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Abstract:
This paper proposes an online optimal mode control method to minimize fuel consumption
for plug-in hybrid vehicles (PHVs) considering two drive modes: electric vehicle (EV) and
hybrid vehicle (HV) modes. The proposed method predicts fuel and electricity consumption
of PHVs based mainly on a driving-route model that considers road grades and vehicle speed
distributions. The driving-route model is estimated with terrain maps and historical driving
data on a planned route. In this work, two energy consumption maps are built for the EV
and HV modes of the PHVs. The driving-route model and energy consumption maps lead to
the formulation of an integer linear programming problem by regarding the two drive modes as
binary variables. A detailed vehicle simulator, called ADVISOR, demonstrates that the proposed
method improves fuel efficiency over that of a conventional method.

Keywords: Plug-in Hybrid Vehicles; Energy Management Systems; Integer Programming;
Online Control; Statistical Analysis; Stochastic Systems

1. INTRODUCTION

Optimal energy management for systems with two or more
resources is essential to improve operational efficiency.
This is because these various resources have distinct ad-
vantages and disadvantages (e.g., peak energy-conversion
efficiency). A typical example of such systems is plug-in
hybrid vehicles (PHVs). PHVs have two energy resources:
fuel and electricity. Each resource generates torque via an
engine, a battery, a motor, a generator, and gears. These
processes cause different types of energy loss depending on
driving conditions, such as road grade, speed, and weather.
Therefore, PHVs require higher-level energy management
considering driving conditions to achieve efficient driv-
ing than vehicles with a single resource. Many strategies
have been proposed previously (see Wirasingha and Emadi
(2011); Torres et al. (2014); Sun et al. (2015)).
More recently, strategies using statistical information
about driver behaviors and driving cycles have attracted
interest in the hybrid automotive industry. Moura et al.
(2011) provide a stochastic optimal control approach to
build a static feedback map offline. The static feedback
map can be processed in real time on an actual PHV. Sun
et al. (2015) achieve near-optimal fuel consumption using
a traffic data-enabled predictive control framework. Kelly
et al. (2012) propose a charging strategy focusing on ways
in which driving patterns and demographics affect energy
consumption. Ripaccioli et al. (2010) and Cairano et al.
(2014) develop an approach for driver-aware vehicle con-
trol based on stochastic model predictive control (SMPC)

with learning. This framework combines a Markov chain
representation of driver behavior, scenario-based stochas-
tic optimization, and quadratic programming. Malikopou-
los (2013) addresses the optimization problem of online
supervisory control in a hybrid electric vehicle (HEV). The
HEV operation is modeled as a controlled Markov chain
and treats the supervisory control as a dual constrained
optimization problem.
However, the main focus of the prior work is to determine
how the actions of each driver impact the vehicle model.
To the best of the authors’ knowledge, there exist no
studies that attempt to adopt vehicle speed distributions
on driving routes as stochastic modeling for an optimal
energy strategy. In addition, Chau et al. (2017) point out
that the aforementioned results often assume complete
control of internal energy management systems in PHVs.
Following that research, this paper discusses the optimal
control of drive modes, which are among the configuration
options to achieve efficient driving and are described in
Section 2.
To tackle these issues, this work focuses on modeling driv-
ing routes and proposes an online optimal mode-control
method to minimize fuel consumption for PHVs. The
driving-route model is built with road grades and vehicle
speed distributions. These are estimated from terrain maps
and historical driving data, i.e., statistical information, on
a planned route. In this research, two energy consumption
maps are also built for the drive modes of PHVs as a vehicle
model. From the driving-route model and energy consump-
tion maps, the energy demand of the planned course can
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be predicted. As a result, the online optimal mode con-
trol can be formulated as an integer linear programming
(ILP) problem with the drive modes, fuel consumption,
and electricity limitations as the decision variables, cost
function, and constraints, respectively. The ILP problem
is computationally tractable, unlike general mixed-integer
programming problems. This computational tractability
is demonstrated by the numerical simulation results. The
simulation results also show that the proposed method
improves fuel efficiency over the conventional method.
Another advantage of this method is that any PHVs can
share and use the driving route information. In the case of
driver-aware control, it is difficult to accurately convert
driver-behavior data to another PHV, as the data are
personalized.
The rest of this paper is organized as follows. Section 2
describes the problem settings of this study, energy con-
sumption maps, and modeling the driving route. Section 3
proposes the online optimal mode-control method and
provides the formulation of the ILP problem. A theoretical
property of the method’s constraints is also discussed.
Section 4 shows the simulation results of the proposed
approach via a detailed numerical simulator (ADVISOR,
see Brooker et al. (2013); Markel et al. (2002)). The simula-
tion results indicate that the present method can improve
fuel efficiency compared with the conventional method.
Section 5 summarizes the conclusions.

