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Abstract: In this paper, algebraic tests are proposed to establish asymptotic stability of
parametric linear systems assuming that the parameters lie in a given variety. In particular, by
using tools borrowed from algebraic geometry, necessary and sufficient condition are proposed
to test whether a continuous-time or a discrete-time linear parametric system is asymptotically
stable for all the specializations belonging to a given variety. Both the cases of zero dimensional
and non-zero dimensional varieties are considered.
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1. INTRODUCTION

In the literature, several tests have been proposed to test
the asymptotic stability of linear, time-invariant systems,
such as the Routh-Hurwitz criterion (Hurwitz, 1895), the
Jury criterion (Ogata, 1995), and linear matrix inequality
(LMI) methods (Boyd et al., 1994). On the other hand, if
the coefficients of the considered system depend on some
parameters, the problem of determining whether the plant
is asymptotically stable is much more challenging (Yeung,
1983; Bhattacharyya and Keel, 1995; De Oliveira et al.,
1999; Ramos and Peres, 2002). If the system depends
just on a single parameter, in Zhang et al. (2003), it has
been shown that asymptotic stability is equivalent to the
existence of a polynomial Lyapunov function satisfying two
matrix inequalities. On the other hand, if upper and lower
bounds on the coefficients of the characteristic polynomial
of the system are known, then asymptotic stability can be
established by evaluating the roots of the four so-called
Kharitonov polynomials (Kharitonov, 1978).

A drawback of the Kharitonov-like approaches is that they
implicitly assume that the coefficients of the characteristic
polynomial of the plant vary independently (Fu et al.,
1989). Assuming that these coefficients depend polynomi-
ally on the parameters, in Keel and Bhattacharyya (2010),
a sufficient stability test, using results on sign-definite
decomposition, is proposed. An attempt to reduce the con-
servativeness of these conditions has been made in Sánchez
and Bernal (2017) by means of convex optimization tech-
niques (see also Elizondo-González, 2011 for a survey of
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methods to study the asymptotic stability of linear time-
invariant systems with parametric uncertainty).

The main objective of this paper is to design algebraic
tests to establish the asymptotic stability of parametric
polynomial systems assuming that the parameters lie in
a given variety (see Section 2 for its formal definition).
In particular, in Section 3, it is shown how to use al-
gebraic geometry tools to establish asymptotic stability
of parametric linear systems in the case that the ideal
defining the variety is zero dimensional (such an hypothesis
is removed in Section 4). Examples of application of the
given methods are reported in Section 5, while conclusions
are given in Section 6.

2. ALGEBRAIC GEOMETRY CONCEPTS

Let x = [ x1 · · · xn ]> be a vector of variables. A monomial
in x is a product of the form xα := xα1

1 xα2
2 · · ·xαn

n , where
α1, . . . , αn are non-negative integers. Let K be a field, as,
e.g., the sets of real R, rational Q, and complex C numbers.
A polynomial p in x with coefficients in K is a finite K–
linear combination of monomials. Let K[x] denote the ring
of all the polynomials in x1, . . . , xn with coefficients in K
and let K(x) denote the field of all the rational functions in
x1, . . . , xn with coefficients in K. A field K is algebraically
closed if every non-constant polynomial p ∈ K[x] has a
root in K. Let K denote the algebraic closure of K, i.e.,
the smallest extension of K that is algebraically closed.

Given p1, . . . , ps ∈ K[x], the ideal of p1, . . . , ps is

〈p1, . . . , ps〉 := {q ∈ K[x] : ∃hi ∈ K[x] s.t. q =
∑s
i=1 hipi},

while the variety in K defined by p1, . . . , ps is the set

VK(p1, . . . , ps) := {x ∈ Kn : pi(x) = 0, i = 1, . . . , s}.
Given an ideal I of K[x], the variety of I is
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VK(I) := {x ∈ Kn : p(x) = 0, ∀p ∈ I}.
On the other hand, given any S ⊂ Kn, the ideal of S is

I(S) := {p ∈ K[x] : p(x) = 0, ∀x ∈ S}.
The set S{ = VK(I(S)) is denoted Zariski closure of S and
is the smallest (with respect to set-theoretic inclusions)
variety containing S. Given a variety A let S ⊂ A be the
set where a certain property does not hold. The property
is said to hold for almost all x ∈ A if S{ 6= A.

