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Abstract: This paper presents a databased approach for improving the precision of the
moulding sand compressibility in the moulding sand mixer of a foundry. In this approach,
the deviation between the measured and the target compressibility is reduced by controlling
the water addition. The complex dynamic behaviour of the process variables and their influence
on the water addition is modelled with a long short-term memory (LSTM) network. Another
LSTM network as control path simulates the impact of the water addition on the compressibility.
Simulation and experimental results with the applied model for water prediction in a feedforward
control yield relevant improvements of the moulding sand compressibility.

Keywords: neural control, neural network model, industrial production system, prediction
methods, intelligent control, batch control, target control, feedforward control

1. INTRODUCTION

Process stability is an important criterion to reduce pro-
duction interruptions at production plants. In green sand
casting, the moulding sand compressibility is an essential
influencing factor for the quality of casting moulds and
cast products [Tilch et al. (2015)]. Influencing factors on
the sand compressibility are for example the addition of
water and bentonite 1 . These additives are diminished
from the moulding sand during the casting process by
thermal wear or other losses [VDG (1989b)]. In practice,
the compressibility is typically controlled in the mould-
ing sand mixer [Michenfelder et al. (2014), Seeber and
Kohler (2012)]. For this purpose different possibilities for
control algorithms exist, for instance fuzzy logic [Gemming
(2003)].

Exemplified by the foundry Heinrich Meier Eisengießerei
GmbH & Co. KG in Rahden, the compressibility is discon-
tinuously controlled by manipulating the water addition.
The water control algorithms react on proportional differ-
ences between measured and target compressibility. Batch-
related, abrupt changes in the compressibility cannot be
fully compensated in the following batch. This can lead to
typical casting defects such as demolished moulds and cod
breakage [Tilch et al. (2015)]. In case of significant defects
of this type, a mould cannot be used which may result in
production interruptions. The replacement of the defective
moulds and thus the higher demand of moulding sand
leads to higher energy costs, higher capacity utilization
and higher emissions in sand preparation, for example the

? The European Regional Development Fund co-financed this re-
search and publication.
1 Bentonite belongs to the clays and is responsible for the binding
behaviour of the moulding sand [VDG (1989a)].

emission of carbon monoxide [BDG (2019)]. On an inter-
national comparison with respect to high energy costs and
capacity utilization in Germany [Trinowski (2016)], the
reduction of moulding sand offers optimization potential.

Previous work on databased modelling in the sand prepa-
ration of the foundry Heinrich Meier Eisengießerei GmbH
& Co. KG focused on sand temperature and sand flow.
The temporal changes of sand temperature during the
sand preparation in the sand cooler could be detected
by neural networks [Sommer (2017)]. Furthermore, in this
context the prerequisites for a databased approach could
be derived [Pätzold (2017)]. An approach for modelling the
time characteristic of the moulding sand in the sand mixer
could be shown by neural networks [Rose et al. (2020)].
One mature challenge in modelling complex processes are
internal dynamics with large time constants, since they
require models with storage capabilities. Therefore, this
paper presents a databased control approach for the water
addition in the moulding sand mixer using a long short-
term memory (LSTM) network as prediction model. This
prediction model illustrates the dependency of the com-
pressibility and the further process variables on the water
addition. The advantage of this method is reducing the
deviation from the target compressibility, this is initially
simulated with a second model for the control path and
then tested as control approach at the production plant.

2. LSTM FOR WATER PREDICTION

Recurrent neural networks (RNN) use feedback loops to
store information. Long short-term memory (LSTM) cells
are RNNs extended by a long-term memory cell [Hoch-
reiter and Schmidhuber (1997), Manaswi (2018)]. These
cell enables LSTM to reproduce correlations in signals
with long shifting time constants. LSTM cells combine
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correlation of multiple signals and can be arranged as
networks with topologies of e.g. M ×N layers / cells per
layer, M,N ∈ N. A common activation function in the
underlying neuronal networks is the sigmoid function

sig(x) :=
1

1 + e−x
=

1

2
+

1

2
tanh

(x
2

)
. (1)