2. PROBLEM SETTINGS AND MODELING

2.1 Problem Settings

We consider a model of the driving route shown in Fig. 1.
This model is a finite route that has a departure and
an arrival place. The route is discretized by a sampling
distance d. Each sampling distance interval is numbered
as 1, . . . , N . θ1, . . . , θN denotes the road grades, and
v1, . . . , vN and V 1, . . . , V N denote the realizations and
random variables of the vehicle speed at each distance
interval, respectively.
This paper imposes the following assumptions:
Assumption 1. A driving route is defined in advance, e.g.,
a commuting route or other driving route searched by
navigation systems.
Assumption 2. The road grades θ1, . . . , θN are determin-
istic variables, and they can be collected from databases
such as Global Positioning Systems and 3-D terrain maps
(Sun et al. (2015)). The vehicle speeds V 1, . . . , V N are
discrete random variables with possible values v1, . . . , vnv

and follow discrete conditional probability distributions
with the Markov property. Thus, we can obtain a discrete
conditional probability distribution of

Pr
(
V k

∣∣ V k−1, V k−2, . . . , V 1
)
= Pr

(
V k

∣∣ V k−1
)
.

In addition, the probability distribution of the initial
interval Pr

(
V 1

)
is given.

Assumption 3. At the current distance interval k ∈
{1, . . . , N − 1}, the realized vehicle speed vk ∈ {v1, . . . , vnv}
and state of charge (SoC) of the battery SoCk ∈ [0, 1] are
known.

In this study, the control input is the drive mode at each
distance interval. The drive modes are classified into two

Fig. 1. Modeling the driving route: d is the sampling
distance interval, θk is the road grade, and vk and
V k are the realization and random variable of vehicle
speed.

Table 1. Battery specifications of Prius PHV
(Toyota Motor Corporation (2016))

Cell voltage 3.7 V Total voltage 207.2 V
Cell capacity 21.5 Ah Total capacity 4.4 kWh
Number of cells 56

types. The first is the electric vehicle (EV) or charge-
depleting (CD) mode. In this mode, PHVs use only the
electricity resource. The other is called hybrid vehicle
(HV) or charge-sustaining (CS) mode. In this mode, PHVs
generate the driving force with fuel, electricity, or both
while maintaining a constant SoC of the battery.
The PHVs currently on the market have adopted a rule-
based strategy, named the CDCS method (Wirasingha and
Emadi (2011)). The CDCS method follows a simple set of
rules: i) depleting the electricity from the battery in the
CD mode and ii) consuming the fuel to travel the remain-
ing distance in the CS mode. This conventional method is
suboptimal when the trip distance exceeds the all-electric
range, as it does not consider driving conditions (Pisu
and Rizzoni (2007)). Unlike the conventional method, the
proposed method optimizes EV–HV mode switching to
reduce fuel consumption.

