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Abstract: This paper deals with computational delay in distributed nonlinear model predictive control. A 

fast, cooperative distributed model predictive control algorithm is proposed based on parametric sensitivity. 

The implementation strategy is divided into two different stages. In the background stage, the future state 

is estimated one step forward with the current state and input. The local MPC controllers perform 

distributed optimization based on the predicted state and iterate to obtain the nominal optimal solutions. In 

the online stage, all the controllers correct their nominal optimal inputs through parametric sensitivity. 

Specifically, each controller formulates its local sensitivity equation based on the state estimation error. In 

order to solve these linear equations in a distributed way, Jacobi iterative method is applied. The overall 

algorithm can provide fast control action. A case study is provided to show the promising performance of 

the proposed method. 
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

1. INTRODUCTION 

Industrial processes usually consist of several interconnected 

units that interact with each other through mass, energy and 

information flows. For these processes, centralized control is 

impractical due to expensive computational cost, poor 

reliability and maintainability. Distributed control is a 

preferable choice in which several controllers are used and 

communication is allowed among controllers to improve 

decision making. Flexibility, scalability and robustness are 

potential advantages for distributed control (Mayne, 2014). 

Model predictive control (MPC) is a common control strategy 

in industry because it can handle operational constraints and 

integrate various kinds of models. Due to strong nonlinearity 

of industrial systems, it is necessary to use nonlinear model 

predictive control (NMPC), which accommodates nonlinear 

model in MPC optimization for better performance concerns. 

In this work, distributed implementation of nonlinear model 

predictive control is studied. 

A distributed nonlinear model predictive control (DNMPC) 

strategy is said to be cooperative if each controller optimizes 

with a system-wide objective function and cooperates with 

others to reach a common goal (Christofides et al., 2013). In 

contrast, non-cooperative approach refers to the control 

strategy when each controller uses a local control objective 

(Scattolini, 2009). Over the past years, several DNMPC 

strategies have been proposed. Dunbar (2007) proposed a non-

cooperative DNMPC algorithm for continuous-time systems 

with analysis of feasibility and stability properties. A 

distributed nonlinear optimal control strategy is presented in 

Necoara et al. (2009) with application of sequential convex 

programming and smoothing techniques, and iteration is 

needed for optimality. A two-tier DNMPC algorithm is 

proposed based on Lyapunov MPC techniques (Liu et al., 

2009). In this approach, one controller is designed for closed-

loop system stabilization and the other is used for optimizing 

manipulated variables. As an extension of the work, sequential 

and iterative DNMPC architectures are proposed in Liu et al. 

(2010). The former utilizes a single-direction and non-iterative 

computation strategy, while the latter applies a bi-direction and 

iterative strategy for distributed optimization. A cooperative 

DNMPC strategy is proposed in Stewart et al. (2011), where a 

novel distributed optimization procedure is developed for 

solving non-convex nonlinear programming (NLP) problems. 

Asymptotic stability of the closed-loop system is ensured. 

The use of nonlinear model in NMPC could cause the 

optimization problem to be non-convex and therefore time-

consuming to solve. Although distributed control structure 

reduces the optimization problem size for each NMPC 

controller, the inherent difficulty of solving non-convex NLPs 

still exists, which leads to a delay of input implementation. 

According to Findeisen and Allgöwer (2004), the 

computational delay will decrease the control performance and 

may even destabilize the closed-loop system. To handle this 

problem, several fast NMPC algorithms have been proposed 

(Wolf and Marquardt, 2016). Diehl et al. (2005) proposed a 

real-time iteration (RTI) algorithm for NMPC, which prepares 

an initial value for input through successive linearization 

offline, and solves one quadratic programming problem online 

to obtain fast feedback. A low latency output feedback model 

predictive control is proposed by Kogel and Findeisen (2017) 
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for constrained linear systems, where an optimal control 

problem is solved in background and a correction scheme is 

triggered online with explicit MPC technique. In particular, a 

parametric sensitivity-based NMPC approach is proposed in 

Zavala and Biegler (2009). The algorithm predicts future state 

in advance and solves the next-step optimization problem in 

background, and updates the background solution online 

through sensitivity. This approach can provide fast control 

actions due to the linear feature of online update strategy. The 

prediction-correction method in input calculation can be 

carried over in distributed implementation of NMPC to speed 

up the online computation. In our previous work, a hierarchical 

distributed NMPC algorithm is proposed based on sensitivity 

theory (Yu et al., 2019). The lower-layer local controllers 

compute the predicted optimal inputs in background via 

distributed optimization, and the upper-layer coordinator 

collects and combines all the local optimality information to 

form the system-wide sensitivity equation. After solution of 

this equation, the input correction vectors are obtained and the 

predicted optimal inputs are updated before implementation. 

