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Abstract: Temperature monitoring for Lithium ion batteries is an important factor for its properties. 
Since the core temperature is difficult to measure, a thermal model is used for estimation. In this paper, 
an offline parameter identification procedure is applied, by which the parameters of a three state lumped 
thermal model can be identified. Based on the model a Luenberger observer is designed with the strength 
of compensating variations of the model parameters. Only the easily accessible and measurable 
temperature of the copper pole is fed back to the observer. The paper deals with the robustness analysis 
of the proposed observer in that the actual plant differs from the model considered in the observer. The 
capability of the approach is beneficial as an online (and computational power consuming) parameter 
identification is no longer required. Instead, the thermal model is obtained offline and the observer is 
robust against model parameter variations, e. g. ageing, so that a continuous update of the model is not 
required. 

Keywords: Observers, Identification, Temperature measurement, Energy storage, Uncertainty, State 
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1. INTRODUCTION 

Lithium ion batteries are widely used as energy storage 
devices for mobile applications; in particular in the last 
several years battery driven electric vehicles have been 
increased significantly and are still growing (Pistoia, 2009). It 
has been shown that the temperature of the battery is 
important for their performance, efficiency, safety, and 
capacity (Waldmann et al, 2014). Battery management 
systems (BMS) take into account the battery temperature, 
although the core temperature of the battery derives the above 
mentioned properties and it is difficult to measure directly 
(Lin et al, 2012), (Zhang et al, 2019). Due to that difficulty 
the temperature is often measured on or near the poles of the 
cell.  

Owing to their narrow operating temperature range, an 
accurate prediction of the battery temperature is absolutely 
essential so as to maintain the longevity, performance and 
safety of these batteries. Studies (Forgez et al, 2010) have 
shown that, under typical conditions (such as a HEV drive 
cycle), the cells may experience a temperature difference 
between the core and the surface of 10°C or more. The BMS 
typically use thermal models to predict the core temperature 
and adapt the current flow accordingly so that the efficiency 
of a battery is at its optimum.  

The contribution of the paper lays is the development of an 
effective temperature observer, so that less computational 
power is needed for the BMS. The computational power 
consuming identification process for the thermal model (Lin 
et al, 2013) is obtained offline, followed by an observer 

design which is robust against model parameter variations, so 
that a continuous update of the model is not required. 

This paper deals with the design of a robust Luenberger 
observer in order to predict the core temperature of the 
battery. The observer is designed for the system states 
generation; because the observer uses real system output 
measurements and adjusts its response according to it, a 
better convergence and a robust observation is expected, even 
when the parameters of the thermal model are not exact, vary 
over time or disturbances are added to the system. The 
designed observer can be used in the BMS to monitor also 
the health condition of the battery during operation. 

The paper is structured as follows: The simplified lumped 
thermal model in state-space form and the parameter 
identification is described in Sec. 2, followed by the 
explanation of the Luenberger observer design in Sec. 3. 
Sec. 4 shows the temperature observer results including a 
robustness investigation, where model parameter 
uncertainties are studied with respect to the observed core 
temperature. 

2. THERMAL MODEL AND PARAMETER 
IDENTIFICATION OF A LITHIUM ION BATTERY 

In order to decide the appropriate battery model to be used, 
observations were made considering the heat conduction 
inside the core and poles. According to Nissing, Mahanta, 
van Sterkenburg (2017) the Biot-number has been determined 
as 0.14 which justifies assuming a lumped thermal model.  
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2.1 Lumped Thermal Model 

For this study, the simplified lumped thermal model 
considered is constructed based on first principles, which 
incorporates the physics of the various processes occurring in 
the cell. A 100 [A·h] prismatic Lithium Iron Phosphate cell 
of Sinopoly (LEP100AHA) (van Sterkenburg et al, 2013) 
was considered for this study. As for prismatic cells, the 
temperature is often measured at the battery poles; a 1D 
model is used so as to describe the difference between the 
temperature at the battery poles and the core. The poles 
consist of a solid copper or aluminium block with an attached 
cylindrical top for connecting a current cable. The cell 
construction also implies two Electric contact resistances 
(ECR) at each pole (van Sterkenburg and Veenhuizen, 2015), 
the ECR from cable to pole and the ECR from pole to current 
collector sheets. Fig. 1 gives the thermal RC representation of 
the cell model. 