2.2 Modeling of PHV with Energy Consumption Map

In this section, two energy consumption maps are built
to compute the fuel and electricity used by the PHVs in
the HV and EV modes. Suppose that the effects of the
road grade and vehicle speed on the energy consumption
on the entire trip are sufficiently large compared to the
other impacts, including inertia. In addition, assume that
the energy obtained by regenerative brakes is used to
re-accelerate PHVs. The simulation results in Section 4
indicate that these assumptions are reasonable 1 .
Figure 2 shows: (a) fuel energy consumption map wf(θ, v)
and (b) electric energy consumption map we(θ, v). These
maps depict the average energy consumption when a PHV
model runs on a road with grade θ at speed v, where
the road grade ranges from −6% to 6% in increments of
1% and the speed ranges from 5 km/h to 100 km/h in
increments of 5 km/h. This paper uses a Prius model in
ADVISOR to create these two maps. Some specifications
of the batteries are adjusted to those of the Prius PHV
from Toyota Motor Corporation (2016), as enumerated in
Table 1.
1 Note that inertia is another critical factor regarding instantaneous
energy consumption if the vehicle is accelerating or decelerating.
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(b) Electricity in EV mode
we(θ, v)

Fig. 2. Modeling PHV as two energy consumption maps
obtained by detailed numerical simulation

2.3 Stochastic Modeling of Vehicle Speed

Based on Assumption 2, this section introduces the tran-
sition probability matrices of the vehicle speed for each
sampling distance interval as follows:

P k =
[
pkab

]
, pkab = Pr

(
V k+1 = vb

∣∣ V k = va
)
, (1)

where k ∈ {1, . . . , N − 1}, a, b ∈ {1, . . . , nv} ,
∑

b p
k
ab =

1. These transition probabilities can be estimated from
known cycles, such as past driving data and standard driv-
ing cycles. This work estimates the transition probabilities
pkab from historical driving cycles. The estimation is a sim-
ple method based on Nadaraya–Watson kernel regression
(Nadaraya (1964); Watson (1964); Tamaki et al. (2014)).
Figure 3a shows an example of the estimated transition
probability matrices of the vehicle speed from interval step
k to k + 1.
These transition probability matrices are estimated for
each driving route against the driver-aware control (Ri-
paccioli et al. (2010); Cairano et al. (2014)). Therefore, all
PHVs can share the driving records even if their powertrain
properties are different. Note that, however, the driving
records on each route require large data storage.
Using the estimated transition probabilities (1), the pro-
posed method computes the probability distributions of
the vehicle’s speed throughout the planned route. Suppose
the probability distribution of the initial interval Pr

(
V 1

)
and the realization vk are known by Assumption 3. Then,
we can calculate the probability distributions for each
interval from k + 1 to N as

Pr
(
V i

)
= Pr

(
V i−1

)
P i−1, i ∈ {k + 1, . . . , N}, (2)

where, Pr
(
V i

)
=

[
Pr

(
V i = v1

)
· · · Pr

(
V i = vnv

)]
,

Pr
(
V k

)
=

[
I
(
vk = v1

)
· · · I

(
vk = vnv

)]
, and the Markov

property is used to obtain (2). I (·) is the indicator function
of (·), taking a value of 1 if (·) is true and 0 otherwise. Fig-
ure 3b shows an example of the probability distributions
from the initial to final intervals on the driving route.

3. ONLINE OPTIMAL MODE CONTROL

3.1 Problem Formulation

The present method aims to minimize fuel consumption
while handling the electricity constraint of PHVs. This pa-
per formulates an optimization problem with constraints
using the basic concepts of SMPC (Mesbah (2016)).

(a) Estimated transition prob-
ability matrix of vehicle speed
from interval k to k + 1

(b) Probability distributions of
vehicle speed throughout a trip

Fig. 3. Stochastic modeling of vehicle speed on one driving
route. The sampling distance intervals range from 0
km to 32.1 km at increments of 0.1 km.