In this paper, a cooperative distributed NMPC algorithm is 

further proposed based on parametric sensitivity. A two-stage 

approach is applied to reduce the online computation delay. 

Different from our previous work (Yu et al., 2019), the 

proposed method does not require an upper-layer coordinator 

and is fully distributed. In the background stage, future state is 

predicted one step forward based on current state and input. 

Then the local controllers solve their NMPC problems in a 

distributed manner, and iterate with each other to improve 

decision making. Nominal optimal local input is obtained for 

each controller. In the online stage, true state is measured. All 

the MPCs solve their local sensitivity equations in parallel with 

the application of Jacobi iterative method. After that, the 

correction vectors can be computed and the nominal inputs are 

updated before implementation. 

The paper is organized as follows. Section 2 presents an 

overview of the proposed algorithm first. Then the algorithmic 

details including the background and online stages of the 

sensitivity-based DNMPC strategy is given. Section 3 

demonstrates a case study on the quadruple-tank plant. Finally, 

Section 4 concludes the paper. 

2. ALGORITHM DESCRIPTION 

For a conventional MPC controller, the input is obtained 

online only after solving the optimization problem. As the 

NLP problem may occupy plenty of computational time, this 

control strategy could lead to a substantial time delay of input 

implementation. As a result, the controller performance may 

degrade. To speed up control feedback, we propose a two-

stage DNMPC algorithm, whose timeline is shown in Fig. 1. 

Background computationkt 1kt Online update

Input 

implementation

Distributed 

sensitivity 

computation

Advanced-step 

distributed optimization

 

Fig. 1. Timeline for the proposed algorithm. 

At sampling time 𝑡𝑘, the online stage is activated. At that time, 

a pre-calculated input is already available. The goal of this 

stage is to modify the candidate input before being 

implemented. First, the true state is measured and the state 

prediction error can be computed. After that, each MPC 

controller formulates its local sensitivity equations. Then all 

the controllers solve these equations in a distributed way to 

calculate the input correction vectors. Specifically, Jacobi 

iterative method is applied during the computation. Finally, the 

nominal optimal inputs are modified with the correction terms, 

and the corrected inputs are injected to the plant. 

After input implementation of the current sampling time, the 

controller enters the background stage. In this stage, the 

controller prepares a candidate input for the next sampling 

time. First, the future state is calculated in advance based on 

the current state and input. After that, all the local controllers 

perform distributed optimization iteratively. At each iteration, 

each controller communicates with others to improve the 

control action. After distributed optimization converges, the 

nominal optimal inputs are obtained, and all the optimality 

information from local controllers is stored in background. The 

information is prepared for the online computation of next 

sampling time 𝑡𝑘+1. 

The proposed method is called advanced-step distributed 

NMPC (as-DNMPC). In this method, the sensitivity update 

step that solves linear systems is the only online computation 

task. Compared with the conventional approach, the proposed 

method has much less online computational cost. 

2.1  Background computation 

In as-DNMPC, there are several computational tasks in the 

background stage. After input implementation of the current 

sampling time 𝑡𝑘 , the future state 𝑥(𝑘 + 1|𝑘) is estimated 

immediately based on the latest state 𝑥(𝑘) and input 𝑢(𝑘): 

𝑥(𝑘 + 1|𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘))                       (1) 

where 𝑓(∙,∙)  is the nominal system-wide plant model. For 

cooperative distributed NMPC, each controller has full 

knowledge of the overall system dynamics. Each MPC 

performs optimization with an overall objective function and 

make predictions based on the system-wide plant model. The 

optimized variable is the local input of the corresponding 

subsystem. Suppose the subsystem dynamics are coupled 

through inputs, the prediction model for controller 𝑖 =
1,… ,𝑀 is: 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢𝑖(𝑘), 𝑢−𝑖(𝑘))                  (2) 

where 𝑢−𝑖 = [𝑢1
𝑇 , … , 𝑢𝑖−1

𝑇 , 𝑢𝑖+1
𝑇 , … , 𝑢𝑀

𝑇 ]𝑇 is the coupled input 

sequence from other subsystems. For controller 𝑖 , the only 

optimized input is 𝑢𝑖, while the coupling term 𝑢−𝑖 is fixed as 

a constant parameter during the optimization. 