A variety V of Kn is irreducible if whenever V is written in
the form V = V1∪V2, where V1 and V2 are varieties of Kn,
then either V1 = V or V2 = V. The dimension of V in Kn
is the maximal length r of the chains V0 ⊂ V1 ⊂ · · · ⊂ Vr
of distinct irreducible varieties contained in V.

An ideal I of K[x] is radical if fm ∈ I implies f ∈ I.
The radical of I is an ideal of K[x] and is defined as√
I = {f ∈ K[x] : fm ∈ I, for some integer m ≥ 1}.

A monomial order, denoted ≺, is a total, well ordering
relation over the set of monomials xα. Letting a monomial
order ≺ be fixed, each p ∈ K[x] can be written as

p = a1 x
α1 + a2 x

α2 + · · ·+ ar x
αr ,

with a1 6= 0 and xαr ≺ xαr−1 ≺ · · · ≺ xα1 ; the term a1 x
α1

is the leading term of p, denoted LT(p) = a1 x
α1 . Given

an ideal I of K[x], a finite subset G = {g1, . . . , gl} of I
is a Gröbner basis of I if 〈LT(g1), . . . ,LT(gl)〉 = 〈LT(I)〉,
where the leading term of I is LT(I) := {cxα : ∃ f ∈
I, with LT(f(x)) = cxα}. By the Hilbert Basis Theorem,
there exists a Gröbner basis of any ideal in K[x].

Let I be an ideal of K[x]. The polynomials f and g are
congruent modulo I if f − g ∈ I, denoted f = g mod I.
The equivalence class of f modulo I is JfKI := {g ∈ K[x] :
g = f mod I}. The quotient of K[x] modulo I, denoted
K[x]/I, is the set of all the equivalence classes modulo I,

K[x]/I = {JfKI , f ∈ K[x]}.
By construction, the quotient of K[x] modulo I has the
structure of a vector field over K and is therefore an alge-
bra. By the Finiteness Theorem (Theorem 6 at page 251 of
Cox et al., 2015), the algebra A = K[x]/I is finite dimen-
sional if and only the set B := {xα : xα /∈ 〈LT(I)〉}, re-
ferred to as standard monomial basis, is finite dimensional.
If the field K is algebraically closed, this is equivalent to
VK(I) being constituted by a finite number of points. In
such a case the ideal I is said to be zero dimensional.

Given a zero dimensional ideal I of K[x] and f ∈ K[x],
consider the linear map τAf (JgKI) = Jf gKI between A =

K[x]/I and itself. Letting a monomial order ≺ (whence
a standard monomial basis B) be fixed, such a map can
be represented by its associated matrix Tf ∈ Kd×d, where
d denotes the cardinality of B, i.e., τAf (JgKI) = Tf ◦ JgKI
for all JgKI ∈ A. If f is one of the xi’s, then Tf is called
companion matrix of I with respect to f . Finally, the trace
form of I is the (symmetric) matrix B ∈ Kd×d whose
(i, j)-th entry is given by [B]i,j = tr(TxiTxj ), where tr(·)
denotes the trace operator.

Letting β = [ β1 · · · βm ]> be a vector of parameters and
letting p ∈ K[β, x], the operation of fixing the parameters

βi = β̂i, i = 1, . . . ,m, and coercing p(β̂, x) to K[x] is
denoted specialization.

Letting λ be a single variable, a polynomial p ∈ R[λ] is
Hurwitz if all its roots have negative real part, whereas it
is Shur if all its roots have absolute value lower than 1.

A system of the form

∆x(t) = Ax(t),

where, if t ∈ R, then ∆ denotes the time derivative,
∆x(t) = ẋ(t), or, if t ∈ Z, then ∆ denotes the one-step
forward shift operator, ∆x(t) = x(t + 1), it is said to be
asymptotically stable if for each ε > 0 there exists δε > 0
such that ‖x(0)‖ 6 δε implies that ‖x(t)‖ < ε, for all t > 0,
and limt→+∞ x(t) = 0.