Let k ∈ {1, . . . , N − 1} be the current distance interval on
the driving route. We consider the following cost function:

Jk = E

[
N∑

i=k+1

∆wf

(
θi, V i

)
(1− ui)

∣∣∣∣∣ vk
]

(3)

with respect to an open-loop mode control input sequence
ui ∈ {0, 1}, where ∆wf

(
θi, V i

)
= wf

(
θi, V i

)
d/V i. ui

denotes the EV–HV mode switching (1: EV mode, 0: HV
mode); it uses zero-order approximation during each sam-
pling distance step. ∆wf

(
θi, V i

)
denotes the fuel energy

consumption with distance d for each interval. E
[
·
∣∣ vk] is

the conditional expected value operator for the realization
of the vehicle speed vk at the current step k. The cost
function (3) can be calculated as

Jk = E
[
∆wf

(
θk+1, V k+1

)
(1− uk+1) + · · ·

· · ·+E
[
∆wf

(
θN , V N

)
(1− uN )

∣∣ vk] · · · ∣∣ vk]
=

N∑
i=k+1

nv∑
b=1

Pr
(
V i = vb

)
∆wf

(
θi, vb

)
(1− ui) (4)

using (2). The cost function (3) means that the expected
values of fuel consumption are accumulated for the inter-
vals in which the PHV is in the HV mode.
This optimization problem minimizes (3) subject to the
following constraints of the electricity resource:

SoCmin ≤ SoC` ≤ SoCmax, ` ∈ {k + 1, . . . , N}, (5)
where SoCmin and SoCmax denote the lower and upper
limitations of the SoC, respectively. The SoC limitations
(5) are reformulated to

E

[
1

Qfull

∑̀
i=k+1

∆we

(
θi, V i

)
ui − SoCk

min

∣∣∣∣∣ vk
]
≤ 0, (6)

E

[
− 1

Qfull

∑̀
i=k+1

∆we

(
θi, V i

)
ui − SoCk

max

∣∣∣∣∣ vk
]
≤ 0, (7)

where ∆we

(
θi, V i

)
= we

(
θi, V i

)
d/V i, SoCk

min = SoCk −
SoCmin, SoCk

max = SoCmax − SoCk. SoCk denotes the
current SoC value, Qfull denotes the total electricity of the
battery, and ∆we

(
θi, V i

)
denotes the electrical energy con-

sumption with distance d for each interval. The inequality
constraints (6), (7) can be represented, in the same way of
(4), as
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1

Qfull

∑̀
i=k+1

nv∑
a=1

Pr
(
V i = va

)
∆we

(
θi, va

)
ui ≤ SoCk

min,

(8)

− 1

Qfull

∑̀
i=k+1

nv∑
a=1

Pr
(
V i = va

)
∆we

(
θi, va

)
ui ≤ SoCk

max

(9)
using (2).
In summary, the online optimal mode-control problem for
the current step k is formulated as

(P): min
u

(4) subject to (8), (9),

where u =
[
uk+1 · · · uN

]T denotes the input sequence
vector. Because (P) is an ILP problem, it can be solved
with standard ILP solvers. In this approach, the optimiza-
tion problem (P) is solved sequentially for each of the
remaining intervals k + 1, . . . , N . The PHV takes the first
mode input (u∗)k+1 for the next interval step.
The inequality constraints (6), (7) are not the chance
constraint generally considered in SMPC. However, opti-
mization problem (P) implicitly provides a trade-off be-
tween the use of fuel and electricity in the process of
solving the ILP problem. To express this trade-off as an
ILP problem, the proposed approach imposes inequality
constraints (6), (7) on the expected values of the SoC. A
theoretical relationship between the constraints (6), (7)
and the chance constraint is provided in Section 3.3.

3.2 Reduction of EV–HV Mode Switching Frequency

The solution to problem (P) provides an optimal mode
sequence vector. This optimal sequence of the drive modes
allows the PHV to switch the EV–HV mode rapidly.
This high-frequency mode switching can cause loss of
drivability. In this section, to reduce the EV–HV mode
switching frequency, a constraint is added to problem (P).
This study imposes the following equality constraint,

(ceq − 1)uk+1 −
(
uk+2 + · · ·+ uk+ceq

)
= 0,

ceq ∈ {2, . . . , N − k} , (10)
in addition to the inequality constraints (8), (9). This
equality constraint (10) implies that the same mode is
used for intervals k + 1, . . . , k + ceq in the optimization at
step k. This statement also shows that it does not affect
the computation cost, even if the total number of decision
variables u increases. This paper defines problem (P) with
the mode-switching constraint (10) as

(Q): min
u

(4) subject to (8)–(10).