The mathematical model of the system is developed by 
formulating the differential equations with the help of basic 
physical laws. The thermal model considers the heat 
capacities as the extension of heat added or removed from the 
system, which causes temperature variations. It can be shown 
that, for a specific heat capacity C, the change in temperature 
T resulting from a net heat flow is given by 

netd
d Q

t
TC =  (1) 

where Qnet is the net heat flow into or out of the system. 

The total heat dissipated at the copper pole, aluminium pole 
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with Cc the heat capacity of the core, Cap the heat capacity of 
aluminium pole, Ccp the heat capacity of the copper pole, 
Rthcable the thermal resistance of the connector cable, Rccp the 
thermal resistance from core to copper pole, Rca the thermal 
resistance from core to ambient, Rcap the thermal resistance 
from core to aluminium, qcp heat dissipated at the copper 
pole, qap heat dissipated at the aluminium pole, and qc heat 
dissipated at the cell core. 

The heat dissipations are dependent on the charge/discharge 
current and the corresponding contact resistances ECRAl and 
ECRCu (Pistoia, 2009). 

2.2 Parameter Identification 

As it is difficult to determine the thermals resistances and the 
heat capacities experimentally or empirically, a least-square 
(LS) parameter identification method is applied to determine 
the parameters of the thermal model, based on input/output 
measurements (Nissing, Mahanta and van Sterkenburg, 
2017). The load current of the battery represents the input 
while the temperatures at the poles represent the outputs of 
the measurement. Two sets of measurement have been taken 
for the parameter identification, in that a constant load as well 
as the dynamic behaviour is considered for the stimulus. The 
model parameters are optimized in that the sum of the error 
e²(k) between the real process and the model becomes a 
minimum, (Isermann and Münchhof, 2011). 

In order to apply a parameter identification approach, the 
model fulfils the requirements of (1) stability, (2) 
controllability, and (3) observability. 

The properties of controllability and observability can be 
proved by use of the Kalman criteria (Isermann and 
Münchhof, 2011). 

The model is validated using a third independent 
measurement set with 150 [A] maximum current input and 
the results obtained were satisfactory in terms of the obtained 
curve fit (Fig. 2). The obtained parameters are listed in Tab 1. 

 
Fig. 1. Thermal RC-network model of cell. 
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Fig. 2. Validation measurements and comparison. 

Table 1.  Obtained parameter values 

Parameter Parameter identification 
Cap [J·K-1] 52.997 
Cc [J·K-1] 3080.2 
Ccp [J·K-1] 84.792 
Rca [K·W-1] 1.3731 
Rcap [K·W-1] 3.5244 
Rccp [K·W-1] 3.1336 
ECRAl [µΩ] 73.786 
ECRCu [µΩ] 22.207 

2.3  State-Space Model 

In order to design a model based observer, the thermal model 
of the battery has to be transformed into a state-space model.  
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With the introduction of the state vector 
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and the input matrix 
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For the observer feedback it is considered, that the 
temperature at the copper pole TCu can be easily measured, 
thus 

[ ] [ ].0000,001 == DC  (10) 

3. OBSERVER DESIGN 

The observer design starts with the selection of type of 
observer depending upon the system requirements and 
availability of states. Various types of observer techniques 
can be seen such as open loop state, functional observers, 
sliding mode, adaptive, proportional – integral, or reduced 
order observers etc. (Ellis, 2002). 

The closed loop Luenberger observer design is used in this 
paper, because of its advantage that it takes into consideration 
the output of the plant and adjusts the observer output 
according to the variations in the plant (Luenberger, 1971). 
The feedback loop also enables the placement of the poles to 
desired locations in order to achieve the required dynamics 
(Nise, 2011), (Dorf and Bishop, 2010). The full order 
observer design can be used to compare all the observed 
states with actual readings for validation.   

