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Abstract: This paper designs the predictive pursuit-evasion game-based orbit control method
for the chasing spacecraft to approach a space uncooperative maneuvering target. Firstly, the
trajectory planning algorithm combines RRT* and cubic splines to generate a feasible reference
trajectory in the relative motion space for the chaser, which enables to deal with the boundary
constraints and avoid collisions with the attachments of target. Then, based on the dynamics
model, input constrains and objective functions, the pursuit-evasion game model between the
target and the chaser is formulated, in which each one acts independently to satisfy its own
objective function. With the game formulation, a predictive pursuit-evasion game controller
for the chaser is designed to track reference trajectory. Under the frame of model predictive
control, the multiple objective constraint optimization can be transferred into to quadratic
programming problem to handle input constraints. By predicting opponent’s best move and
changing its optimal strategy for its benefit iteratively, the saddle points of the game can be
obtained without opponent’s maneuvering. Numerical simulations verify the effectiveness of the
predictive pursuit-evasion game control method for approaching an uncooperative target.

Keywords: pursuit-evasion game, uncooperative target, trajectory planning, orbit dynamics,
model predictive control.

1. INTRODUCTION

As one of the key technologies of on-orbit servicing, the
autonomous rendezvous to approach the target space-
craft has become an increasing necessity [Croomes (2006)].
However, the rendezvous with non-cooperative maneuver-
ing targets such as a satellite with communication failure
has been a difficult problem to be solved so far.

In those existing references [Gao et al. (2019); Kosari et al.
(2017)], the chasing spacecraft approaches the uncoopera-
tive target by improving the robustness of orbit controller.
Nevertheless, the orbit maneuvering of the target is not al-
ways in a small bounds. The pursuit-evasion game (PEG)
theory is a suitable frame to study the two-opponent-agent
optimal decision and control problems, where one player
attempts to track down another [Isaacs (1999)]. In this
paper, the uncooperative target is seen as a rational player
with input constraints to game with the chaser.

The key problem of PEG is to get the saddle point whose
definition is if a player unilaterally deviates from this
solution, then the player’s situation would deteriorate.
Usually, the techniques of optimal control are employed.
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Horie and Conway (2006) formulated a PEG problem
involving two different aerial vehicles into a double op-
timization problem and used a semi-direct method to get
the optimal strategies. Based on dynamics programming,
Jagat and Sinclair (2017) employed the State-dependent
Riccati Equation method (SDRE) to find the saddle point
of PEG, whereas the control inputs constraints are not
considered. Based on the variational method, PEG leads
to a two-point boundary value problem (TPBVP). In
[Hafer et al. (2015)], the sensitivity methods are applied
to get the global solution fast. Li et al. (2019) present-
ed a dimension-reduction method to solve the high-level
TPBVP. However, the solution is influenced by the initial
guess. In order to take inputs constraints and avoidance of
attachments of target into account, new method is needed
to get the saddle point of the game. As a feedback optimal
control, MPC has the outstanding ability to deal with
constraints [Weiss et al. (2015); Li et al. (2017)]. And the
essence of the pursuit-evasion game is also a set of optimal
control problem in which players independently optimize
their own objective functions. By solving a PEG problem
under the frame of MPC, the inputs constraints can be
handled convenient. Considering that the control inputs of
the target are not available, the target’s optimal control
strategies is predicted and used to optimize the strategy of
the chaser. By repeating this computation several times,
the optimized solution for the chaser or the target leads
the game to Nash equilibrium. Because of the predictive
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model in MPC and the prediction of the target’s optimal
strategies, we name it predictive game controller.

However, it appears to be infeasible in scenarios where
there are solar panels or other large structure accessories
around the target. In this case, trajectory planning method
is presented to provide a smooth reference trajectory in
the relative motion space for predictive game controller to
track. Recently, sampling-based path planning algorithms,
such as probabilistic roadmap (PRM), rapid exploring
random tree (RRT) and so on, have been widely adopted to
plan a path in an unstructured environment [Karaman and
Frazzoli (2011)]. Among these sampling-based methods,
the efficient RRT* algorithm plans a path with prov-
ably asymptotically optimal by adding the ’rewiring’ op-
eration. However, the trajectories generated by sampled-
based method are often jerky, which are not suitable
for spacecraft to track. Current existing smoothing tech-
niques include shortcut methods [Hu et al. (2019)] and
optimization-based methods [Zhou et al. (2019)]. Because
of the overhead computation of the optimization-based
methods, the shortcut methods which replace the jerky
portion into curve segments is more feasible. Herein, cubic
splines are investigated to smooth the jerky portions of the
initial path generated by RRT*.