In an LSTM network the state of the cells at the discrete
times t ∈ N are denoted as st ∈ RN. With the input
sequence ut ∈ R`, the output sequence ht ∈ RN and the
biases bf ,bg,bs,bo ∈ RN, the information from the last
cell state st−1 will be forgotten by

ft = sig(Hfht−1 + Ufut + bf ), ft ∈ RN. (2)

Uf ,Ug,Us,Uo ∈ RN×` and Hf ,Hg,Hs,Ho ∈ RN×N

denote the weighting factors for the input and output se-
quences respectively. The common mapping of scalar func-
tions to vector representations is used and the elementwise
Hadamard multiplication is denoted as �. Information
from the last output sequence and the input sequence will
be ignored by

gt = sig(Hght−1 + Ugut + bg), gt ∈ RN. (3)

For the discrete time t the cell state is

st = ft � st−1 + gt � tanh(Hsht−1 + Usut + bs) (4)

and the output sequence reads

ht = sig(Hoht−1 + Uout + bo)� tanh(st). (5)

The LSTM network output is condensed to a single time
series using an extra neuron. The mean squared error is
chosen to be the loss function for evaluation. A popular de-
cision criterion for terminating the learning process is the
minimum of the loss function which can be found by early
stopping [Gal and Ghahramani (2016)]. For regularization
a dropout layer is implemented in the LSTM network to
avoid overfitting [Zaremba et al. (2014)].

2.1 Data preprocessing

Production interruptions, sensor errors and data collec-
tion failures are eliminated by preprocessing. Measurement
data outside the plausible range, such as negative measure-
ment values for masses, are removed from the data set.
As the result of the mixing process, the data collection
step size varies within 205 ± 110 s. The transformation of
the data from time domain to batch domain accumulates
the data to batches. The measured water addition W
and further process variables are stored when the sand
mixer is emptied. High-frequency components 2 are filtered
using the convolution (x ∗ k)n =

∑
m kn−mxm of T data

points x = (x1, x2, . . . , xT ) from a data set with the half
normalized gaussian kernel

kn ∝ e−n
2/2σ2

, n ≥ 0 und kn ≡ 0, n < 0 (6)

and its width σ. Setting kn<0 ≡ 0 accounts for causality.
The following examinations are based on a data set of
approximately 100 days. The data set is separated by
2 High-frequency components are specific for the measuring proce-
dure of compressibility. Pre-compressed sand samples result low mea-
sured compressibilities. Air between sand clots yields high measured
compressibilities.

Table 1. List of investigated process variables

process variable unit mean
standard
deviation

SM return sand mass kg 5899 28.3
BM bentonite mass kg 16.0 2.05
CM coal dust mass kg 14.1 1.63
SMo return sand moisture % 3.17 0.0720
ST return sand temperature ◦C 38.0 3.91
C sand compressibility % 39.9 2.34
AH air humidity % 28.7 6.26
AT air temperature ◦C 31.5 5.40
W water addition 10−3 m3 54.6 12.0

days and divided into 80 % training, 10 % validation and
10 % test data. An influence of randomized data sets from
different days could not be clearly identified. The training
and validation data are used for learning and evaluating
the LSTM network. The validation and test data are
used for prediction. The data are linearly scaled to a
continuous interval of [0, 1] for reducing the learning time.
Table 1 shows the unscaled process variables with mean
and standard deviation after preprocessing.

2.2 Schematic control system

The existing control system for the sand preparation
with target compressibilityCtarget contains the controller
and the pre-dosing, see Fig. 1 (solid lines). The further
process variables are summarized here as D. The water
additionW is controlled by the d ∈ N0 doses every batch
which are classified in the two steps pre-dosingWpre with
d = 0 and post-dosingWpost with d > 0. The counter
for d is reset after every batch. For pre-dosing, the value
of the last water addition is taken into account by an
offset. The size of the offset depends on the difference
between the target and measured compressibilityC of
the previous batch. Additionally required water can be
added by post-dosing after measuring the compressibility.
Especially the compressibility measurement is influenced
by measure noise. However, to ensure the target mixing
time in the sand mixer, only one additional dose per
batch can actually be added. In contrast to the existing
control system, an LSTM network predicts the water
addition with regard to the further process variablesD and
a longer time horizon, see Fig. 1 (dashed lines). The LSTM
prediction model for water addition is denoted as Model 1.
In the simulation, the control path is described by Model 2.