Based on the prediction of (1), all the controllers solve their 

NMPC problems individually, and iteration is needed for 

distributed optimization. At iteration 𝑝 , the optimization 

problem for controller 𝑖 is: 
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where 𝑙(∙,∙)  and 𝑉𝑓(∙)  denote the stage cost and terminal 

cost, respectively. After solving (3), controller 𝑖 can obtain 

the optimal local input of current iteration, 𝑢𝑖
𝑝,∗

. Then all the 

controllers exchange their latest optimal solutions. The final 

local input is formulated by convex combination: 

𝑢𝑖
𝑝
= 𝑢𝑖

𝑝−1
+ 𝑤𝑖(𝑢𝑖

𝑝,∗
− 𝑢𝑖

𝑝−1
)                       (4) 

in which 𝑢𝑖
𝑝
 is the final input of controller 𝑖 and 𝑤𝑖  is the 

weight for controller 𝑖, satisfying 𝑤𝑖 ≥ 0 and ∑ 𝑤𝑖
𝑀
𝑖=1 = 1. 

The controller weights are chosen properly by a recursive 

strategy as stated in Section 2 of (Stewart et al., 2011). 

Based on the local inputs, the overall input 𝑢𝑝 is formulated 

as 𝑢𝑝 = [𝑢1
𝑝,𝑇
, … , 𝑢𝑀

𝑝,𝑇
]
𝑇

. After each iteration, we check the 

following stopping criterion: 

‖𝑢𝑝 − 𝑢𝑝−1‖ < 𝜀                                (5) 

where 𝜀 is a fixed value. If (5) is satisfied, then convergence 

is reached. Otherwise, the iterative distributed optimization 

continues. For iteration 𝑝 + 1, the coupling input 𝑢−𝑖
𝑝

 is set 

as the coupling term of the previous iteration, 𝑢−𝑖
𝑝−1

. 

According to Section 2 of (Stewart et al., 2011), the distributed 

optimization algorithm is able to converge after a sufficient 

number of iterations. However, it may be time-demanding to 

finish the computation. For practical concerns, we set a 

maximum iteration number 𝑝𝑚𝑎𝑥  to limit the background 

computational time. If the optimization procedure converges 

within 𝑝𝑚𝑎𝑥  iterations, the final local input 𝑢𝑖
𝑝
 is set as the 

nominal optimal solution 𝑢𝑖,𝑛𝑜𝑚 for controller 𝑖. Otherwise, 

the latest local input 𝑢𝑖
𝑝𝑚𝑎𝑥  is selected as the optimum. 

After the optimization procedure completes, all the controllers 

preserve their optimality information to prepare for the online 

stage. The information includes primal and dual variables and 

the corresponding multipliers in each local controller’s 

Karush-Kuhn-Tucker (KKT) conditions. They are used to 

compute the Hessian and constraint Jacobian matrices, which 

formulate the sensitivity equations of NMPC controllers, as 

discussed below. 

2.2  Online update 

In this stage, all the computation tasks are performed online. 

At a new sampling time 𝑡𝑘+1, the true system state 𝑥(𝑘 + 1) 
can be measured, and the state prediction error ∆𝑥0 can be 

computed by the following equation: 

∆𝑥0 = 𝑥(𝑘 + 1) − 𝑥(𝑘 + 1|𝑘)                      (6) 

Then all the local controllers iteratively solve their sensitivity 

equations to compute the correction step for the local inputs. 

For ease of understanding, the basic theory of parametric 

sensitivity is briefly introduced as follows. Then the analysis 

of the sensitivity for local controllers will be given. 

The NMPC problem (3) can be represented as the following 

parametric programming problem: 

min ( , )

( , ) 0
. . 