In this paper, a predictive PEG-based control method
including a RRT*- spline trajectory planning and a predic-
tive PEG-based tracking controller is proposed for a chas-
ing spacecraft with higher maneuvering ability to approach
an uncooperative maneuvering target. By combining cubic
splines into RRT*, the trajectory planning algorithm can
generate a feasible trajectory in the relative motion space
with boundary constraints. By transforming the multiple-
objective constraints optimization problem into quadratic
programming (QP) problem under the frame of MPC, the
controller can get the saddle points of PEG.

2. PROBLEM STATEMENT

In order to repair an uncooperative maneuvering target in
space such as a satellite with communication failures, a
chasing spacecraft is driven to approach it. For clarity of
description, Fig.1 is used to depict the scene. Moreover,
Earth Centered Inertial frame OIxIyIzI and Orbit frame
Otxtytzt are marked in Fig.1.It is assumed that the unco-
operative target is regarded as a non-rotating one, which
can avoid to deal with attitude control.

Fig. 1. Approaching an uncooperative target

Define rt ∈ R3 and rc ∈ R3 as the position vector from
the center of the earth OI to the mass center of the target
Ot and of the chasing spacecraft Oc, respectively. The
orbit motion of the chaser and the target are described
as follows, respectively

r̈c = −µ rc
||rc||3

+ uc, r̈t = −µ rt
||rt||3

+ ut (1)

where µ ∈ R is gravitational parameter. uc ∈ R3 and
ut ∈ R3 are the control acceleration of the chaser and the
target, respectively.

Let r = rc − rt ∈ R3. Mapping it into Otxtytzt, we can
get

r̈ =− 2ω × ṙ − ω̇ × r − ω × (ω × r)− µ rc
||rc||3

+ µ
rt
||rt||3

+ uc − ut
(2)

where ω ∈ R3 is the orbit angular velocity of the chaser.

In a typical manner, the target is assumed to be in a
near-circular orbit. And the distance between the target
and the chasing spacecraft is small compared to the orbit
radius. Then, the linear model of the relative translational
dynamics is derived as

ẋ = Ax + Bcuc + Btut (3)

where x = [rT, ṙT]T ∈ R6 is the state vector, and
A = [03, I3;A21,A21], A21 = [3n2, 0, 0; 0, 0, 0; 0, 0,−n2],
A22 = [0, 2n, 0;−2n, 0, 0; 0, 0, 0], Bc = [03, I3]T, Bt =

−Bc. n =
√
µ/||rc||3 denotes the orbit rate of the chaser.

The objective of this paper is to design an orbit control
frame for the chaser. Considering the limited control
ability of spacecraft, the reference trajectory is designed
for the chaser to track. The designed trajectory must
satisfy the following requirements:
(1) The chaser must has no collision with the attachments
of target.
(2) Trajectory for the chaser must consider initial state
and final state constraints.
(3) Trajectory has to be smooth enough for spacecraft to
track.
The design of the controller also has some constraints:
(1) The chaser have to follow the desired trajectory.
(2) Noncooperative target has unknown maneuvering.
In order to guarantee the tracking performance, we assume
that the chasing spacecraft has better maneuvering ability
than the uncooperative target.

3. DESIRED TRAJECTORY DESIGN

In this section, the RRT*-spline method is designed to
generate a feasible relative path in the relative motion
space under kinodynamic constraints.