3. ALGEBRAIC TESTS FOR THE ASYMPTOTIC
STABILITY OF PARAMETRIC LINEAR SYSTEMS

3.1 Continuous-time systems

Consider the time-invariant parametric system

ξ̇(t) = A(β) ξ(t), (1)

where ξ = [ ξ1 · · · ξn ]> ∈ Rn is the state vector, β =
[ β1 · · · βm ]> is a vector of parameters, and A ∈ Rn×n[β]
is a parametric matrix. The main objective of this section
is formalized in the following problem.

Problem 1. Let a zero dimensional ideal I in R[β] be
given with VR(I) 6= ∅. Determine whether system (1) is

asymptotically stable for all specializations β̂ ∈ VR(I).

Addressing Problem 1 via numerical techniques may lead
to errors, as shown in the following motivating example.

Example 1. Consider system (1) with [A(β)]i,j = ai,j ,

a1,1 = 1
3 (2β2β

2
1 + 2(β2

2 − 1)β1 − 2β2 + 1),

a2,1 = 1
3 (−2β2β

2
1 − 2(β2

2 − 1)β1 + 2β2 + 5),

a3,1 = 1
3 (2β2β

2
1 + 2(β2

2 − 1)β1 − 2β2 + 1),

a4,1 = 2
3 (β2β

2
1 + (β2

2 − 1)β1 − β2 − 1),

a1,2 = 1
3 (−β2

1 − 4β2β1 − β2
2 − 2),

a2,2 = 1
3 (β2

1 + 4β2β1 + β2
2 − 1),

a3,2 = 1
3 (−β2

1 − 4β2β1 − β2
2 + 1),

a4,2 = 1
3 (−β2

1 − 4β2β1 − β2
2 + 1),

a1,3 = 1
3 (β2 − 2)β2β

2
1 − 2

3 (β2
2 + 1)β1 − 2β2

3 −
33
100 ,

a2,3 = − 1
3 (β2 − 2)β2β

2
1 + 2

3 (β2
2 + 1)β1 + 2β2

3 + 33
100 ,

a3,3 = 1
3 (β2 − 2)β2β

2
1 − 2

3 (β2
2 + 1)β1 − 2β2

3 −
33
100 ,

a4,3 = 1
3 (β2 − 2)β2β

2
1 − 2

3 (β2
2 + 1)β1 − 2β2

3 + 67
100 ,

a1,4 = − 1
3 (β2

2 + 1)β2
1 − 2

3 (2β2 + 1)β1 − β2
2

3 −
2β2

3 −
67
100 ,

a2,4 = 1
3 ((β2

2 + 1)β2
1 + (4β2 + 2)β1 + β2

2 + 2β2 + 201
100 ),

a3,4 = − 1
3 (β2

2 + 1)β2
1 − 2

3 (2β2 + 1)β1 − β2
2

3 −
2β2

3 + 33
100 ,

a4,4 = − 1
3 (β2

2 + 1)β2
1 − 2

3 (2β2 + 1)β1 − β2
2

3 −
2β2

3 + 33
100 ,

and let I = 〈β1β2 − 1, (β1 − 105)(β2
1 − β1 + 2) + 10−3〉.

By computing numerically VR(I) using machine precision
and the homotpy method (Chow et al., 1978), one obtains

VR(I) = {β̂}, with β̂ = [ 100000 0.00001 ]>. Thus, by
evaluating numerically with machine precision the charac-

teristic polynomial p̂ of A(β̂), p̂(s) = det(sI−A(β̂)) = s4+
200000s3 + 1010s2 − 6.43768 · 107s + 2.54885 · 108, and
noting that there is a negative coefficient in p̂(s), one
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may conclude that the system is unstable. Nonetheless,
as shown in the subsequent Example 2, the specialization

A(β̂) of system (1) is actually asymptotically stable. In
fact, in this simple example, exact computations can be
carried out by using radicals. In particular, the Cardano
formula (Abramowitz et al., 1988) can be used to de-
termine an algebraic expression for the unique real root

β̂1 of (β1 − 105)(β2
1 − β1 + 2) + 10−3. Hence, the corre-

sponding value of β̂2 can be determined as β̂2 = 1
β̂1

. By

substituting these closed-form expressions for β̂1 and β̂2

in p(β, s) = det(sI −A(β)), it is possible to determine the
complex roots of p by using the general formula to compute
the roots of a quartic polynomial (Faucette, 1996). By
performing these operations, it can be verified that the

polynomial p(β̂, s) has four roots with negative real part.
Clearly, it would not be generically possible to perform
these operations if either n > 4 or the cardinality of the
standard monomial basis of I is greater than 4 due to the
fact that, by Abel’s Impossibility Theorem (Abel, 1826),
the roots of a polynomial whose degree is greater than 4
cannot be generically expressed in terms of finite number
of additions, subtractions, multiplications, divisions, and
root extractions of its coefficients.

