‖Θ

))
≤ β0(‖x‖Θ , 0) (x ∈ Br0(Θ)),

(22)

|V ε(x)− V ε(y)| ≤ e−(λ+c0)T (ε)

× sup
t∈[0,T (ε)]

∣∣∣ ec0t ηε( ‖S0(t, 0, x)‖Θ
)

− ec0t ηε
(
‖S0(t, 0, y)‖Θ

)∣∣∣
≤ e−λT (ε) sup

t∈[0,T (ε)]

∣∣∣ ‖S0(t, 0, x)‖Θ − ‖S0(t, 0, y)‖Θ
∣∣∣

≤ e−λT (ε) sup
t∈[0,T (ε)]

‖S0(t, 0, x)− S0(t, 0, y)‖ ≤ ‖x− y‖

(x, y ∈ Br0(Θ)).

(23)

Additionally, for every x ∈ Br0(Θ), we have S0(τ, 0, x) ∈
Br0(Θ) for τ small enough and thus, by the semigroup
property,

V ε(S0(τ, 0, x))

= e−(λ+c0)T (ε) sup
t∈[0,∞)

(
ec0t ηε

(
‖S0(t+ τ, 0, x)‖Θ

))
≤ e−c0τ V ε(x)

(24)

for every x ∈ Br0(Θ) and all sufficiently small times τ .
Consequently,

V̇ ε0 (x) = lim
τ→0+

1

τ

(
V ε(S0(τ, 0, x))− V ε(x)

)
≤ −c0V ε(x)(25)

for x ∈ Br0(Θ). So for function V we conclude from (23),
(24), (25) that for x, y ∈ Br0(Θ)

V (x) ≤ β0(‖x‖Θ , 0), x ∈ Br0(Θ), (26)

|V (x)− V (y)| ≤
∞∑
k=1

2−k|V 1
k (x)− V 1

k (y)| ≤ ‖x− y‖ (27)

V̇0(x) ≤
∞∑
k=1

2−kV̇
1/k
0 (x) ≤ −c0V (x), x ∈ Br0(Θ). (28)

Since supt∈[0,∞)(e
c0t η1/k(‖S0(t, 0, x)‖Θ)) ≥ η1/k(‖x‖Θ)

for all x ∈ X, we also conclude that

V (x) ≥
∞∑
k=1

2−k e−(λ+c0)T (1/k) η1/k(‖x‖Θ), x ∈ Br0(Θ).(29)

In view of these estimates, we now define the comparison
functions ψ, ψ and α in the following way:

ψ(r) := β0(r, 0)+r, ψ(r) :=

∞∑
k=1

2−k e−(λ+c0)T (1/k) η1/k(r)

and α(r) := c0ψ(r) for r ∈ R+
0 . It is easy to verify that ψ,

ψ and hence α belong to K∞.

And, moreover, by virtue of (26), (27), (28), (29), we
obtain estimate (20) and

V̇0(x) ≤ −α(‖x‖Θ) (x ∈ Br0(Θ)).

After that, defining σ ∈ K∞ by σ(r) := 2 e2λ ‖h‖ r for all
r ∈ R+

0 , we can see that for every x ∈ Br0(Θ) and every
u ∈ U we have

V̇u(x) ≤ lim
τ→0+

1

t

(
V (S0(t, 0, x))− V (x)

)
+ lim
τ→0+

1

t

(
V (Su(t, 0, x))− V (S0(t, 0, x))

)
≤ −α(‖x‖Θ) + lim

τ→0+

1

t
‖Su(t, 0, x)− S0(t, 0, x)‖

≤ −α(‖x‖Θ) + σ(‖u‖∞),

so (21) holds.

Step 3. For χ(r) := α−1(2σ(r)) we have that for all
(x0, u) ∈ X × U with r0 ≥ ‖x0‖Θ ≥ χ(‖u‖∞)

V̇u(x0) ≤ −α(‖x0‖Θ). (30)

According to the comparison lemma from Mironchenko
et al. (2016) (Corollary 1), we can then choose a compar-
ison function β in such a way that for every T ∈ (0,∞]
and every function v ∈ C([0, T ), R+) with

∂
+

t v(t) ≤ −(α ◦ ψ−1
)(v(t)) (t ∈ [0, T ))

one has v(t) ≤ β(v(0), t) for all t ∈ [0, T ). We now define

β(r, t) := ψ−1
(
β(ψ(r), t)

)
, γ(r) := ψ−1

(
ψ(χ(r))

)
(31)

for r, t ∈ R+ and choose r0x, r0u ∈ (0,∞) so small that

r0x < r0, β(r0x, 0) < r0, γ(r0u) < r0. (32)

Also, we will write

Mu :=
{
x ∈ Br0(Θ) : V (x) ≤ ψ(χ(‖u‖∞))

}
(33)

for u ∈ U . After that, treating the case x0 ∈ Mu and
the case x0 /∈ Mu separately, we can prove that with the
functions β and γ from (31), the desired estimate (15) is
satisfied.

