
Spline-RRT*: Coordinated Motion
Planning of Dual-Arm Space Robot ?

Min Yu, ∗ Jianjin Luo, Mingming Wang, Dengwei Gao

∗Research & Development Institute of Northwestern Polytechnical
University in Shenzhen, Shenzhen, CO 518057 China (e-mail:

yumin@mail.nwpu.edu.cn).

Abstract: This paper addresses the coordinated motion planning issue for a dual-arm free-
floating space robot. Based on the sampling-based planning method, a novel coordinated
RRT*-based path planning framework is proposed for a dual-arm manipulation. First, an
asymptotically optimal sampling-based method, RRT*, is employed to generate the initial rough
path for each end-effector in the task-space. To avoid self-collision, we present a coordinated
strategy which samples from separated inertial spaces when performing RRT* algorithm.
Second, quartic splines are used to smooth the generated RRT* path so that the robot
can execute smoothly. Physical constraints including the end-effectors’ limit, joint limit and
boundary conditions are all controlled within the design of the quartic splines. The effectiveness
of the proposed path planning framework is illustrated and demonstrated via a kinematically
redundant dual-arm space robot.

Keywords: Space robot, coordinated path planning, RRT*, quartic splines, motion control.

1. INTRODUCTION

Robotic technology applied in an unstructured space en-
vironment has been a constant hit recently. The successes
of series of experiments by applying space robot, such as
Engineering Test Satellite VII (ETS-VII) and Front-End
Robotics Enabling Near-Term Demonstration (FREND),
indicate that robot is a prospective tool for on-orbit ser-
vicing mission.

As one of the most challenging problems among robotic
technologies, motion planning has received great atten-
tions in the past. Traditionally, Nenchev (1992) used reac-
tion null space to obtain the best robot’s configuration.
A point-to-point planning method was proposed in Xu
(2009) to synchronously plan the base attitude as well as
the pose of end-effector. Afterwards, Aghili (2013) studied
the motion planning issue when capturing a tumbling
target for both pre- and post-grasping phases. Lampariello
(2014) calculated the joint trajectories for space robot
within a useful time. See Wang (2018), Bézier curve and
Particle Swarm Optimization method were employed for
the coordinated path planning and trajectory planning,
respectively. Abad (2014) designed an optimal control
scheme, in which the uncertainties in the initial and final
boundary conditions were considered. Nevertheless, the
aforementioned literatures seldom address the path gener-
ation issue for the motion of space robot in an unstructured
environment.

Recently, the sampling-based method, such as probabilis-
tic roadmap (PRM), rapidly exploring random trees (R-

? This research was supported by Science, Technology and In-
novation Commission of Shenzhen Municipality (Grant No. J-
CYJ20180508151938535) and The National Natural Science Foun-
dation of China (Grant No. 61973256, 61690210 and 61690211).

RT) and their variants, presents a novel motion planning
approach particularly in an unstructured environment,
see LaValle (2006), and it has shown a great, universal
capability for a wide range of applications, including many
in the robot field. Persson (2014) proposed a sampling-
based A* algorithm for path planing of a 7 degree-of-
freedom space manipulator. James (2016) employed RRT
algorithm to plan motions from a given state to a goal state
for a dual-arm space robot. Vahrenkamp (2010) proposed
a simultaneous grasp and motion planning strategy for a
humanoid robot via RRT-based algorithms. Webb (2013)
presented kinodynamic RRT* for asymptotically optimal
motion planning for robots with linear dynamics. Rybus
(2014) employed RRT algorithm to minimize rotational
kinetic energy and stabilize motion. Although sampling-
based method is efficient and probabilistically complete for
high-dimensional spaces, the resulting path is often jerky
and thus requires a smoothing technique for the robot
motion planning.

Currently existing smoothing techniques fall into two
categories: optimization-based methods and curve-fitting
methods, see Zhu (2015). Common optimization tech-
niques, such as gradient-based methods and convex op-
timization, could handle dynamic constraints explicitly,
but it takes rather seconds to obtain a feasible smooth
trajectory. In contrast, curve-fitting techniques replace
the jerky portions with curve segments, such as splines,
which are rather fast. A hierarchical planning framework,
path planning with path parameterization, for robots is
validated to be efficient. Ding (2019) studied the tra-
jectory planning issue for quadrotors under the kinody-
namic planning framework and B-splines was employed
to guarantee the safety and dynamic feasibility. Salaris
(2019) also adopted B-splines to design the trajectory of a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9955



unicycle and a quadrotor respectively. Vaz (2006) planned
the robot trajectory with cubic splines and formulated the
planning problem as a standard semi-infinite programming
issue. Since the use of smooth, parameterized splines has
been proven particularly effective in the robot field, see
Kolter (2009), quartic splines are employed in this paper
to smooth the jerky portions of a path.