In view of Example 1, it is of interest to design an algebraic
test that is capable of exactly determine a solution to
Problem 1. The following theorem provides an algebraic
test that allows one to solve Problem 1 in the case that
the variety VC(I) just contains real points.

Theorem 1. Let a zero dimensional ideal I in R[β] be
given such that VC(I) = VR(I). Let p be the (parametric)
characteristic polynomial of A(β),

p(β, s) = det(s I −A(β)) ∈ R[β, s].

Thus, letting g be a generator of the principal ideal

(I + 〈p〉) ∩ R[s],

system (1) is asymptotically stable for all specializations

β̂ ∈ VR(I) if and only if g is Hurwitz.

Remark 1. The hypothesis VC(I) ⊂ R can be easily
verified by means of the trace form. Indeed, letting a
monomial order ≺ be fixed and letting B be a standard
monomial basis of I with respect to ≺, by Corollary 2.9
of Sturmfels (2002), one has VC(I) ⊂ R if and only if the
signature (i.e., the number of positive minus the number
of negative eigenvalues) of the trace form B of I equals the
cardinality of B. Note that, by Lemma 2.10 of Sturmfels
(2002), the number of positive eigenvalues of B equals the
number of sign changes in the coefficient sequence of its
characteristic polynomial.

The following corollary shows that if VC(I) * R, then
the conditions of Theorem 1 are still sufficient to establish
asymptotic stability of the parametric system (1) consid-
ering only real values of β.

Corollary 1. Let a zero dimensional ideal I in R[β]
be given, possibly with VC(I) * R. If the polynomial g
defined as in Theorem 1 is Hurwitz, then system (1) is

asymptotically stable for all specializations β̂ ∈ VR(I).

The following example illustrates Corollary 1.

Example 2. Consider the same system of Example 1. The
trace form of the ideal I is

B =

[
3 100000000001

1000000
2100

199999999
100000000001

1000000
9999999996000000000001

1000000000000 3
2100

199999999 3 − 19999999897994999999
19999999800000000500

]
,

whose characteristic polynomial has two sign changes.
Therefore, the variety VC(I) contains a single real point,
whence VC(I) * R. Nonetheless, by computing a genera-
tor of the ideal (I + 〈p〉) ∩R[s], one obtains a polynomial
g such that the first column of the corresponding Routh
array has not sign changes (the explicit expressions of g
and of the corresponding column of the Routh array are

omitted for compactness). Thus, letting β̂ be the single

point in VR(I), by Corollary 1, the specialization A(β̂) of
system (1) is asymptotically stable.

The next example shows that when VC(I) * R, then the
fact that p is Hurwitz is only sufficient to establish that

system (1) is asymptotically stable for all β̂ ∈ VR(I).

Example 3. Let n = 2 and

I = 〈β2
2 + β1β2 − 5β1 − 8,

β3
2 + 2β2

2 − 6β2 − 17β1 − 26〉,

A(β) =

[
−β2

2 0
β1 + β2 β1

]
.

By computing the reduced Gröbner basis of (I+〈p〉)∩R[s],
one obtains the polynomial

g = s6 + 10s5 + 36s4 + 81s3 + 146s2 + 164s+ 72,

that is not Hurwitz by the Routh-Hurwitz stability crite-
rion. Nonetheless, by considering that

VC(I) =

{[
−2

1− ı

]
,

[
−2

1 + ı

]
,[

−1
1
2 (1−

√
13)

]
,

[
−1

1
2 (1 +

√
13)

]}
* R,

and that p(β̂, s) is Hurwitz for β̂ = [−1 1
2 (1±

√
13) ]>,

system (1) is asymptotically stable for all β̂ ∈ VR(I).