In step 1, RRT* algorithm is employed to get an ini-
tial path. Considering the maneuvering of target, path
planning in the inertial space has to be repeated at each
instant, which is time-consuming. Noticing that the initial
relative position and the final desired relative position
are constant vectors, path planning in the relative motion
space can be executed only at the beginning of the mission.
To seek a path from the initial relative position r(t0) to
the final desired relative position r(tf ) and avoid collisions

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15088



with attachments of target, the RRT* algorithm is used
to create a tree of paths in the relative motion space and
get a collision-free path [Karaman and Frazzoli (2011)].
Consequently, the generated path is segmented into series
local linear paths between m + 1 intermediate waypoints
including initial and terminal points. However, the chaser
is expected to follow a smooth trajectory with velocity and
acceleration constraints.

In step 2, the cubic spline method is used to guarantee
the continuity of the curvature between these waypoints.
In order to avoid collisions and smooth the trajectory,
the following procedures are proposed to choose as few
interpolation points as possible from m + 1 waypoints of
RRT* and generate a smooth obstacle-free trajectory.
(1)After numbering all waypoints in order as [0, 1, · · · ,m],
choose the waypoints of number [0,m/3, 2m/3,m] as the
interpolation points for cubic spline based on the triple-
section method.
(2)Considering kinodynamics constraints, generate the
path by three-dimension cubic-spline interpolation meth-
ods between interpolation points [Yang et al. (2014)].
(3)Check if these local path rdes = {rdes,0−m/3,
rdes,m/3−2m/3, rdes,2m/3−m} are obstacle free. Once there
is points of the local path between two chosen waypoints
being inside the defined area of obstacles, the new interpo-
lation points are chosen from waypoints to generate new
local path until a collision-free local path between these
two chosen waypoints is got.
Repeating these steps, the smooth and obstacle-free tra-
jectory rdes(t) : R → Rn is obtained as a piecewise-
cubic function that is the concatenation of the different
cubic trajectories. By differentiating the cubic function
rdes(t), we can also get the desired velocity ṙdes(t) : R→
Rn. Therefore, the desired state is written as xdes =
[rT
des, ṙ

T
des]

T.

Remark 1.The trajectory planning method proposed in
this paper can be extended in other applications.

4. PREDICTIVE GAME FORMULATION

4.1 Game formulation in continuous horizon

In the two-player PEG, the chasing spacecraft performs as
the pursuer and the noncooperative target is the evader.
The objective of the chaser is to minimize the tracking
error between relative state and the predefined reference
trajectories using minimal fuel. The target has the conflict
objective to maximize the relative state and minimize the
fuel. Therefore, define the objective function of chaser and
the target as

Jc(uc,ut) =
1

2

∫ ∞
0

(eTQce + uT
c Rcuc)dt (4)

Jt(uc,ut) =
1

2

∫ ∞
0

(xTQtx− uT
t Rtut)dt (5)

where e = x − xdes means the trajectory tracking error
of the chaser. The weighting matrices Qc ∈ R6×6,Qt ∈
R6×6,Rc ∈ R3×3,Rt ∈ R3×3 impose the specifications in
relative states and inputs, which are all positive-definite
and symmetry matrices.

According to the requirements of the controller, PEG
between the chaser and the target is formulated as fol-

lowing multiple-objective optimization with the dynamics
constraints and inputs constraints:
Problem 1:

min
uc

max
ut

J(uc,ut) = min
uc

Jc ∨max
ut

Jt

s.t.ẋ = Ax + Bcuc + Btut
||uc||∞ ≤ uc,max, ||ut||∞ ≤ ut,max

(6)

where ut,max and uc,max are maximum control acceleration
amplitude of the target and the chaser, respectively.

The solution of the above optimization problem u∗c ,u
∗
t is

called the saddle point and satisfies the following equation:

J(u∗c ,ut) ≤ J(u∗c ,u
∗
t ) ≤ J(uc,u

∗
t ) (7)

However, it is challenging to directly solve Problem 1
which is multi-objective constrained optimization. More-
over, the spacecraft PEG problem is not always a zero-sum
game, but a constant-sum game [Tzannetos et al. (2016)].

4.2 Predictive PEG problem

MPC is a feedback control frame by solving an optimal
control problem repeat, which have great performance
in dealing with constraints and disturbance for its three
principles, including predictive model, receding horizon
optimization and feedback correction. Based on the frame
of MPC, PEG is reformulated in the receding horizon to
handle constraints easier. The game model in receding
horizon is composed of a predictive model, input con-
straints and objective functions, which will be defined
below to formulate the predictive PEG model.