Herein, we present a sampling-based path planning frame-
work incorporating with quartic splines for a coordinated
dual-arm manipulation, which can be referred to as a two-
phase approach: path planning and spline fitting. Firstly,
we use a high-level planning algorithm, RRT* algorithm,
to generate a series of kinematically feasible waypoints
that the robot should pass through on its way to the goal.
Note that the coordination of the dual-arm manipulation
is also considered to avoid possible self-collisions by sepa-
rating the sampling space in the off-the-shelf RRT* algo-
rithm. Secondly, we fit the parameters of quartic splines
passing through the generated waypoints. Cubic splines
are ubiquitous in the field of robot planning, while quartic
splines are rarely employed. Nonetheless, quartic splines
are necessary to satisfy the third derivative continuity
(particularly for the robot motion) of the planned path,
as well as boundary constraints, the first derivative conti-
nuity and the second derivative continuity. The proposed
path planning framework is evaluated on a kinematically
redundant dual-arm space robot.

2. MODELING

A free-floating dual-arm space robot consists of a space-
craft and two n-degree-of-freedom manipulators under no
external forces and no base actuation. Hypothesize that
the spacecraft and manipulators’ links can be regarded as
rigid bodies. The kinematics of the end-effectors is[

ẋa
e

ẋb
e

]
=

[
Ja
b ẋb + Ja

e θ̇
a

Jb
bẋb + Jb

eθ̇
b

]
(1)

Superscripts a and b represent that they are respectively
related to the manipulator a and b, and subscripts b and e
denotes the base spacecraft and end-effectors, respectively.
ẋb, ẋ

a
e , ẋ

b
e denote velocities of the base and end-effectors.

θ̇ denotes the joint velocity.

Based on Lagrangian mechanism principle, the dynamics
of the system is Hb Ha

bm Hb
bm

HaT
bm Ha

m 0n

HbT
bm 0n Hb

m

ẍb

θ̈a

θ̈b

+

 cbcam
cbm

 =

fbτ a
m

τ b
m

 (2)

Since there is no external forces or torques imposed on the
whole system in a free-floating type, i.e., fb = 0. Based
on the momentum conservation principle, a more concise
kinematics equation can be written as[

P0

L0

]
= Hb

[
ṙb
ωb

]
+ Ha

bmθ̇
a + Hb

bmθ̇
b (3)

where M0 = [P0,L0]T denote the initial linear and
angular momentums of the system. Hb is invertible, the
motion of the base can be expressed by[
ṙb
ωb

]
=
[
−Hb

−1Ha
bm −Hb

−1Hb
bm

] [θ̇a
θ̇b

]
−Hb

−1M0 (4)

The motion of the end-effectors is finally given as[
Ja
g

Jb
g

]
θ̇ =

[
Ja
e − Ja

bHb
−1Ha

bm −Ja
bHb

−1Hb
bm

−Jb
bHb

−1Ha
bm Jb

e − Jb
bHb

−1Hb
bm

] [
θ̇a

θ̇b

]
(5)

where Jg is termed Generalized Jacobian Matrix.

3. COORDINATED MOTION PLANNING

In this section, a novel spline-RRT* framework is proposed
for the coordinated motion of a dual-arm space robot.
The overview and a compact algorithm of the presented
framework are given in Fig. 1 and Table 1 respectively.
An initial rough path for the dual-arm system is obtained
by improving the off-the-shelf RRT* planning algorithm,
which samples from two separated inertial spaces to avoid
possible self-collisions. Then, quartic splines reparameter-
ize and smooth the generated RRT* path so that the
robot can execute it, in which continuous velocity, accel-
eration and jerk profiles are all considered. The presented
sampling-based motion planning framework can efficiently
find a kinematically feasible path for the dual-arm space
robot.