The following proposition provides an algebraic geometry
method to solve Problem 1 when VC(I) * R.

Proposition 1. Let a zero dimensional ideal I in R[β] be
given, possibly with VC(I) * R. Letting p be defined as in
Theorem 1, define the ideal

K :=
√
I + 〈p〉 ⊂ R[β, s]. (2)

Fix a monomial order ≺ and let d be the cardinality of a
standard monomial basis of K. Thus, let Tβ1

, . . . , Tβm
, and

Ts be the companion matrices of the ideal K with respect to
β1, . . . , βm, and s, respectively, and let J be a matrix that
simultaneously diagonalizes Tβ1

, . . . , Tβm
, and Ts, i.e.,

J Tβ1 J
−1 = diag(β̂1,1, . . . , β̂1,d̄, β̂1,d̄+1, . . . , β̂1,d), (3a)

J Tβ2
J−1 = diag(β̂2,1, . . . , β̂2,d̄, β̂2,d̄+1, . . . , β̂2,d), (3b)

... (3c)

J Tβm J−1 = diag(β̂m,1, . . . , β̂m,d̄, β̂m,d̄+1, . . . , β̂m,d), (3d)

J Ts J
−1 = diag(ŝ1, . . . , ŝd), (3e)

with β̂i,j ∈ R for each i ∈ {1, . . . ,m} and each j ∈
{1, . . . , d̄}, and β̂i,j ∈ C\R for each j ∈ {d̄+1, . . . , d} and
some i ∈ {1, . . . ,m}. Thus, system (1) is asymptotically

stable for all β̂ ∈ VR(I) if and only if

ŝi ∈ {s ∈ C : real(s) < 0}, (4)
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for i = 1, . . . , d̄.

The following example illustrates the application of Propo-
sition 1 to the parametric system considered in Example 3.

Example 4. Consider the parametric system given in
Example 3. Letting the graded reverse lexicographic order
with s ≺ β2 ≺ β1 be fixed, the companion matrices of the
ideal K given in (2) with respect to β1, β2 and s are

Tβ1
=


0 −2 0 8 14 −14 0 0
1 −3 0 5 8 −8 0 0
0 0 −3 0 0 4 1 −8
0 0 0 0 2 −2 0 0
0 0 0 −1 −3 3 0 −2
0 0 0 0 0 0 0 −2
0 0 −2 0 0 8 0 −16
0 0 0 0 0 1 0 −3

 ,

Tβ2 =


0 8 −14 0 26 14 0 0
0 5 −8 0 17 8 0 −3
0 0 4 0 0 1 0 −11
1 0 −2 0 6 2 0 −2
0 −1 3 1 −2 −3 0 −3
0 0 0 0 0 0 1 −6
0 0 8 0 0 0 0 −18
0 0 1 0 0 −1 0 −1

 ,

Ts =


0 0 0 0 14 0 0 −10
0 0 0 0 8 −3 0 −1
0 1 −8 0 1 −11 0 36
0 0 0 0 2 −2 0 0
0 0 −2 0 −3 −3 0 12
0 0 −2 1 0 −6 0 12
1 0 −16 0 0 −18 0 68
0 0 −3 0 −1 −1 1 4

 .
It can be easily verified that there is J ∈ C8×8 that
simultaneously diagonalizes Tβ1

, Tβ2
, and Ts, with

J Tβ1
J−1 = diag(−1,−1,−1,−1,−2,−2,−2,−2),

J Tβ2 J
−1 = diag(1+

√
13

2 , 1+
√

13
2 , 1−

√
13

2 , 1−
√

13
2 , 1 + ı,

1 + ı, 1− ı, 1− ı),
J Ts J

−1 = diag(−7−
√

13
2 ,−1,

√
13−7
2 ,−1,−2ı,−2, 2ı,−2).

Hence, by Proposition 1, system (1) is asymptotically

stable for all specializations β̂ ∈ VR(I).

3.2 Discrete-time systems

Consider the time-invariant parametric system

ξ(k + 1) = A(β) ξ(k), (5)

where ξ = [ ξ1 · · · ξn ]> ∈ Rn is the state vector, β =
[ β1 · · · βm ]> is a vector of parameters, and A ∈ Rn×n[β]
is a parametric matrix. The main objective of this section
is formalized in the following problem.