0

s

f s q

c s q
s t

s









                                   (7) 

where 𝑠 is the optimized variable (primal variable) and 𝑞 is 

the fixed parameter. According to sensitivity theory, the 

optimal solution 𝑠∗ is an implicit function of the parameter 𝑞 

and can be represented as 𝑠∗(𝑞) (Fiacco, 1983). For problem 

(7), the optimal solution 𝑠∗(𝑞0) can be computed with the 

nominal parameter 𝑞0. When the parameter changes to 𝑞1, an 

approximate solution of the true optimum 𝑠∗(𝑞1)  can be 

obtained by taking a correction step based on the nominal 

solution through parametric sensitivity. The sensitivity 

equation for (7) is: 

[
𝐻 𝐴 −𝐼
𝐴𝑇 0 0
𝑉 0 𝑆

] [
∆𝑠
∆𝜆
∆𝑣
] = − [

∇𝑠,𝑞𝐿

∇𝑞𝑐
𝑇

0

] ∙ ∆𝑞                 (8) 

where 𝜆 is the equality multiplier, 𝑣 is the bound multiplier, 

𝐿 is the Lagrangian function, 𝐻 is the Hessian matrix, 𝐴 is 

the constraint Jacobian matrix, 𝑉 = 𝑑𝑖𝑎𝑔(𝑣)  is the bound 

multiplier matrix and 𝑆 = 𝑑𝑖𝑎𝑔(𝑠)  is the primal variable 

matrix. ∆𝑞 = 𝑞1 − 𝑞0 is the perturbation step of parameter. 

These matrices and the sensitivity vectors ∇𝑠,𝑞𝐿, ∇𝑞𝑐
𝑇  can 

be computed based on the nominal solution 𝑠∗(𝑞0). 

After solving equation (8), we can extract ∆𝑠  from the 

solution vector ∆𝑑 = [∆𝑠𝑇 , ∆𝜆𝑇 , ∆𝑣𝑇]𝑇  and make the 

following correction: 

𝑠̃(𝑞1) = 𝑠∗(𝑞0) + ∆𝑠                              (9) 

where 𝑠̃(𝑞1)  is the first-order approximation of the true 

optimum 𝑠∗(𝑞1) . Since (8) is a linear system, the 

computational cost for sensitivity approximation is very cheap. 

In our case, problem (3) is parametric in the initial state 𝑥0 

and the coupled input sequence 𝑢−𝑖
𝑝−1(𝑘 + 𝑗|𝑘). According to 

sensitivity theory, the perturbation steps of these two 

parameters, ∆𝑥0 and ∆𝑢−𝑖 , should appear in the sensitivity 

equation. The sensitivity equation for local controller 𝑖 is: 

[

𝐻𝑖 𝐴𝑖 −𝐼

𝐴𝑖
𝑇 0 0
𝑉𝑖 0 𝑆𝑖

] [

∆𝑠𝑖
∆𝜆𝑖
∆𝑣𝑖

] = − [

∇𝑠𝑖,𝑥0𝐿

∇𝑥0𝑐
𝑇

0

] ∙ ∆𝑥0 − [

∇𝑠𝑖,𝑢−𝑖𝐿

∇𝑢−𝑖𝑐
𝑇

0

] ∙ ∆𝑢−𝑖                               

(10) 

Where ∆𝑢−𝑖 = [∆𝑢1
𝑇 , … , ∆𝑢𝑖−1

𝑇 , ∆𝑢𝑖+1
𝑇 , … , ∆𝑢𝑀

𝑇 ]𝑇  and ∆𝑠𝑖 =
[∆𝑥𝑇 , ∆𝑢𝑖

𝑇]𝑇 . Here, we denote 𝐽𝑖,−𝑖 = ∇𝑠𝑖,𝑢−𝑖𝐿 , 𝑁𝑖,−𝑖 =

∇𝑢−𝑖𝑐
𝑇  and 𝐺𝑖 = ∇𝑥0𝑐

𝑇 . In fact, 𝐽𝑖,−𝑖  and 𝑁𝑖,−𝑖  are the 

coupling matrices among subsystems, which can be computed 

in the background stage based on the dynamic equations. Note 

that ∇𝑠𝑖,𝑥0𝐿 = 0, (10) can be represented as: 

[

𝐻𝑖 𝐴𝑖 −𝐼

𝐴𝑖
𝑇 0 0
𝑉𝑖 0 𝑆𝑖

] [

∆𝑠𝑖
∆𝜆𝑖
∆𝑣𝑖

] = − [
0
𝐺𝑖
0
] ∙ ∆𝑥0 − [

𝐽𝑖,−𝑖
𝑁𝑖,−𝑖
0

] ∙ ∆𝑢−𝑖   (11) 
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In this equation, all the matrices can be computed in the 

background stage after solving problem (3). Once the true state 

𝑥(𝑘 + 1) is measured, the initial state perturbation ∆𝑥0 can 

be computed. However, for controller 𝑖 , the coupled input 

perturbation ∆𝑢−𝑖 is unknown. Therefore, we need to assume 

a certain value for ∆𝑢−𝑖 in solving (11). 