Because this optimization problem, (Q), is another ILP
problem, the same solution scheme as (P) can be used.
Note that the mode-switching constraint (10) does not
guarantee that a given restricted input is also held for the
optimization at the next step. Despite this, the solution
of (Q) can decrease the number of EV–HV mode switches
compared to that of (P). One reason for this is that the
optimal mode sequence of (Q) may have an effect that
differs from that of (P) on the value of the SoC. This
affected value of the SoC will induce an optimization result
at the next step to keep the same drive mode.

3.3 Theoretical Property of (P) in terms of Chance
Constraint

This section describes a theoretical property of problem
(P) in terms of the chance constraint.
The following proposition shows that the inequality con-
straints (6), (7) on the expected value of the SoC depletion
can be written as the chance constraint.
Proposition 4. Let θ̂t =

(
θk+1, · · · , θk+t

)
and V̂ t =(

V k+1, · · · , V k+t
)
, t ∈ {1, . . . , N − k} be determinis-

tic scenarios of the road grades and random scenarios
of the vehicle speeds with all the possible realizations
v̂t =

(
vk+1, · · · , vk+t

)
, vk+t ∈ {v1, . . . , vnv

}, respectively.
Assuming that (u∗)k+t, t ∈ {1, . . . , N − k} is the optimal
solution of (P), the solution of (P) has the following
property related to a set of chance constraints:

Pr
({

v̂t
∣∣ v̂t ∈ C+

v̂t

} ∣∣ vk) ≥ max

E
[
∆w+

e

(
θ̂t, V̂ t

) ∣∣∣ vk]
QfullSoCk

min

, 0

,

(11)

Pr
({

v̂t
∣∣ v̂t ∈ C−

v̂t

} ∣∣ vk) ≥ max

−E
[
∆w−

e

(
θ̂t, V̂ t

) ∣∣∣ vk]
QfullSoCk

max

, 0

,

(12)
where

w+
e

(
θ̂t, v̂t

)
= I

(
v̂t ∈ C+

v̂t

) t∑
s=1

∆we

(
θk+s, vk+s

)
(u∗)k+s,

w−
e

(
θ̂t, v̂t

)
= I

(
v̂t ∈ C−

v̂t

) t∑
s=1

∆we

(
θk+s, vk+s

)
(u∗)k+s,

C+
v̂t =

{
v̂t

∣∣∣∣∣ 1

Qfull

t∑
s=1

∆we

(
θk+s, vk+s

)
(u∗)k+s ≤ SoCk

min

}
,

C−
v̂t =

{
v̂t

∣∣∣∣∣ − 1

Qfull

t∑
s=1

∆we

(
θk+s, vk+s

)
(u∗)k+s ≤ SoCk

max

}
.

Proof. The proof is derived from (8), (9). �

Proposition 4 implies that the chance constraints (11),
(12) are defined depending only on the probability of
the vehicle speed. This is because higher-order central
moments (e.g., variance) are not considered (Farina et al.
(2013); Hashimoto (2013)). The formulation of risk-aware
constrained optimization that is physically meaningful
to energy management for PHVs is an ongoing work.
Although this theoretical limit to the constraints exists,
the next section demonstrates that the proposed method
can decrease fuel consumption compared to the CDCS
method.

4. SIMULATION

This section shows the numerical simulation results of the
proposed methods. These results are demonstrated via
ADVISOR. The simulation uses intlinprog in MATLAB
(MathWorks (2019)) as an ILP problem solver on a stan-
dard desktop computer. The desktop computer has Intel®
Core™ i7-4790 3.60 GHz CPU and 16GB of RAM.
The simulation deals with a commuter driving on a
real suburban route. The route has a total distance of
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Fig. 5. Example of the vehicle speed profiles for estimation
of probability distributions of speed