A closed loop Luenberger observer for the system given in 
Sec. 2.3 is represented in state format 

( )
uDxCy

yyLuBxAx
+=

−++=
ˆˆ
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 (11) 

where ( *̂) denotes the predicted variable/state. The observer 
model uses the same system matrix as the plant model and 
the difference between measured and observed output is 
multiplied by the observer gain L and is fed back to reduce 
the error. The estimation error ex present in the observed 
states is given as, 

.ˆx xxe −=  (12) 

Differentiation of the estimation error (12) with respect to 
time gives the equation for the observer error dynamics 

( ) .xx eCLAe −=  (13) 

Fig. 3 shows the block diagram of the closed loop Luenberger 
observer where double lines represent vector signal whereas a 
single line shows a scalar signal. 
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Fig. 3. Block diagram of closed loop observer. 

The plant system initially needs to be checked for its 
observability, before an observer is designed. With the help 
of Kalman criteria (Isermann and Münchhof, 2011) the 
observability matrix is found to be full rank, which indicates 
that the system under consideration is completely observable 
and the observer can be parameterized by the pole placement 
method. The desired poles are chosen, so that an acceptable 
dynamic behaviour is achieved and the observer is still not 
sensitive against measurement noise. 

4. TEMPERATURE OBSERVATION RESULTS AND 
MODEL UNCERTAINTY INVESTIGATION 

The observed temperatures by the designed observer need to 
be verified with the actual battery temperatures to analyse the 
correctness. Fig. 4 and 5 show the observed temperatures and 
the measured copper pole temperature over time, where 
Fig. 4 represents a static battery loading and Fig. 5 shows a 
dynamic loading cycle. It is evident from the graphs that the 
observed copper pole temperature converges to the copper 
pole temperature measured on the actual battery. Further, in 
this section the observer performance output is checked for 
various parametric deviations. 
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Fig. 4. Observed states under steady loading condition. 
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Fig. 5. Observed states under dynamic loading condition. 

4.1 Verification of Robustness 

The designed observer should maintain its performance and 
stability even when the model considered for the observer 
design is no longer accurate. This ability is called as the 
robustness of the system/observer and investigates the effect 
to model parameter uncertainties. A robust observer is 
capable of compensating the disturbances and give acceptable 
state variable values. The actual plant properties may vary 
due to different reasons and can introduce inaccuracies in the 
observer model. 

4.2 Model Inaccuracies 

Two types of inaccuracies can be found in a model 
considered for the observer design.  

Firstly, the inaccuracies introduced to an observer model due 
to the faults present in the plant model introduced during the 
parameter identification or system modelling phase. This type 
of error is seen for very complex plants or highly nonlinear 
behaviour because they are often difficult to model accurately 
with a set of linear differential equations. The output results 
of the plant model under consideration are compared with the 
measurements taken on the actual battery, which shows 
deviations of less than 1% under steady loading condition 
and also overall dimensional correctness for dynamic loading 
condition (Nissing, Mahanta and van Sterkenburg, 2017). 
This indicates that the plant model under consideration is 
correct with acceptable output. 

Second type of inaccuracy is introduced due to deviations in 
parameters of the actual plant during operation. This 
deviation in parameters may be caused due to aging of the 
electric battery components or replacement of any battery 
component without changing the observer model. It is seen 
that the parameter values of electric components vary by up 
to ±20 % (Ellis, 2002). 

4.3 Model Parameter Variation 

The variations in the plant model are simulated with the help 
of a variation factor v. The plant model parameters mentioned 
in Tab. 1 and the connecting cable parameters are multiplied 
by the variation factor to simulate the percentage variation in 
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the actual plant. Thus the considered system matrix A~  and 
the input matrix B~  of the plant model change after 
multiplication by the variation factor, whereas the respective 
matrices of the observer model remain unchanged. The main 
objective of the simulation is to examine the effect of 
parametric variation on the observed poles and core 
temperature values. 