holdcontroller

hold

control path
WCtarget C

pre-dosing

prediction
LSTM network

D

measure/close

closed d = 0
noiseopen d > 0

Fig. 1. Schematic control system, additional path for water
prediction using LSTM shown in dashed lines
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3. MODELLING PROCEDURE

Software basis for implementation of the LSTM networks
is Tensorflow [Abadi et al. (2015)]. The following proce-
dure is chosen to illustrate the improvement by the one-
step-ahead predicted water addition on the compressibi-
lity. The steps are:

(1) Sensitivity analyses to figure out the dependency of
the water additionW with respect to the process
variables and the network topology, respectively.

(2) Prediction of the water additionWpred based on the
sensitive process variables as input (Model 1 ).

(3) Simulation of the compressibilityC◦,sim with Model 2
as the control path using the predicted water addi-
tionWpred, the measured water additions Wpre and
Wpost with ◦ = {pre,post,pred} as inputs.

(4) Test of the prediction model for water additionWpred

(Model 1) at the production plant and benchmarking
against the actual water addition for pre-dosingWpre

by comparing the compressibilities.

The prediction quality results from the comparison of
the predicted and measured values and is described by
a conformity index. The quantification of this conformity
index can be calculated with the Pearson correlation

p(a,b) =

∑
i(ai − a)(bi − b)√∑

i(ai − a)2
∑
j(bj − b)2

(7)

for arbitrary a,b 6= 0. It is rated by the mean value
accuracy

r(a, b) = 1− 2

∣∣∣∣a− ba+ b

∣∣∣∣ , (8)

with the progression m := 1
T

∑T
i=1mi,m = {a,b} and

ranges −1 ≤ p, r ≤ 1.

3.1 Correlation analysis

For comparison only the preliminary correlation analysis of
the signals is based on a covariance matrix calculated with
the Pearson correlation (7) on a common time base, see
Fig. 2. These results indicate a correlation between water

SM BM CM SMo ST C AH AT W

W

AT

AH

C

ST

SMo

CM

BM

SM

-1.0

-0.4

0.0

0.5

1.0

Fig. 2. Heatmap of the Pearson correlation coefficients of
the process variables

additionW with return sand moistureSMo (−0.64), return
sand temperatureST (−0.40) and air temperatureAT

(−0.39). The correlation between the compressibilityC
and the water addition (−0.22) is quite small. For the
following approaches, filtering the data set with the half
normalized gaussian kernel (6) of widthσ = 3 reduces the
effect of high-frequency noise.

The Pearson correlation fails with time-shifted signal cor-
relations. Thus, the selection of sensitive process variables
is additionally performed by training the LSTM network of
Model 1 by including further process variables, see table 2.
The main reason is to achieve the target compressibility.
Hence, the compressibility is always included in the vari-
ations of Model 1. The reference value is the conformity
index with 0.27 ± 0.20 when only the compressibility is
learned. A comparatively simple network topology with
21 cells in one layer proves to be sufficient and is used to in-
vestigate the sensitivity of the process variables to the wa-
ter addition aiming to short learning times. This topology
results from the following hyperparameter optimization
(see section 3.2). The conformity index is determined for
each individual day and therefore scatters. By comparing
two process variable combinations, a significant effect on
the prediction quality is assumed when an improvement
of at least 0.1 in the mean conformity index is achieved.
This value corresponds to the standard deviation of the
conformity index of the best results. Similar to the corre-
lation analysis the return sand moisture is clearly the most
sensitive process variable to Model 1, see table 2 (id = 4).
Furthermore, the return sand temperature (id = 5), the
humidity (id = 6) and the air temperature (id = 7) seem
to be also sensitive process variables. Further combinations
of the return sand moisture with return sand temperature,
humidity and the air temperature shows nearly constant
prediction results (id = 24, 25, 26, 62). The best prediction
result is id = 26. The mean value accuracy of this combi-
nation is with r = 0.98± 0.02 high. If all process variables
are learned for comparison (id = n), the prediction results
are similar. By comparing the LSTM network with the co-
variance matrix the time-shifted behaviour of the process
variables is included and the return sand moistureSMo is
the most sensitive signal.