Problem 2. Let a zero dimensional ideal I in R[β] be
given with VR(I) 6= ∅. Determine whether system (5) is

asymptotically stable for all specializations β̂ ∈ VR(I).

The following theorem provides an algebraic test that
allows one to solve Problem 2 in the case that the variety
VC(I) just contains real points.

Theorem 2. Let a zero dimensional ideal I in R[β] be
given such that VC(I) = VR(I). Let q be the (parametric)
characteristic polynomial of A(β),

q(β, z) = det(z I −A(β)) ∈ R[β, z].

Thus, letting ` be a generator of the ideal

(I + 〈q〉) ∩ R[z],

system (5) is asymptotically stable for all specializations

β̂ ∈ VR(I) if and only if ` is Schur.

The following corollary shows that if VC(I) * R, then
the conditions of Theorem 2 are still sufficient to establish

asymptotic stability of the parametric system (5) consid-
ering only real values of β.

Corollary 2. Let a zero dimensional ideal I in R[β]
be given, possibly with VC(I) * R. If the polynomial
` defined as in Theorem 2 is Schur, then system (5) is

asymptotically stable for all specializations β̂ ∈ VR(I).

As for continuous-time systems, if VC(I) * R, then
the fact that ` is Schur is only sufficient to establish

that system (5) is asymptotically stable for all β̂ ∈
VR(I). Nonetheless, a technique similar to the one given
in Proposition 1 can be used to solve Problem 2, as shown
in the following proposition.

Proposition 2. Let a zero dimensional ideal I in R[β] be
given, possibly with VC(I) * R. Letting q be defined as in
Theorem 2, define the ideal

K :=
√
I + 〈q〉 ⊂ R[β, z].

Fix a monomial order ≺ and let d be the cardinality of a
standard monomial basis of K. Thus, let Tβ1

, . . . , Tβm
, and

Tz be the companion matrices of the ideal K with respect to
β1, . . . , βm, and z, respectively, and let J be a matrix that
simultaneously diagonalizes Tβ1

, . . . , Tβm
, and Tz, i.e.,

J Tβ1 J
−1 = diag(β̂1,1, . . . , β̂1,d̄, β̂1,d̄+1, . . . , β̂1,d), (6a)

J Tβ2
J−1 = diag(β̂2,1, . . . , β̂2,d̄, β̂2,d̄+1, . . . , β̂2,d), (6b)

... (6c)

J Tβm
J−1 = diag(β̂m,1, . . . , β̂m,d̄, β̂m,d̄+1, . . . , β̂m,d), (6d)

J Tz J
−1 = diag(ẑ1, . . . , ẑd), (6e)

with β̂i,j ∈ R for each i ∈ {1, . . . ,m} and each j ∈
{1, . . . , d̄}, and β̂i,j ∈ C\R for each j ∈ {d̄+1, . . . , d} and
some i ∈ {1, . . . ,m}. Thus, system (5) is asymptotically

stable for all β̂ ∈ VR(I) if and only if

ẑi ∈ {z ∈ C : |z| < 1}, (7)

for i = 1, . . . , d̄.

Remark 2. In order to use the techniques outlined in
Propositions 3 and 4, one has to compute a matrix T
that simultaneously diagonalizes the companion matrices
Tβ1

, . . . , Tβm
, and Tz of the ideal K with respect to

β1, . . . , βm, and z. The columns of T−1 can be then
determined by solving the joint eigenvalues problem

Tβ1 v = β̂1 v,

...

Tβm
v = β̂m v,

Tz v = ẑ v,

In particular, the columns of T−1 and the corresponding

values β̂1, . . . , β̂m, ẑ satisfying either (3) or (6) can be
computed by solving the following optimization problem∣∣∣∣∣∣∣

min
β̂1,...,β̂m,ẑ,v

‖Tz v − ẑ v‖2 +

m∑
i=1

‖Tβi
v − β̂i v‖2

s.t. ‖v‖2 = 1,

whose minimal value is 0.
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4. EXTENSION TO THE NON-ZERO DIMENSIONAL
CASE

The main objective of this section is to extend the results
obtained in Section 3 to the case that I is not zero
dimensional. As in Section 3, the continuous-time and the
discrete-time cases are considered separately.