To solve all the local sensitivity equations, Jacobi iterative 

method is applied. At iteration 𝑟 , controller 𝑖  solves the 

following equation assuming that ∆𝑢−𝑖 remains at the value 

of its previous iteration: 

[

𝐻𝑖 𝐴𝑖 −𝐼

𝐴𝑖
𝑇 0 0
𝑉𝑖 0 𝑆𝑖

] [

∆𝑠𝑖
𝑟

∆𝜆𝑖
𝑟

∆𝑣𝑖
𝑟

] = − [
0
𝐺𝑖
0
] ∙ ∆𝑥0 − [

𝐽𝑖,−𝑖
𝑁𝑖,−𝑖
0

] ∙ ∆𝑢−𝑖
𝑟−1  (12) 

At each iteration, all the controllers solve their local sensitivity 

equations in parallel. After solution, we formulate the overall 

solution vector ∆𝑑𝑟 = [∆𝑑1
𝑟,𝑇 , … , ∆𝑑𝑀

𝑟,𝑇]
𝑇

 from (12) and 

check the following condition: 

‖∆𝑑𝑟 − ∆𝑑𝑟−1‖ < 𝛿                             (13) 

where 𝛿 > 0 is a constant and ∆𝑑𝑖
𝑟 = [∆𝑠𝑖

𝑟,𝑇 , ∆𝜆𝑖
𝑟,𝑇 , ∆𝑣𝑖

𝑟,𝑇]
𝑇
. 

If (13) is satisfied, the Jacobi algorithm converges. Otherwise, 

we update the value of ∆𝑢𝑖−1 and re-solve (12). For real-time 

implementation concerns, we set a maximum iteration number 

𝑟𝑚𝑎𝑥 for the Jacobi method. If the method does not converge 

within 𝑟𝑚𝑎𝑥  iterations, the computation procedure will be 

stopped, and the latest solution vector ∆𝑑𝑟𝑚𝑎𝑥  is taken as the 

final solution. 

Remark 1. The convergence of the Jacobi iterative method 

depends on the values of the matrices 𝐻𝑖 , 𝐴𝑖, 𝑉𝑖, 𝑆𝑖 , 𝐽𝑖,−𝑖 , 

𝑁𝑖,−𝑖 . All the existing theorems in this field can be used to 

check the convergence of the algorithm. Due to space 

limitations, we will not go into the details here. 

When the computation procedure terminates, all the 

controllers take the latest solution ∆𝑢𝑖
𝑟  from ∆𝑑𝑟  as the 

input correction vector ∆𝑢𝑖. The nominal optimal local input 

is corrected thereby: 

𝑢𝑖,𝑛𝑒𝑤 = 𝑢𝑖,𝑛𝑜𝑚 + ∆𝑢𝑖                            (14) 

In this stage, local sensitivity equations are formulated for all 

controllers by applying parametric sensitivity to their NMPC 

problems. Jacobi iterative method is performed solve these 

linear systems, and the input correction vectors can be 

obtained from the solution vectors. The nominal local inputs 

are updated online based on the correction and then 

implemented to the plant. 

2.3  Algorithm procedure 

The proposed algorithm applies a two-stage strategy. During 

the background stage, there are three computational tasks, 

listed as follows. 

(a) Advanced-step prediction: Set 𝑝 = 0. Estimate the future 

state 𝑥(𝑘 + 1|𝑘) with the current state 𝑥(𝑘) and input 

𝑢(𝑘). Set the estimated state as the initial state for the 

optimization problem of all local controllers. 