RRT*

Path Growing

x x&

x&x

Quartic Splines

Smoothness

Inverse Kinematic

Algorithm

Separated

Sampling Space

Coordinated Spline-RRT* Path Planner

Self-Collision

Checking

Profiles: Velocity

Acceleration

Jerk

Boundary

Constraints

Coordinated

Approaching Path

Fig. 1. Overview of coordinated spline-RRT* planner

Table 1. Coordinated spline-RRT* algorithm

1: Given end-effectors’ initial state and desired final state
2: Coordinated-RRT*
3: For k = 1toK do
4: Sampling from separated task spaces
5: ExtendRandomly, CollisionCheck
6: Return Waypoints(RRT*)
7: Quartic Splines Smoothness
8: Profile Waypoints(RRT*) with quartic splines
9: Compute parameters of quartic splines
10: Fit splines with Waypoints(RRT*)
11:Return Path(spline-RRT*)

3.1 Task-space path planning

The end-effectors’ path x(t) is generated via two decoupled
methods, RRT* for the position and a Bézier curve for the
attitude. A fifth-order Bézier curve is employed to plan
the desired path in our early work (Luo (2018)). Thus, it
is omitted here for brevity reason. We mainly focus on the
coordinated path planned for the end-effectors’ position
via RRT* here.

Given a desired end-effectors’ task in the task space,
the path planing problem can be formulated as seeking
for a feasible end-effectors’ path that satisfies boundary
constraints and physical constraints such as end-effectors’
limits while solving for the inverse kinematic of the robot.
For an end-effector’s task, its initial conditions (position

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9956



xs
e, velocity ẋs

e and acceleration ẍs
e) and final conditions

(position xf
e and velocity ẋf

e ) can be determined before-
hand. The initial acceleration is set to zeros for minimizing
joint jerk, but there is no restriction on the final acceler-
ation herein. The path planning task of optimization the
location of waypoints while obeying certain constraints can
be stated as follows:

min : f(xe)

s.t. : xe(t = 0) = xs
e,xe(t = tf ) = xf

e

ẋe(t = 0) = ẋs
e, ẋe(t = tf ) = ẋf

e

ẍe(t = 0) = ẍs
e

θ(t = 0) = θs, θ̇(t = 0) = θ̇s, θ̈(t = 0) = θ̈s

θ̇min ≤ θ̇ ≤ θ̇max, θ̈min ≤ θ̈ ≤ θ̈max (6)

where xe ∈ R3 is the end-effector’s position. f(xe)

represents the location of the waypoints. θ, θ̇, θ̈ are
joint angle, velocity and acceleration respectively, and
θmin,θmax, θ̇min, θ̇max, θ̈min, θ̈max are the corresponding
joint limits.

3.2 Coordinated RRT* path planning

Explicit details about the RRT* can be found in Karaman
(2011). To seek a path from a given initial state to a final
state of end-effectors, we use the RRT* algorithm to create
a tree in the task-space. Work of the RRT* algorithm
for our path planning issue can be expressed as follows.
Firstly, an initial position of end-effectors is inserted as a
first vertex of a tree and then a random position point is
sampled from the task-space. Next, a tree vertex nearest to
this point is located and a collision check is performed to
ensure the position of the end-effectors is safe. After that,
a new vertex is obtained and then a rewiring operation
is executed to check if there is any other minimum-cost
path. The procedure is repeated until the final position is
reached.

Since we aim at planning for a dual-arm space robot,
there are two paths generated by the RRT* algorithm
for each end-effector. It is quite possible to get stuck into
self-collisions due to the random samplings of the RRT*
algorithm. If we check self-collisions during the growing
procedure, it would be time-consuming. Therefore, we
proposed a novel coordinated RRT* algorithm by ran-
domly sampling from two separated task-spaces for each
end-effector. That is to say, imposing a virtually wall-like
space constraint between the end-effectors when planning
to ensure no self-collisions. Moreover, this wall-like space
constraint should not be a constant one but varies along
with the motion of the end-effectors, or termed as a contin-
uously varying space constraint. This coordinated strategy
is also universal for the path planning issue of other multi-
agent systems.

Directly connecting waypoints generated by RRT* leads
to an extremely rough path, which is harmful to the
robot execution. As a result, splines, passing though all
these waypoints, incorporated with the coordinated RRT*
algorithm enables a smoother robot motion.