4.1 The continuous-time case

The goal of this section is formalized in the next problem.

Problem 3. Let an ideal I in R[β] be given with VR(I) 6=
∅. Determine whether system (1) is asymptotically stable

for all specializations β̂ ∈ VR(I).

In order to solve Problem 3, note that, by Corollary 4
at page 509 of Cox et al. (2015), the dimension of VC(I)
equals the largest integer r for which there exist r variables
βi1 , . . . , βir such that I ∩ R[βi1 , . . . , βir ] = {0}. Thus,
given the ideal I and letting r be the dimension of VC(I),
define the field W := R(βi1 , . . . , βir ) and the vector β̄ =
[ βj1 · · · βjn−r ]> of the variables βi not in {βi1 , . . . , βir}.
Thus, consider the following theorem, which provides a
solution to Problem 3.

Theorem 3. Letting p be as in Theorem 1, define the ideal
J = I+〈p〉, coerce it to the ring W[β̄], and define the ideal

K :=
√
J , (8)

Fix a monomial order ≺ and let d be the cardinality of a
standard monomial basis of K. Thus, let Tβj1

, . . . , Tβjn−r

and Ts be the companion matrices in Wd×d of the ideal
K with respect to βj1 , . . . , βjn−r , and s, respectively.
Hence, let J be a matrix that simultaneously diagonalizes
Tβj1

, . . . , Tβjn−r
and Ts,

J Tβj1
J−1 = diag(β̂j1,1, . . . , β̂j1,d),

...

J Tβjn−r
J−1 = diag(β̂jn−r,1, . . . , β̂jn−r,d),

J Ts J
−1 = diag(ŝ1, . . . , ŝd),

with β̂j,k ∈W and ŝk ∈W, j = j1, . . . , jn−r, k = 1, . . . , d.
Thus, system (1) is asymptotically stable for almost all

β̂ ∈ VR(I) if and only if for all (β̂i1 , . . . , β̂ir ) ∈ Rr such

that β̂j,k(β̂i1 , . . . , β̂ir ) ∈ R for all j ∈ {j1, . . . , jn−r} and

some k ∈ {1, . . . , d}, the corresponding ŝk(β̂i1 , . . . , β̂ir ) has
negative real part.

4.2 The discrete-time case

The goal of this section is formalized in the next problem.

Problem 4. Let an ideal I in R[β] be given with VR(I) 6=
∅. Determine whether system (5) is asymptotically stable

for all specializations β̂ ∈ VR(I).

Let W, βi1 , . . . , βir , and β̄ = [ βj1 · · · βjn−r ]> be defined
as in Section 4.1. The following theorem provides a solu-
tion to Problem 4.

Theorem 4. Letting q be as in Theorem 1, define the ideal
J = I+〈q〉, coerce it to the ring W[β̄], and define the ideal

K :=
√
J , (9)

Fix a monomial order ≺ and let d be the cardinality of a
standard monomial basis of K. Thus, let Tβj1

, . . . , Tβjn−r

and Ts be the companion matrices in Wd×d of the ideal
K with respect to βj1 , . . . , βjn−r

, and s, respectively.
Hence, let J be a matrix that simultaneously diagonalizes
Tβj1

, . . . , Tβjn−r
and Ts,

J Tβj1
J−1 = diag(β̂j1,1, . . . , β̂j1,d),

...

J Tβjn−r
J−1 = diag(β̂jn−r,1, . . . , β̂jn−r,d),

J Ts J
−1 = diag(ẑ1, . . . , ẑd),

with β̂j,k ∈W and ŝk ∈W, j = j1, . . . , jn−r, k = 1, . . . , d.
Thus, system (5) is asymptotically stable for almost all

β̂ ∈ VR(I) if and only if for all (β̂i1 , . . . , β̂ir ) ∈ Rr such

that β̂j,k(β̂i1 , . . . , β̂ir ) ∈ R for all j ∈ {j1, . . . , jn−r} and

some k ∈ {1, . . . , d}, the corresponding ẑk(β̂i1 , . . . , β̂ir ) has
modulus strictly smaller than 1.