(b) Iterative distributed optimization: At iteration 𝑝 , each 

controller solves its NMPC problem (3). After that, 

controller 𝑖  obtains the optimal local input 𝑢𝑖
𝑝,∗

. Then 

formulate the final local input 𝑢𝑖
𝑝

 by convex 

combination. Check stopping criterion (5) each time until 

it is satisfied or the maximum iteration number 𝑝𝑚𝑎𝑥 is 

reached. Store the latest solution as the nominal optimal 

local input 𝑢𝑖,𝑛𝑜𝑚. 

(c) Optimality information collection: Collect primal and 

dual variables of problem (3) for each controller. Compute 

all the matrices and sensitivity vectors in (11) based on the 

nominal solution and store them in the background. 

During the online stage, there are three steps as follows. 

(a) Measure or estimate the actual system state 𝑥(𝑘 + 1) . 

Compute the state prediction error. 

(b) Solve local sensitivity equations for all controllers, based 

on the assumption that the coupled terms are fixed, and 

apply Jacobi iterative method to reach convergence. If the 

algorithm converges or reaches the maximum iteration 

number, the computation procedure stops. After that, 

extract the local input correction step ∆𝑢𝑖  for each 

system from the solution vector ∆𝑑𝑖. 

(c) Each controller updates its nominal local input by (14), 

and implements the updated input 𝑢𝑖,𝑛𝑒𝑤 to the system. 

Set 𝑘 = 𝑘 + 1 and return to the background stage. 

3. CASE STUDY 

We apply the proposed algorithm to the quadruple-tank plant, 

with its diagram shown in Fig. 2. In this plant, the bottom 

liquid is pumped to the four tanks by two pumps. For each 

stream, a fixed portion of the flow is directed into one lower 

tank and the rest is directed into the upper tank on the opposite 

side. In addition, the two upper tanks discharge into the two 

corresponding lower tanks. 

The plant is divided into two subsystems based on relative gain 

array analysis in (Alvarado et al., 2011). The states of 

subsystem 1 are the liquid levels of Tank 1 and Tank 3, and 

the input is the flow rate of Pump 2. The states of subsystem 2 

are the liquid levels of Tank 2 and Tank 4, and the input is the 

flow rate of Pump 1. 

Tank 3 Tank 4

Tank 1 Tank 2

Pump 1 Pump 2

 

Fig. 2. Diagram of the quadruple-tank plant. 

The dynamics of the plant can be described by the following 

equations: 
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where ℎ𝑖, 𝑖 = 1,… ,4 represents the liquid levels of the four 

tanks and 𝑢𝑖, 𝑖 = 1,2 are the flow rates of the two pumps. 

The values of the parameters 𝐾𝑖, 𝑖 = 1,… ,8 can be found in 

(Yu et al., 2019). 

The control problem is to track piecewise constant setpoints 

for the liquid levels of the lower two tanks. Therefore, the 

liquid levels of Tank 1 and Tank 2 are the outputs of the plant. 

In this study, the tracking problem is transformed into a 

regulation problem based on different steady-state values of 

the setpoints. Then a step response test is performed to observe 

the system dynamics. The sampling time of the plant is set as 

20s. For each controller, the same system-wide objective 

function is used. For the stage cost matrices, 𝑄 =
𝑑𝑖𝑎𝑔(10,10,0,0)  and 𝑅 = 𝑑𝑖𝑎𝑔(0.01,0.01) . The terminal 

cost weight matrix 𝑃𝑓 = 𝑑𝑖𝑎𝑔(10,10,0,0) . The prediction 

horizon 𝑃 = 50 and the control horizon 𝑀𝑐 = 5. Each local 

controller satisfies 𝑢𝑖(𝑘 + 𝑗|𝑘) = 𝑢𝑖(𝑘 + 𝑀𝑐 − 1|𝑘) for 𝑖 =
1,… ,𝑀 and 𝑗 = 𝑀𝑐 , … , 𝑃 − 1. For background computation, 

the maximum iteration number 𝑝𝑚𝑎𝑥  is 100 and the constant 

is 𝜀 = 10−2 . For Jacobi method, the maximum iteration 

number 𝑟𝑚𝑎𝑥 is 10 and the constant 𝛿 = 10−3. 