5. AN ASYMPTOTIC GAIN RESULT

To prove our asymptotic gain result we need some addi-
tional constructions from non-autonomous systems theory.

Suppose (Sv)v∈V is a semiprocess family on X, where V
is a translation-invariant subset of L2

loc(R+), that is, for
every u ∈ V, h ∈ R+ one has u(·+ h) ∈ V. We will denote
by SV the corresponding set-valued semiprocess which is
defined by

SV(t, s, x) :=
{
Sv(t, s, x) : v ∈ V

}
. (34)

A subset ΘV ⊂ X is then called a global attractor for
the set-valued semiprocess SV iff ΘV is compact and the
following conditions are satisfied:

(i) ΘV is uniformly attracting for SV , that is, for every
bounded subset B ⊂ X one has

dist
(
SV(t, 0, B),ΘV

)
−→ 0 (t→∞) (35)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3251



(ii) ΘV is negatively invariant under SV , that is,

ΘV ⊂ SV(t, 0,ΘV) (t ∈ R+). (36)

It should be noted that if V = {0}, then the global
attractor of the set-valued semiprocess S{0} coincides with
the global attractor of the semigroup S0.

We choose, for given u ∈ U ,

V(u) := {u(·+ h) : h ∈ R+} ⊂ L2
loc(R+), (37)

where the closure is w.r.t. the weak topology of the locally
convex space L2

loc(R+). It is well-known (Chepyzhov et al.
(2002)) that V(u) is metrizable, compact, translation-
invariant, u ∈ V(u), V(0) = {0} and

t∫
s

‖v(s)‖2ds ≤ (t− s)‖u‖2∞ (v ∈ V(u)). (38)

Theorem 3. Suppose that (7) is satisfied and let Θ be
the global attractor of the undisturbed system S0. Then
the disturbed system (Su)u∈U has the asymptotic gain
property w.r.t. Θ, that is, there exists a comparison
function γ ∈ K such that

lim sup
t→∞

‖Su(t, 0, x0)‖Θ ≤ γ(‖u‖∞) (39)

for all (x0, u) ∈ X × U .

Proof. We give here only a rough sketch of the proof.

Step 1. Using (38) we prove, that there exist continuous
monotonically increasing functions σ, γ : R+ → R+ such
that

‖Sv(t, 0, x0)‖ ≤ e−ωtσ(‖x0‖) + γ(‖u‖∞), t ∈ [0,∞) (40)

for all (x0, v) ∈ X × V(u) and all u ∈ U .

Step 2. Using the compactness of the semigroup generated
by our parabolic problem (see Lemma 15 of Valero et al.
(2006)), we prove that whenever xn −→ x weakly in X
and vn −→ v weakly in L2

loc(R+) for some xn, x ∈ X and
vn ∈ V(un), v ∈ V(u) and un, u ∈ U , one has the strong
convergence

Svn(t0, 0, xn) −→ Sv(t0, 0, x) (n→∞) (41)

for every t0 ∈ (0,∞).

Step 3. With the results of the previous steps at hand, we
prove that the global weak solutions of the problems (6) for
every u ∈ U generate a semiprocess family (Sv)v∈V(u), the
corresponding set-valued semiprocess SV(u) has a global
attractor ΘV(u) and

dist
(
ΘV(u),Θ

)
−→ 0 (u→ 0). (42)

Step 4. We observe that

‖Su(t, 0, x0)‖Θ = inf
{
‖Su(t, 0, x0)− θ‖ : θ ∈ Θ

}
≤ ‖Su(t, 0, x0)− θu‖+ dist(ΘV(u),Θ)

for every θu ∈ ΘV(u). So, taking the infimum over θu ∈
ΘV(u) and using Su(t, 0, x0) ∈ SV(u)(t, 0, x0), we see that

‖Su(t, 0, x0)‖Θ ≤ dist(SV(u)(t, 0, x0),ΘV(u))
+dist(ΘV(u),Θ)

(43)

for every (x0, u) ∈ X × U and t ∈ R+. Since ΘV(u) is a
global attractor for SV(u), we conclude that

lim sup
t→∞

dist(SV(u)(t, 0, x0),ΘV(u)) = 0 (44)

for every (x0, u) ∈ X × U . Since, moreover, u 7→ ΘV(u) is
upper semicontinuous at 0, we further conclude that there
exists a γ ∈ K such that

dist(ΘV(u),Θ) ≤ γ(‖u‖∞) (u ∈ U). (45)

Combining now (43), (44), (45), we obtain the claimed
asymptotic gain property.

6. CONCLUSION

For a class of nonlinear parabolic equations having a
global attractor in the unperturbed case we have provided
estimates about deviations of the solutions for the case
of disturbances entering to the system. These estimates
can be further used for the applications of small-gain
theorems in case interconnections of such systems need
to be analyzed in view of existence and robust stability of
the corresponding global attractor.

The results can be useful in applications involving mod-
eling of nonlinear diffusion or heat propagation processes
including the cases where instead of a global asymptotic
stability property the system possess a nontrivial global
attractor.
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