approximately 32.1 km and the road grades shown in
Fig. 4. The transition probability matrices of this com-
mute are estimated with 60 vehicle speed profiles, in-
cluding approximately 19,000 data points recorded by
DashCommand™(Palmer Performance Engineering Cor-
poration (2018)). Figure 5 illustrates an example of the
vehicle speed profiles of the commute. As a PHV model,
the two maps in Fig. 2 are used to compute the energy
consumption.
This study prepares 500 real-cycle profiles that differ from
the 60 cycles used for estimation. These additional profiles
are used to verify whether the proposed method can
improve the fuel consumption compared to that of the
standard CDCS method. Note that a priori information
is limited to the estimated transition probabilities of
the vehicle speed, and the 500 driving profiles for the
simulation are unknown.

4.1 Results in Case (P)

Figure 6 shows the performance results of the proposed
method in case (P). It shows one example SoC profile,
fuel consumption result, and input history. The proposed
method schedules the switching in the first half of the
route and sustains the electricity to travel parts of the
last half in EV mode. Additionally, Table 2 summarizes
the improvement ratio of the proposed methods to the
CDCS method. It shows the average, standard deviation
(SD), maximum, and minimum of verification via 500
drive cycles for each method. The average improvement
in performance is 13.7%. The results shown in Fig. 6 and
Table 2 indicate that the modeling of the driving route
and the PHV is reasonable.
Problem (P) can be solved within 6 s on the standard
desktop computer in most cases. A vehicle travelling at an
average speed of 60 km/h for 0.1 km takes 6 s, which is
longer than the computational time of the method. Hence,
the online calculation for the actual PHVs can be processed
on a standard- or high-performance machine (e.g., a cloud-
computing server and high-performance control unit). The
worst cases take approximately 10 s on average to solve
the ILP problem, such cases occur only a few times in
one trip. In these worst cases, the present method can
alternatively use the second and subsequent inputs of the
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Fig. 6. Simulation results of one drive cycle via ADVISOR
(proposal in case (P) vs. CDCS): The top, middle,
and bottom are an SoC profile, accumulated fuel
consumption result, and input history, respectively.

Table 2. Improvement ratio of fuel consump-
tion w.r.t. CDCS method

ave. SD max. min.

Case (P) 13.7% 6.6% 30.7% −3.3%
Case (Q) 11.1% 3.9% 24.9% −0.4%

previous optimization result (u∗)k+2, (u∗)k+3, . . . at the
next step.

4.2 Results in Case (Q)

Figure 7 shows an example of the results in case (Q)
with ceq = min (5, N − k) to reduce the EV–HV mode
switching frequency. Method (Q) can reduce the number
of EV–HV mode switches compared to the result in Fig. 6c.
The mode switching occurs 20.3 times on average in the
case of Fig. 6c. In the case of Fig. 7c, the average number
of mode switches is 11.9.
According to Table 2 in the case of (Q), the average
improvement in performance is 11.1%. The computation
time to solve problem (Q) is within 6 s in most cases.
The efficiency and computation cost are nearly the same
as those of case (P). Hence, method (Q) is helpful to
optimize the energy consumption and reduce the EV–HV
mode switching frequency simultaneously.

5. CONCLUSION

This paper discusses the online optimal mode control
method for PHVs based on a driving-route model. In the
proposed method, the driving-route model is estimated
by statistical information, and the energy consumption
maps of the PHV are built as two functions of the road
grade and vehicle speed. These models are sequentially
used in the ILP problem to determine the EV–HV mode to
reduce fuel consumption. This approach is demonstrated
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Fig. 7. Simulation results of one drive cycle via ADVISOR
(proposal in case (Q) with ceq = min (5, N − k)
vs. CDCS): The top, middle, and bottom are an
SoC profile, accumulated fuel consumption result, and
input history, respectively.

in the detailed numerical simulator. The simulation results
show that fuel consumption decreases compared with the
conventional method, and the ILP problem can be solved
in real time on a standard desktop computer.
As future work, implementation on an actual PHV
and verification for many different driving scenarios are
planned. We will also attempt to employ the variance val-
ues to a cost function and constraints to reduce variation
in the improvement ratio.
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