3.3 Quartic splines smoothing technique

One strategy that has been proven particularly effective
for smoothing paths is the use of smooth, parametrized
splines to describe paths. First of all, let us recall proce-
dures for fitting quartic splines to waypoints planned by
RRT* algorithm. The waypoints can be expressed as the
following time-location pairs.

(t0, x0), (t1, x1), · · · , (tn, xn) (7)

where xi is the planned position of the end-effector at time
ti.

Once these waypoints are predetermined, a unique piece-
wise quartic trajectory passes through these points and
satisfies certain smoothness criteria. Considering the tra-
jectory between times ti and ti+1, denoted as xi(t) : R→
Rn, as a quartic function

xi(t) = ai+bi(t−ti)+ci(t−ti)2+di(t−ti)3+ei(t−ti)4 (8)

where ai, bi, ci, di, ei ∈ Rn are parameters of the quartic
spline. The final trajectory x(t) : R → Rn is a piecewise
quartic function that is simply the concatenation of these
different quartic trajectories.

x(t) =


x0(t), if t0 < t ≤ t1
...

xT−1(t), if tT−1 < t ≤ tT

(9)

For the robot motion, jerk profiles at each waypoint should
also be continuous. These profiles can be satisfied via
the first-order, second-order and third-order derivatives
of the quartic splines. Thereafter, we can calculate the
parameters of the quartic splines by solving the functions
and derivatives with the given waypoints.

x′i(t) = bi + 2ci(t− ti) + 3di(t− ti)2 + 4ei(t− ti)3

x′′i (t) = 2ci + 6di(t− ti) + 12ei(t− ti)2

x′′′i (t) = 6di + 24ei(t− ti) (10)

Taking a simple case for example, a sketch of the quartic
splines is given in Fig. 2. Supposing that there are 4 way-
points in one end-effector’s path of the robot. The second
and the third waypoints are defined as joint waypoints. In
this case, there should be 3 pieces of quartic trajectories
and 15 parameters (5 parameters for each piece) which
corresponds to 15 unknown equations needed solving.

0
x

1
x

2
x

3
x

Profiles

0 0
,v a

ft
v

0
S

1
S

2
S

0 1

0 1

0 1

0 1

S S

f 0

S S

f 0

S S

f 0

S S

f 0

=

=

=

=0 1S S

f 0
=

p p

v v

a a

a a

1 2

1 2

1 2

1 2

S S

f 0

S S

f 0

S S

f 0

S S

f 0

=

=

=

=1 2S S1 21 2

f 0
=1 21 2

p p

v v

a a

a a

Profiles

 

Fig. 2. A sketch of the quartic splines

There are 4 position constraints for the 4 desired waypoints
as well as 8 constraints for the continuous position, veloc-
ity, acceleration and jerk profiles at two joint waypoints,
x1 and x2. For the robot motion, the initial velocity, ac-
celeration and the final velocity of the end-effector should
be constrained. As mentioned earlier, there is no need to

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9957



restrain the final acceleration here. Totally, there are 15
constraints for constructing the equations to solve the 15
unknown parameters of quartic splines. Finally, the linear
equations with a size of 15 of the proposed case can be
stated as follows.

a0 = x0, a1 = x1, a2 = x2,

a0 + b0h0 + c0h
2
0 + d0h

3
0 + e0h

4
0 = x1,

a1 + b1h1 + c1h
2
1 + d1h

3
1 + e1h

4
1 = x2,

a2 + b2h2 + c2h
2
2 + d2h

3
2 + e2h

4
2 = x3,

b0 + 2c0h0 + 3d0h
2
0 + 4e0h

3
0 − b1 = 0,

b1 + 2c1h1 + 3d1h
2
1 + 4e1h

3
1 − b2 = 0,

c0 + 3d0h0 + 6e0h
2
0 − c1 = 0,

c1 + 3d1h1 + 6e1h
2
1 − c2 = 0,

d0 + 4e0h0 − d1 = 0,

d1 + 4e1h1 − d2 = 0,

S′0(x0) = b0 = init vel, S′′0 (x0) = 2c0 = init acc,

S′2(x3) = b2 + 2c2h2 + 3d2h
2
2 + 4e2h

3
2 = final vel.