Table 2. Conformity index p for variation id
of the process variables with fixed network
topology of 21 cells in one layer for Model 1

id p SM BM CM SMo ST AH AT

1 0.22 ± 0.08 + − − − − − −
...

...
4 0.71 ± 0.17 − − − + − − −
5 0.38 ± 0.24 − − − − + − −
6 0.35 ± 0.25 − − − − − + −
7 0.43 ± 0.21 − − − − − − +
..
.

..

.
24 0.84 ± 0.10 − − − + + − −
25 0.83 ± 0.10 − − − + − + −
26 0.86 ± 0.08 − − − + − − +
...

...
62 0.85 ± 0.09 − − − + + − +
...

...
n 0.85 ± 0.08 + + + + + + +
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3.2 Hyperparameter analysis

The influence of the network topology on the prediction
quality is investigated by a hyperparameter optimization,
see Fig. 3. The optimization strategy in this paper is car-
ried out by a Tree of Parzen Estimator. The software
for the related implementation is the hyperopt package
[Bergstra et al. (2013)]. Decision criterion for the best
network topology is the validation loss minimum. This
value results from the mean squared error of the data
predicted by the network in comparison to the validation
data. The euclidean norm ‖c‖2 :=

√∑
i=1 c

2
i is chosen

to cumulate the number of cells over all layers for each
variation. The number of cells in each layer is selected
from a progressive sequence, here for example from the
subset {2, 3, 5, .., 34} of the Fibonacci series to keep the
variations low at high cell numbers. The number of lay-
ers are varied in the set {1, 2, 3, 4}. Preliminary studies
show an optimal sequence length of three batches in this
case. The calculation results, see Fig. 3 (black points), are
projected on each coordinate plane, see Fig. 3 (blue, red
and green markers). Instead of an expected clear identi-
fiable minimum, the validation losses form a plateau of
comparable network topologies with similar values, see
Fig. 3 (sectors A and B). The values of the validation loss
converge to approximately 2.9 ·10−3. Therefore, an LSTM
of 1×21 is chosen as a proper and simple optimal network
topology. The influence from dropout on the validation
loss is tested by a random variation of the dropout rate
from ten samples in the continuous range [0, 1] for a fixed
LSTM network topology. This topology is identified by
another hyperparameter optimization for the correlation
between compressibility and water addition. In this set-
ting, the optimization algorithm selects a dropout rate in
the continuous range [0.25, 0.89]. The ratio of the standard
deviation to the mean is defined as the coefficient of vari-
ation. The coefficient of variation of the validation losses
is relatively low at 1.50 %, so the influence of dropout rate
seems to be constant in this context.
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Fig. 3. Hyperparameter optimization results depending on
the layers and the cumulated cells

4. PREDICTION RESULTS

The prediction of the water addition is performed with
Model 1 (id = 26) as inverse model of the control path.
For one sample day with an average prediction result, the
data of the process variables are scaled to its maximum,
see Fig. 4 (top). The model learns the water addition af-
ter post-dosingWpost to reach the target compressibility.
Fig. 4 (bottom) shows the comparison of the measured
water addition with the predicted water additionWpred

including both means. The principal characteristics are
well reproduced in particular the dynamic behaviour, see
Fig. 4 (bottom, sector A). Incompletely formed peaks typ-
ically result in significant losses in the prediction quality,
see Fig. 4 (bottom, sector B). A possible cause for incom-
pletely formed peaks can be the influence of an unknown
process variable. Over the investigated days, exceptions
in the prediction quality are caused by individual daily
data that have a clear offset above one percentage point
between the means or do not form peaks correctly.
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Fig. 4. Predicted water addition using Model 1 and mea-
sured water addition after post-dosing to the time
series from 22.11.2018 with p = 0.841 and r = 0.995