To demonstrate the control performance, the plant-model 

mismatch is introduced by perturbing the parameter 𝐾3 from 

its nominal value 𝐾3,𝑛𝑜𝑚. We set the perturbed values of 𝐾3 

as 0.5𝐾3,𝑛𝑜𝑚 , 0.65𝐾3,𝑛𝑜𝑚 , 0.8𝐾3,𝑛𝑜𝑚 , respectively. Two 

algorithms, ideal DNMPC and as-HDNMPC, are used for 

comparison. Ideal DNMPC uses a standard implementation 

approach, which computes the optimal control law online 

based on the current measurement. The control input is 

injected to the plant until optimization is finished. The control 

algorithm proposed in Yu et al. (2019) is named as-HDNMPC. 

The output profiles of Tank 1 and Tank 2 under different 

magnitudes of mismatch are shown in Figs. 3 and 4, 

respectively. The time indices of the proposed algorithm under 

different cases are shown in Table 1. 

 

Fig. 3. Liquid level of Tank 1 under different mismatch cases. 

 

Fig. 4. Liquid level of Tank 2 under different mismatch cases. 

Table 1. Time indices of as-DNMPC under different 

magnitudes of mismatch. 

Value of 

𝐾3/𝐾3,𝑛𝑜𝑚 

Average 

online 

computational 

time/CPUs 

Maximum online 

computational 

time/CPUs 

Maximum 

iteration 

number 

0.5 0.0582 0.1248 3 

0.65 0.0548 0.1248 3 

0.8 0.0761 0.1560 2 

As shown in Figs. 2 and 3, all algorithms are able to achieve 

setpoint tracking in all cases. The two sensitivity-based 

algorithms produce almost identical control action, as they 

have similar procedure for input computation. The output 

profiles of the proposed algorithm is a little lagging compared 

to that of ideal DNMPC, due to the suboptimal solution 

obtained by the sensitivity-based strategy. Table 3 shows that 

the average computational time is less than 0.1 CPUs in all 

cases. Moreover, the maximum time is less than 0.2 CPUs 

under different magnitudes of mismatch. As for the iteration 

number, it requires 3 iterations to solve sensitivity equations at 

most, which is much smaller than the maximum iteration 

number 𝑟𝑚𝑎𝑥. This implies that the Jacobi method is able to 

converge in a few iterations. Therefore, the proposed strategy 

can provide time-critical control actions. 

We then focus on the mismatch scenario when the perturbed 

parameter 𝐾3 = 0.8𝐾3,𝑛𝑜𝑚, and compare the time indices with 

ideal DNMPC algorithm. Table 2 shows the time indices of the 

two algorithms. 

Table 2. Time indices for each algorithm. 

Algorithm 

Average online 

computational 

time/CPUs 

Maximum online 

computational 

time/CPUs 

As-DNMPC 0.0542 0.0936 

As-HDNMPC 0.0681 0.1716 

Ideal-DNMPC 0.3143 4.5396 

Table 2 shows that the average online computational time of 

as-DNMPC is about 24.2% of the time spent in ideal-DNMPC. 

As for the maximum online computational time, ideal-

DNMPC reaches 4.5396 CPUs, which is about 29 times of that 

of ideal-DNMPC. For the ideal control strategy, the online 

computational cost is large as distributed optimization is 

performed online. In contrast, the proposed algorithm only 

needs to solve a set of sensitivity equations online. As seen in 

Table 1, only 2 Jacobi iterations are required to solve 

sensitivity equations. Compares with our previous work, the 

newly developed algorithm requires less computational time 

for input computation. This is because all the controllers solve 
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their local sensitivity equations in parallel, and convergence 

can be achieved with few iterations. Therefore, the proposed 

strategy can provide time-critical control actions. 

Remark 2. In all mismatch cases, the background distributed 

optimization is able to converge within 𝑝𝑚𝑎𝑥  iterations. In 

other words, the maximum iteration number is not activated at 

any sampling time. 

4. CONCLUSIONS 

In this paper, a fast two-stage cooperative DNMPC algorithm 

is proposed to reduce the computational delay in MPC 

implementation. In the background stage, the future state is 

estimated in advance based on the nominal model. Each local 

controller then solves its local NMPC problem and 

communicates with others to improve the decision making. 

The nominal optimal input sequence is obtained at 

convergence. In the online stage, the state prediction error is 

calculated after new measurement. Then each controller solves 

its sensitivity equation with Jacobi iterative method to 

compute the input correction vector. The nominal optimal 

input is updated online and implemented to the plant. A case 

study demonstrates good performance of the method. 
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