(11)
where h0, h1, h2 depend only on the times t0, t1, t2, t3.
The former 6 equations are the position profiles for each
waypoint, while the middle 6 equations are the velocity,
acceleration and jerk profiles for each joint waypoint.
Besides, the last 3 equations are the initial velocity, initial
acceleration and final velocity constraints of the end-
effectors. Thus, a complete definition of the parameters
of the quartic splines for the given case is presented and
the parameters can be easily solved by the linear equations
in the desired locations.

Note that the coordinated RRT* algorithm is used to find
feasible wayppoints in advance, hence the computational
complexity main stems from quartic splines, i.e., the linear
equation constraints, which are easily solved and make this
framework viable for a fast planning implementation.

0

200

400

600

800

0

100

200

300

400

500
0

200

400

X(m)Y(m)

Z
(m

) RRT* splineRRT*

Goal

Start

WayPoints

Fig. 3. Simulation result of spline-RRT* algorithm

Fig. 3 gives the simulation result of our proposed spline-
RRT* algorithm. The initial position is the origin of the co-
ordinate frame and the final position is (640, 480, 400)Tm.
A normalized time interval, [0, 1], is used and split into
three uniform subintervals for 4 waypoints. The blue cross-
es denote the samplings. The black lines are the branches
of the growing tree, while the slim, green lines are the
rewired branches. The red zigzag curve is the initial path
planned by RRT* algorithm, whereas the blue curve is the

final path generated by the polished spline-RRT* algorith-
m. Obviously, our proposed spline-RRT* algorithm could
plan a feasible, smooth path for the robot motion, as well
as the optimality of the path is preserved.

3

3.5

4

4.5

−0.4

−0.2

0

0.2

0.4
0

0.1

0.2

0.3

0.4

Z
(m

)

(a)spline−RRT*

Y(m) X(m) 3

3.5

4

4.5

−0.5

0

0.5

0

0.2

0.4

Z
(m

)

(b)Coordinated spline−RRT*

Y(m)
X(m)

A contiuously varying
wall−like space constraint

Fig. 4. Illustration of coordinated spline-RRT* algorithm

Moreover, we also conducted a simulation case to illustrate
the coordination of our proposed spline-RRT* algorithm.
As we can see, if randomly sampling from the inertial
space, the end-effectors may collide with each other as
shown in Fig. 4(a), whereas the case is drastically refined
when sampling from the separated inertial spaces as shown
in Fig. 4(b).

4. SIMULATION RESULTS

The proposed coordinated spline-RRT* framework is nu-
merically validated using a continuous end-effectors’ track-
ing example. The goal of the planning algorithm is to track
an approaching path while adhering to the end-effectors’
limit and joint limit, as well as ensuring a collision-free
motion. The initial pose is

xase = (3.556,−0.101, 0.168,−π
2
, 0,

π

4
) (12)

xbse = (3.556, 0.101, 0.168,
π

2
, 0,−π

4
) (13)

and the final pose is

xafe = (4.271,−0.365, 0.168,−π
2
, 0,

π

6
) (14)

xbfe = (4.271, 0.365, 0.168,
π

2
, 0,−π

6
) (15)

The total time T of operation is calculated by considering
the end-effectors’ limit:

T ≥ max(
‖ẋmax‖
ẋmax

,

√
‖ẍmax‖
ẍmax

) (16)

Once the execution time T is determined, the end-
effectors’ path in the task-space using the spline-RRT*
can be generated properly.

Fig. 5 illustrates the planned path by the coordinated
spline-RRT* algorithm for the end-effectors. As we can see
from Fig. 5(a) and (b), the path planned by our proposed
algorithm varies smoothly from the given initial pose to the
goal pose for both arms. The velocity of the end-effectors is
restricted within the end-effectors’ physical limit, 0.1m/s,
as shown in Fig. 5(c) and (d). More importantly, the
initial and final velocity of the end-effectors are zeros,
which matches our original settings in splines fitting, and
the initial acceleration of the end-effectors is also zero
from Fig. 5(c) and (d). Considering the path velocity
and acceleration boundaries, the execution time T is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9958



0 5 10 15 20
−2

−1

0

1

2

3

4

5

Times(s)

E
nd

−
ef

fe
ct

or
 p

os
e

(a)End−effector path of left arm

 