Denote the starting and ending time of the rendezvous
process as t0 and tf . The total time interval is divided by
sampling period ∆t into Ns subintervals evenly, such that
[t0, t1, · · · , tk, · · · , tf ]. At time instant tk, Equation(2) is
discretized with ∆t as

xk+1 = Adxk + Bc,duc,k + Bt,dut,k (8)

where xk = x(tk), uc,k = uc(tk), ut,k = ut(tk), and

Ad = eA∆t ∈ R6×6,Bc,d =
∫ ∆t

0
eAτBcdτ ∈ R6×3,Bt,d =∫ ∆t

0
eAτBtdτ ∈ R6×3.

Considering a fixed receding horizon N , Xk,Uc,k,Ut,k are
defined as the stack of relative state vector, control inputs
of the chaser the control inputs of the target, respectively

Xk = [xT
k+1,x

T
k+2, · · · ,xT

k+N ]T ∈ R6N

Uc,k = [uT
c,k,u

T
c,k+1, · · · ,uT

c,k+N−1]T ∈ R3N

Ut,k = [uT
t,k,u

T
t,k+1, · · · ,uT

t,k+N−1]T ∈ R3N

(9)

Based on (9), the evolution of the relative motion dynamics
over the receding horizon [tk, tk+N−1] can be formulated
as

Xk = Λxk + ΞcUc,k + ΞtUt,k (10)

where xk is the state vector sampled at the instant tk. The
matrices in (10) are

Λ =
[
AT
d A2

d
T · · · AN

d

T
]T

∈ R6N×6
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Ξc =


Bc,d 0 0 0

AdBc,d Bc,d 0 0
...

...
. . . 0

AN−1
d Bc,d AN−2

d Bc,d · · · Bc,d

 ∈ R6N×3N

Ξt =


Bt,d 0 0 0

AdBt,d Bt,d 0 0
...

...
. . . 0

AN−1
d Bt,d AN−2

d Bt,d · · · Bt,d

 ∈ R6N×3N

Based on the reference relative trajectory of the chaser,
the tracking error dynamics for chaser can be obtained as

Ek = Λxk + ΞcUc,k + ΞtUt,k −Xdes,k (11)

where Ek and Xdes,k is the stack of the trajectory tracking
error and the relative state,respectively. Ek and Xd,k have
following form

Ek = [eT
k+1, e

T
k+2, · · · , eT

k+N ] ∈ R6N

Xdes,k = [xT
des,k+1,x

T
des,k+2, · · · ,xT

des,k+N ] ∈ R6N
(12)

where xdes,k ∈ R3 is the desired relative state at the
sampling time tk and ek = xk − xdes,k.

Define the objective of the spacecraft PEG in the receding
horizon as

Jk(Xk,Uc,k,Ut,k) = [Jc,k, Jt,k] (13)

where Jc,k,Jt,k is the objective of the chaser and the target
in the receding horizon, respectively

Jc(Xk,Uc,k,Ut,k) = ET
kQc,kEk + UT

c,kRc,kUc,k

Jt(Xk,Uc,k,Ut,k) = XT
k Qt,kXk −UT

t,kRt,kUt,k

(14)

where Qc,k = IN ⊗ Qc ∈ R6N×6N , Rc,k = IN ⊗ Rc ∈
R3N×3N , Qt,k = IN ⊗ Qt ∈ R6N×6N , Rt,k = IN ⊗
Rt ∈ R3N×3N .

Therefore, the multiple-objective constraints optimization
Problem 1 is formulated under the frame of MPC, which
is as follows:
Problem 2:

min
Uc,k

max
Ut,k

J(Xk,Uc,k,Ut,k)

s.t.Xk = Λxk + ΞcUc,k + ΞtUt,k

− uc,max13N ≤ Uc,k ≤ uc,max13N

− ut,max13N ≤ Ut,k ≤ ut,max13N

(15)

At each sampling moment tk, Problem 2 should be solved
to get the saddle point for the chaser. However, because
of the non-cooperative character of the game, Problem 2
cannot be solved by the chaser or the target.