5. EXAMPLES OF APPLICATION

In the following example it is shown how the technique
given in Section 3 can be used to provide an algebraic
certificate for local exponential stability of the equilibria
of a nonlinear polynomial system.

Example 5. Consider the nonlinear system

ẋ1 = f1(x) := 2x3
1 + 10x2x

2
1 − 40x2

1 + 13x2
2x1 − 148x2x1

+ 246x1 − 130x2
2 + 467x2 − 486, (10a)

ẋ2 = f2(x) := 13x3
2 + 10x1x

2
2 − 22x2

2 + 2x2
1x2 − 40x2

+ 4x2
1 − 38x1 + 92. (10b)

The main objective of this example is to establish whether
the equilibria of system (10) are locally exponentially
stable. Thus, letting f = [ f1 f2 ]>, consider the matrix

A(x) =
∂f(x)

∂x
=

[
3x2

1 + x2
2 − 1 2x1x2 − 1

2x1x2 + 1 x2
1 + 3x2

2 − 1

]
.

By Chapter 4 of Khalil (2002), the equilibria of system (10)
are locally exponentially stable if and only if the matrix
A(x) is Hurwitz for all x ∈ VR(f1, f2). By fixing the graded
reverse lexicographic order with x2 ≺ x1, one has that B =
{1} is a standard monomial basis of I = 〈f1, f2〉 and the
trace form of I is B = 1. Therefore, the variety VC(I) ⊂ R
and is a singleton. Thus, by letting p(x, s) = det(sI−A(x))
and computing a Gröbner basis of (I + 〈p〉) ∩ R[s], one
obtains the polynomial g = 2 + 2s + s2, that is Hurwitz
by the Descartes’ rule of sign. Thus, by Theorem 1, the
unique equilibrium of system (10) is locally exponentially
stable. Figure 1 depicts the stream plot of the solutions to
system (10) and its unique equilibrium point.

As shown by such a figure, although the unique equilibrium
point of system (10) is locally exponentially stable, such a
property cannot be easily deduced by the stream plot of
the trajectories of the system.

The following example shows how the technique given in
Section 4 can be used to evaluate the asymptotic stability
of a parametric discrete-time system.

Example 6. Consider the matrix

A(β) =

[
β1 β2

β3 β4

]
,
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Fig. 1. Stream plot of the solutions to system (10).

and the ideal

I = 〈β1 + β2 − 1, β1 + β3 − 1, β2 + β4 − 1, β3 + β4 − 1〉.
Solving Problem 4 with respect to the matrix A(β) and
the ideal I given above corresponds to characterize the
asymptotic stability of two-dimensional systems whose
dynamical matrices have rows and columns summing up
to one. Note that the ideal I is not zero-dimensional, but
I ∩R[β4] = {0}. Hence, following Theorem 4, let J = I +
〈det(zI − A)〉, let W = R(β4), coerce J to W[β1, β2, β3],
and let K =

√
J . Fixing the graded reverse lexicographic

order with z ≺ β3 ≺ β2 ≺ β1, the companion matrices of
K with respect to z, β3, β2, β1 are

Tβ1 =

[
β4 0
0 β4

]
, Tβ2 =

[
1− β4 0

0 1− β4

]
,

Tβ3
=

[
1− β4 0

0 1− β4

]
, Tz =

[
0 −2β4 + 1
1 2β4

]
,

respectively. It can be easily verified that there is J ∈ W
such that J Tz J

−1 = diag(1, 2β4 − 1). Therefore, since

ŝ1(β̂4) = 1 for all β̂4 ∈ R, the system is not asymptotically

stable for all specializations β̂ ∈ VR(I).

6. CONCLUSIONS

In this paper, some algebraic tests have been proposed
to establish whether a discrete-time or a continuous-time
linear system is asymptotically stable for all the special-
izations belonging to a given variety. The interest in such
tests have been motivated via Example 1, which showed
that using numerical techniques to determine if a given
system is asymptotically stable for all the specializations
in a variety may lead to evaluation errors. Both the cases of
zero dimensional and non-zero dimensional varieties have
been considered. Examples of application of the proposed
techniques have been given all throughout the paper to
illustrate and corroborate the theoretical results.

Future work will deal with the extension of the proposed
technique to the identification of the specializations that
make the system unstable.
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