4.1 Compressibility simulation

The simulation of the following compressibilitiesC◦,sim is
performed with Model 2 as control path. Reference tra-
jectory is the target compressibilityCtarget. Inputs for
Model 2 are the respective water additionsW◦,sim, the
return sand moistureSMo, the return sand temperatureST
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and the air temperatureAT. The predicted water ad-
ditionWpred is calculated using Model 1. For a sample
day, the data of the process variables including the wa-
ter additions are scaled to its maximum, see Fig. 5 (top).
Fig. 5 (middle) shows the comparison between the target
compressibility and the simulated compressibilitiesC◦,sim.
The reference trajectory of the compressibility is relatively
smooth, therefore the root mean squared error (rmse) is
used to compare the compressibilities. The compressibi-
lity simulation with the predicted water addition as in-
putCpred,sim is approximately 65 % more accurate than
the simulated compressibility from the pre-dosingCpre,sim
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Fig. 5. Measured and simulated compressibilities using
Model 2 with measured and predicted water addition
for inputs to the time series from 21.03.2019

and approximately 63 % better than simulation with post-
dosingCpost,sim, see Fig. 5 (middle). If the compressibility
is too low, the post-dosing compensates the compressi-
bility deviations partially, see Fig. 5 (middle, sector A).
The compressibility with the predicted water addition as
input is in general slightly below the target compressibility.
Therefore, post-dosing seems to be possible. The com-
pressibility drifts probably caused by the return sand tem-
perature and the air temperature can be well predicted,
see Fig. 5 (top and middle, sectors B and B*). The root
mean squared error of the deconvoluted predicted com-
pressibilityCpred,sim,deconv is in absolute values 0.69 higher
than the simulated convoluted compressibilityCpred,sim,
see Fig. 5 (middle and bottom). On average, the rmse for
the deconvoluted predicted compressibility is 1.16 ± 0.15
and for the measured compressibility 1.99 ± 0.18. The
relative distance of the root mean squared errors between
the deconvoluted compressibilityCpred,sim,deconv and the
measured compressibility after post-dosingCpost is in the
same range than the difference between the simulated
convoluted compressibilities Cpred,sim and Cpre,sim.

4.2 Production plant test

The test of the predicted water additionWpred at the
production plant runs with a typical casting model for
60 batches (approximately three hours) and is performed
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Fig. 6. Test of the water addition for pre-dosing using
Model 1 at the production plant and measured com-
pressibility response to the time series from 16.10.2019
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on a day with high fluctuations in the compressibility, see
Fig. 6. The calculation of the water addition is based on
Model 1 (id = 26) with an input data set consisting of
compressibility, return sand moisture and air temperature.
The sequence length includes three batches and the pre-
diction is one step ahead. The algorithm for the water
prediction is active for 17 batches, see Fig. 6 (sector A).
Post-dosings are excluded from the unconvoluted data to
evaluate only the pre-dosing effect. The predicted water
addition and the water addition for pre-dosing calculated
by the existing controlWpre are shown in comparison,
see Fig. 6 (top). The differences between the actual given
water additionWadded and the predicted water addition
are specific to this production plant and vary in the typical
range±0.5 (10−3m3). By comparing the total variability
of the measured compressibilities, the fluctuation of the
compressibilityCpred is less than the fluctuation of the
compressibilityCpre, see Fig. 6 (bottom, sectors B and B*).
The root mean squared error in case B* is approximately
45 % lower than in case B. Therefore, the water prediction
with Model 1 is about to reduce the difference between the
measured compressibility and the target compressibility at
the given production plant.

5. CONCLUSION

This paper illustrates a databased approach to control
the moulding sand compressibility using LSTM networks.
The compressibility is controlled by the predicted pre-
dosing of the water addition. These prediction is possible
for the underlying production plant and shows significant
sensitivity with respect to the return sand moisture and
the return sand temperature or the air temperature. The
network topology is essential for the prediction result.
However, quite a number of best topologies seem to exist
that allow for similar prediction qualities. The utilization
of water prediction in a feedforward control scheme leads
to a significant improvement of the compressibility. The
simulation and the plant operation experiment prove the
capability of the presented approach. Thus, the presented
method contributes to the qualification of databased con-
trol approaches in foundries.

In future studies, the prediction quality will be further in-
creased by considering more process variables. Initial data
of the motor currents of the main drive and the agitator
in the moulding sand mixer indicate positive effects on
the quality of the water prediction. These will be included
when sufficient data are available for the learning process.
By optimizing the sensitivity of the compressibility to
the water addition the accuracy of the water pre-dosing
can be further improved. More accurate compressibility
measurement devices are provided for this purpose. An
endurance test with the predicted water addition at this
foundry is planned to evaluate the presented method under
a variety of environmental influences.
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