5. PREDICTIVE PEG-BASED CONTROLLER

In this section, considering that the antagonistic character
of the game, the transformed model and algorithm is
proposed to predict the maneuver of the target and get
the best control of the chasing spacecraft.

5.1 Individual optimization formulation

According to the definition of the saddle point, the opti-
mization objective function in (15) is equal to the following
function

Jk(U∗c,k,U
∗
t,k)

= min
Uc,k

Jc,k(Uc,k,U
∗
t,k) = max

Ut,k

Jt,k(U∗c,k,Ut,k)

= min
Uc,k

max
Ut,k

J(Uc,k,Ut,k) = max
Ut,k

min
Uc,k

J(uc,k,Ut,k)

(16)
For the chaser which can only optimize its own control
policy, the objective function in the optimization problem
(15) can be transferred into

Jk = Jc,k(Xk,Uc,k,U
∗
t,k)

= const+
1

2
UT
c,kMc,2Uc,k + MT

c,2Uc,k

(17)

where Mc,1 = ΞT
c Qc,k(Λxk + ΞtU

∗
t,k −Xd,k) ∈ R3N ,

Mc,2 = ΞT
c QkΞc + Rc,k ∈ R3N×3N .

Thus, the optimization problem for chaser is transformed
from Problem 3 into a QP problem:
Problem 3:

min
Uc,k

Jc,k(Xk,Uc,k,U
∗
t,k)

s.t.Xk = Λxk + ΞcUc,k + ΞtUt,k

− uc,max13N ≤ Uc,k ≤ uc,max13N

(18)

where Jc,k = 1
2U

T
c,kMc,2Uc,k+MT

c,2Uc,k. If the best inputs
of the target U∗t,k is known, we can get the saddle point
for the chaser.

Similarly, the optimization problem for target can be
transformed as:
Problem 4:

max
Ut,k

Jt,k(Xk,U
∗
c,k,Ut,k)

s.t.Xk = Λxk + ΞcUc,k + ΞtUt,k

− ut,max13N ≤ Ut,k ≤ ut,max13N

(19)

Jt,k = 1
2U

T
t,kMt,2Ut,k + MT

t,1Ut,k, Mt,1 = ΞT
t Qt,k(Λxk +

ΞcU
∗
c,k) ∈ R3N , Mt,2 = ΞT

t Qt,kΞt − Rt,k ∈ R3N×3N . If
the best inputs of the chaser U∗c,k is known, the target can
get control strategies corresponding to the saddle point.

5.2 Predictive PEG controller

For the chaser, the best inputs of the target U∗t,k in the
Problem 3 must be known. Considering the antagonistic
character of the game, the chaser has to predict the
optimal inputs U∗t,k of the target through optimization

problem of the target (19). In such a way, the chaser
predicts the target’s best response, which is its worst-case
scenario, and after that the chaser determines its actual
move. By repeating this procedure, the level of thinking is
added before deciding its final input trajectory. For clear
understanding, the proposed controller is illustrated in the
block of Predictive game controller for chaser of Fig 2,
while the target uses similar procedure to get its control
strategies.

Remark 2. Because the objective function of the target
5 is not a positive quadratic function, choosing a suitable
Qt and Rt is important to guarantee that Problem 4 is
a convex QP problem. Otherwise, the optimization would
fall into local optimal results or could not give any feasible
control solution.
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Fig.2 presents the implementation scheme of the proposed
approaching method. Firstly, the RRT*-spline algorithm
provide the feasible path in the relative motion space
by computing off-line at the first several seconds of the
approaching mission. Then, the chaser tracks the designed
trajectory by the proposed predictive PEG controller.
Due to the simple QP formulation of (18) and (19),
the proposed controller can be time efficient with proper
thinking level.

Fig. 2. Block diagram of predictive game control method

6. NUMERICAL SIMULATIONS

This section presents a numerical example of approaching
an uncooperative target. In our implementation, the initial
relative state between the chasing spacecraft and the
target is r0 = [300, 150,−100, 0, 0, 0]Tm. The distance
between the target and the earth’s center is rc = 6.72 ×
106m. The model is discretized with ∆t = 1s.