4.4 Results 

The various parametric changes and loading conditions are 
analysed in a simulation where the temperature profiles of the 
plant temperatures and the observed temperatures are studied 
for different parametric changes.  

Two measurement sets are considered in this investigation: 
Measurement set 1 considers a steady loading while 
measurement set 2 takes into account a dynamic loading 
condition. For the measurement set 1 the results are 
exemplarily shown in Fig 6, where the observed temperatures 
are plotted as a function of time taking into account a 
parameter change of 0 %, +20 %, and -20 % for each 
temperature. The results with 0 % parameter change are 
considered as ideal and the corresponding error-plots show 
the temperature deviation against that reference. 

Fig. 7 and Fig 8 illustrate the relation between the average 
percentage error in the observed states with respect to the 
percentage change in the battery parameters under steady and 
dynamic loading condition respectively. It is evident from the 
graph that the average percentage error for the pole and core 
temperatures increases with different gradients per increase in 
the amount of parametric change. The error at the copper pole 
increases at smaller gradient. 

It can be seen from both loading conditions that the observer 
shows a robust behaviour. The observed core temperature of 
the battery contains an average percentage error less than 3 % 
even under ±20 % parameter change for both loading 
conditions. 

The observed temperature of the aluminium pole shows 
higher error values and more fluctuations without any 
definite pattern. This behaviour can be explained as the ECR 
of the aluminium pole is measured to be 4 times the ECR of 
the copper pole (van Sterkenburg and Veenhuizen, 2015). 
Also the specific resistance of the aluminium is 50 % higher 
than that of the copper. Hence, as compared to the copper 
pole, the aluminium pole model can respond differently to the 
same heat dissipation stimuli. But the main reason is that the 
actual copper pole temperature is fed back to the observer 
and this error is minimized even under the presence of 
parametric variations. 

It is also seen in the simulation that the error is high during 
initial time and gradually converges to the steady state value 
or pattern. The fluctuations were observed in the estimation 
error response under dynamic loading condition. 
Furthermore, the convergence time of the observed states is 
not affected by the variations in the plant model. 

 

 

  

Fig. 6. Observer response with parametric deviation under 
steady loading. 

5. CONCLUSION, SUMMARY AND OUTLOOK 

The core temperature of a Lithium battery cell is important 
for its performance, efficiency, safety, and capacity and is 
influenced by the environmental temperature and by the 
charging and discharging process itself. BMS take into 
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account this effect although the core temperature is usually 
not measurable. The core temperature can be estimated by a 
three state thermal model which results in the determination 
of the model parameters, which can be realized by a 
parameter identification scheme based on a least square 
algorithm. In this paper, a Luenberger observer design is 
proposed and applied, because of its advantage considering 
and compensating variations of the model parameters. In 
order to predict all the states, only the easily accessible, 
measurable copper pole temperature with comparatively less 
error and fluctuations is fed back to the observer. The 
temperature observer shows the capability to predict the core 
temperature even when the model considered in the observer 
deviates from the behaviour of the actual plant. Simulation 
studies show a core temperature error of <3 % even for a 
parameter change of ±20 %. The methodology developed in 
this paper has been verified with simulations and it is to be 
validated with experiments in the future. 

The strength of the presented approach lays in effectiveness 
so that less computational power is needed for the BMS. The 
computational power consuming identification process for 
the thermal model (Lin et al, 2013) is obtained offline and it 
has been shown that the observer is robust against model 
parameter variations, so that a continuous update of the 
model is not required. 

High power applications, such as BEV or HEV, usually have 
multiple battery cells in series to meet the high power and 
energy requirements. Thus, a future scope considers the 
extension of the given approach on a single cell to a battery 
with multiple cells. Therefore the thermal model of the 
battery has to be extended and temperature interactions 
between the cells have to be considered. 
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Fig. 7. Observation error vs. parametric change under 
steady loading condition. 

 

 
Fig. 8. Observation error vs. parametric change under 
under dynamic loading condition. 
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