 

x
y
z
α
β
γ

0 5 10 15 20
−1

0

1

2

3

4

5

Times(s)

E
nd

−
ef

fe
ct

or
 p

os
e

(b)End−effector path of right arm

 

 

x
y
z
α
β
γ

0 5 10 15 20
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Times(s)

E
nd

−
ef

fe
ct

or
 v

el
oc

ity

(c)End−effector velocity of left arm

 

 

dx
dy
dz
ω

x

ω
y

ω
z

0 5 10 15 20
−0.02

0

0.02

0.04

0.06

0.08

Times(s)

E
nd

−
ef

fe
ct

or
 v

el
oc

ity
(d)End−effector velocity of right arm

 

 

dx
dy
dz
ω

x

ω
y

ω
z

Fig. 5. Planned path

calculated, where T = 16s. Therefore, the designed end-
effectors’ path fulfils the imposed constraints and required
tracking mission in task-space.

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

Times(s)

Jo
in

t(
ra

d)

(a)Left arm joint motion

 

 

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

θ
7

0 5 10 15 20
−0.5

0

0.5

1

1.5

Times(s)

Jo
in

t(
ra

d)

(b)Right arm joint motion

 

 

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

θ
7

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

Times(s)

Jo
in

t v
el

oc
ity

(r
ad

/s
)

(c)Left arm joint velocity

 

 

dθ
1

dθ
2

dθ
3

dθ
4

dθ
5

dθ
6

dθ
7

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

Times(s)

Jo
in

t v
el

oc
ity

(r
ad

/s
)

(d)Right arm joint velocity

 

 

dθ
1

dθ
2

dθ
3

dθ
4

dθ
5

dθ
6

dθ
7

0 5 10 15 20
−0.04

−0.02

0

0.02

0.04

Times(s)

Jo
in

t a
cc

el
er

at
io

n(
ra

d/
s2 )

(e)Left arm joint acceleration

 

 

ddθ
1

ddθ
2

ddθ
3

ddθ
4

ddθ
5

ddθ
6

ddθ
7

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

Times(s)

Jo
in

t a
cc

el
er

at
io

n(
ra

d/
s2 )

(f)Right arm joint acceleration

 

 

ddθ
1

ddθ
2

ddθ
3

ddθ
4

ddθ
5

ddθ
6

ddθ
7

Fig. 6. Joint motion, velocity and acceleration

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

Times(s)

T
ra

ck
in

g 
er

ro
r

(a)Tracking error of left arm

 

 

err
x

err
y

err
z

err
α

err
β

err
γ

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

Times(s)

T
ra

ck
in

g 
er

ro
r

(b)Tracking error of right arm

 

 

err
x

err
y

err
z

err
α

err
β

err
γ

Fig. 7. Tracking error of the end-effectors

The corresponding robot executive outcomes are given in
Fig. 6 and Fig. 7. When executing the designed path, the
joint trajectories are smooth and within the joint limits,

which are 0.1deg/s for joint velocity and 0.1deg/s2 for
joint acceleration. Moreover, the initial joint velocity and
acceleration are restricted to zeros for minimizing the joint
jerk. The order of magnitude of the tracking position and
orientation errors for both end-effectors is as lower as 10−4

as shown in Fig. 7. Therefore, the tracking task of the end-
effectors is well done with the generated joint trajectories.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

Times(s)

T
he

 m
in

im
um

 d
is

ta
nc

es
(m

)

 

 

a3&b3
a3&b5
a3&b7
a5&b3
a5&b5
a5&b7
a7&b3
a7&b5
a7&b7

di = 0.1m

Fig. 8. The minimum distances between robot links

Fig. 8 gives the minimum distances between the robot
links. We only detect the minimum distances between
main robot links, link 3, 5 and 7 for each arm, which
are likely to collide mutually. Thanks to our separated
sampling strategy, there is no any collision during the
robot execution. The minimum distances are always larger
than the influence distance, di = 0.1m. Fig. 8 further
validate the coordination of our proposed algorithm.