In the first part, we use the RRT*-spline method to
generate the reference trajectory in the relative motion
space, which will be an input of the predictive game-
based controller. The initial point in the planning is
[300, 150,−100]T. Due to the approaching mission, the
terminal point is [0, 0, 0]T. Set the sampled point in the
RRT* is 500, the sampling step is 0.5m. The initial relative
velocity ṙdes,0 = [0, 0, 0]T and the terminal relative veloci-
ty ṙdes,m = [0, 0, 0]T is the clamped boundary conditions.
The planning time is 120s.

Under these parameters, the generated procedure is shown
in Fig.3. Two spheres denote as the attachments of the
target. At first, the random position point is sampling
from task space, which is denoted as × with blue color.
The green solid line denotes the tree whose vertex is chosen
from random position point. Then, the red solid line which
is extremely rough is the path by RRT*. After that, the
trajectory smoothed by cubic spline is the blue line with
line type of *. The reference relative position and velocity
in three axis are cubic spline line as in fig 4(a) and fig 4(c).
It is obvious that the boundary constraints is satisfied.

For PEG, the controller of the chaser is used to generate
the control acceleration at each sampling instant. It is
assumed that the uncooperative target is rational, which
means that it will also use the strategy computed by the
presented controller in this paper. The control acceler-
ation inputs magnitude constraints as uc,max = 5N/kg
and ut,max = 2N/kg. It is assumed that the weight
matrices for target are Qt = 10−5 × diag(1, 1, 1, 1, 1, 1),

Fig. 3. Trajectory planning via RRT ∗ − Spline

Rt = 5 × diag(1, 1, 1). Correspondingly, the wight ma-
trices of the chasing spacecraft are chosen as Qt = 1 ×
diag(1, 1, 1, 1, 1, 1) and Rr = 1×diag(1, 1, 1). The receding
horizon is N = 10. The thinking level are lc = 2; lt = 2;

With these parameters, the following simulation results
illustrate the performance of the predictive PEG-based
controller. In order to show the importance of the path
planning, the simulations compare the result of controller
with reference trajectory and the results without path
planning. Fig.4 is the relative position and relative velocity
between the chaser and the target using two controllers,
respectively. At the end of the simulation, the relative
position and velocity come to zero, which indicates that
PEG-based controller is valid. Apparently, the curves of
the controller without path planning are not smooth and
consistently shocked, which is not the desired performance.
Instead, the curves of the controller with smooth reference
trajectory can approach target smoothly.
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Fig. 4. relative position and velocity

The tracking error relative position and error relative
velocity using the proposed controller is shown in the
Fig.5. It can be seen that the reference relative trajectory
can be tracked by the chaser using the proposed controller.

Fig.6 shows three-axis control acceleration of the target.
We can deduce that the target tries its best to escape. Fig.7
are three-axis control acceleration of the chaser using two
kinds of controllers. It can be seen that all the control
acceleration are within the permissible range, which ver-
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Fig. 5. tracking error

ifies the advantage of dealing with inputs constraints. In
order to compare the fuel consumption, the cost function
is designed as L =

∫∞
0
||uc||1dt. The cost value using

game controller with path planning is L = 1194. The
cost value using game controller without path planning
is L = 1469. Therefore, the controller with path planning
is much suitable for approaching the uncooperative target.
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Fig. 6. control acceleration of the target
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Fig. 7. control acceleration of the chaser

7. CONCLUSIONS

This paper has proposed a predictive PEG control for the
chasing spacecraft to approach an noncooperative target
who has limited maneuver ability. By formulating the
approaching problem into the game problem, the maneu-
vering of the target can be considered completely. In the
frame of MPC, PEG-based controller have advantages in
dealing with constraints. With the design of RRT*-spline
planning, the smooth and feasible trajectory in the rela-
tive motion space is generated for chaser to track. Under
unknown maneuvering of target, the proposed minimax
solution can lead to a Nash equilibrium. The simulation
results show the effectiveness of the proposed controller
because of its prediction of the target maneuvering. The
future work should focus on the trajectory planning and
replanning with obstacles in the relative motion space.
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