Moreover, we conduct the simulation case both in the
MATLAB/Simulink environment and Virtual Reality (VR)
platform at the same time. The results of the Virtual
Reality are given in Fig. 9, demonstrating the correct-
ness of our algorithm. When catching a moving object,
the manipulators unfold at first. By using our proposed
motion planning algorithm, the pose of the end-effectors
approaches the object gradually. The RGB (R for red, G
for green and B for blue) coordinate frames in X-Y-Z order
we use for all frames. Finally, it’s clear that the coordinate
frames of both end-effectors matches the counterpart of the
object, which illustrates our algorithm successfully tracks
the moving object.

5. CONCLUSION

A coordinated motion planning scheme for a free-floating
dual-arm space robot is presented in this paper. This
approach uses an optimal, rapidly exploring random trees
(RRT*) algorithm, as a high-level planning phase, to seek
reasonable waypoints for end-effectors. A novel coordi-
nated strategy, sampling from separated inertial spaces
for each end-effector, is proposed for the sake of possible
self-collisions. Then, quartic splines are employed to con-
catenate the desired waypoints generated via coordinated
RRT* algorithm and eventually obtain a smooth motion
for the robot, in which end-effectors’ physical limit, joint
limit and boundary constraints are all taken into consid-
eration. Simulation results validate the effectiveness and
correctness of the proposed spline-RRT* algorithm. The
presented coordinated motion planning scheme can also
be applied to the path planning issue for ground robots
and multi-agent systems, in which a more well-thought

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9959



Fig. 9. Simulation results in VR platform

coordinated strategy is needed with the increasing number
of agents.

REFERENCES

Abad, A.F. (2014). Optimal control of space robots for
capturing a tumbling object with uncertainties. Journal
of Guidance, Control, and Dynamics, 37, 2014–2017.

Aghili, F. (2013). Pre- and post-grasping robot motion
planning to capture and stabilize a tumbling/drifting
free-floater with uncertain dynamics. IEEE Internation-
al Conference on Robotics and Automation, 5461–5468.

Ding, W. (2019). An efficient b-spline-based kinodynamic
replanning framework for quadrotors. IEEE Transac-
tions on Robotics, 35(6).

James, F. (2016). Reactionless maneuvering of a space
robot in precapture phase. Journal of Guidance, Con-
trol, and Dynamics, 39, 2419–2425.

Karaman, S. (2011). Sampling-based algorithms for op-
timal motion planning. The International Journal of
Robotics Research, 30, 846–894.

Kolter, J.Z. (2009). Task-space trajectories via cubic
spline optimization. IEEE International Conference on
Robotics and Automation.

Lampariello, R. (2014). Generating feasible trajectories
for autonomous on-orbit grasping of spinning debris in
a useful time. International Conference on Intelligent
Robots and Systems, 5652–5659.

LaValle, S.M. (2006). Planning algorithms. Cambridge
University Press, London.

Luo, J.J. (2018). A fast trajectory planning framework
with task-priority for space robot. Acta Astronautica,
152, 823–835.

Nenchev, D. (1992). Analysis of a redundant free-flying
spacecraft manipulator system. IEEE Transactions on
Robotics and Automation, 8, 1–6.

Persson, S.M. (2014). Sampling-based a* algorithm for
robot path-planning. International Journal of Robotics
Research, 33, 1683–1708.

Rybus, T. (2014). Optimal detumbling of defunct space-
craft using space robots. International Conference on
Methods and Models in Automation and Robotics, 64–
69.

Salaris, P. (2019). Online optimal perception-aware trajec-
tory generation. IEEE Transactions on Robotics, 35(6).

Vahrenkamp, N. (2010). Integrated grasp and motion
planning. IEEE International Conference on Robotics
and Automation.

Vaz, A. (2006). Tools for robotic trajectory planning using
cubic splines and semi-infinite programming. Lecture
Notes in Economics and Mathematical Systems, 563.

Wang, M.M. (2018). Coordinatd trajectory planning of
dual-arm space robot using constrained particle swarm
optimization. Acta Astronautica, 146, 259–272.

Webb, D.J. (2013). Kinodynamic rrt*: asymptotically
optimal motion planning for robots with linear dynam-
ics. IEEE International Conference on Robotics and
Automation.

Xu, W.F. (2009). Study on non-holonomic cartesian
path planning of a free-floating space robotic system.
Advanced Robotics, 23, 113–143.

Zhu, Z. (2015). A convex optimization approach to smooth
trajectories for motion planning with car-like robots.
54th IEEE Conference on Decision and Control, 835–
842.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9960


