

Fast cooperative distributed model predictive control based on parametric

sensitivity

Tianyu Yu* Zuhua Xu* Jun Zhao* Xi Chen* Lorenz T. Biegler**


* State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering,

Zhejiang University, Hangzhou, Zhejiang 310027 China (e-mails: yutianyu@zju.edu.cn,

zhxu@zju.edu.cn, jzhao@ zju.edu.cn, xi_chen@zju.edu.cn).

** Department of Chemical Engineering, Carnegie Mellon University,

Pittsburgh, PA 15213 USA, (e-mail: biegler@cmu.edu)}

Abstract: This paper deals with computational delay in distributed nonlinear model predictive control. A

fast, cooperative distributed model predictive control algorithm is proposed based on parametric sensitivity.

The implementation strategy is divided into two different stages. In the background stage, the future state

is estimated one step forward with the current state and input. The local MPC controllers perform

distributed optimization based on the predicted state and iterate to obtain the nominal optimal solutions. In

the online stage, all the controllers correct their nominal optimal inputs through parametric sensitivity.

Specifically, each controller formulates its local sensitivity equation based on the state estimation error. In

order to solve these linear equations in a distributed way, Jacobi iterative method is applied. The overall

algorithm can provide fast control action. A case study is provided to show the promising performance of

the proposed method.

Keywords: Distributed control, cooperative control, predictive control, nonlinear control, parametric

sensitivity.



1. INTRODUCTION

Industrial processes usually consist of several interconnected

units that interact with each other through mass, energy and

information flows. For these processes, centralized control is

impractical due to expensive computational cost, poor

reliability and maintainability. Distributed control is a

preferable choice in which several controllers are used and

communication is allowed among controllers to improve

decision making. Flexibility, scalability and robustness are

potential advantages for distributed control (Mayne, 2014).

Model predictive control (MPC) is a common control strategy

in industry because it can handle operational constraints and

integrate various kinds of models. Due to strong nonlinearity

of industrial systems, it is necessary to use nonlinear model

predictive control (NMPC), which accommodates nonlinear

model in MPC optimization for better performance concerns.

In this work, distributed implementation of nonlinear model

predictive control is studied.

A distributed nonlinear model predictive control (DNMPC)

strategy is said to be cooperative if each controller optimizes

with a system-wide objective function and cooperates with

others to reach a common goal (Christofides et al., 2013). In

contrast, non-cooperative approach refers to the control

strategy when each controller uses a local control objective

(Scattolini, 2009). Over the past years, several DNMPC

strategies have been proposed. Dunbar (2007) proposed a non-

cooperative DNMPC algorithm for continuous-time systems

with analysis of feasibility and stability properties. A

distributed nonlinear optimal control strategy is presented in

Necoara et al. (2009) with application of sequential convex

programming and smoothing techniques, and iteration is

needed for optimality. A two-tier DNMPC algorithm is

proposed based on Lyapunov MPC techniques (Liu et al.,

2009). In this approach, one controller is designed for closed-

loop system stabilization and the other is used for optimizing

manipulated variables. As an extension of the work, sequential

and iterative DNMPC architectures are proposed in Liu et al.

(2010). The former utilizes a single-direction and non-iterative

computation strategy, while the latter applies a bi-direction and

iterative strategy for distributed optimization. A cooperative

DNMPC strategy is proposed in Stewart et al. (2011), where a

novel distributed optimization procedure is developed for

solving non-convex nonlinear programming (NLP) problems.

Asymptotic stability of the closed-loop system is ensured.

The use of nonlinear model in NMPC could cause the

optimization problem to be non-convex and therefore time-

consuming to solve. Although distributed control structure

reduces the optimization problem size for each NMPC

controller, the inherent difficulty of solving non-convex NLPs

still exists, which leads to a delay of input implementation.

According to Findeisen and Allgöwer (2004), the

computational delay will decrease the control performance and

may even destabilize the closed-loop system. To handle this

problem, several fast NMPC algorithms have been proposed

(Wolf and Marquardt, 2016). Diehl et al. (2005) proposed a

real-time iteration (RTI) algorithm for NMPC, which prepares

an initial value for input through successive linearization

offline, and solves one quadratic programming problem online

to obtain fast feedback. A low latency output feedback model

predictive control is proposed by Kogel and Findeisen (2017)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6097

for constrained linear systems, where an optimal control

problem is solved in background and a correction scheme is

triggered online with explicit MPC technique. In particular, a

parametric sensitivity-based NMPC approach is proposed in

Zavala and Biegler (2009). The algorithm predicts future state

in advance and solves the next-step optimization problem in

background, and updates the background solution online

through sensitivity. This approach can provide fast control

actions due to the linear feature of online update strategy. The

prediction-correction method in input calculation can be

carried over in distributed implementation of NMPC to speed

up the online computation. In our previous work, a hierarchical

distributed NMPC algorithm is proposed based on sensitivity

theory (Yu et al., 2019). The lower-layer local controllers

compute the predicted optimal inputs in background via

distributed optimization, and the upper-layer coordinator

collects and combines all the local optimality information to

form the system-wide sensitivity equation. After solution of

this equation, the input correction vectors are obtained and the

predicted optimal inputs are updated before implementation.

In this paper, a cooperative distributed NMPC algorithm is

further proposed based on parametric sensitivity. A two-stage

approach is applied to reduce the online computation delay.

Different from our previous work (Yu et al., 2019), the

proposed method does not require an upper-layer coordinator

and is fully distributed. In the background stage, future state is

predicted one step forward based on current state and input.

Then the local controllers solve their NMPC problems in a

distributed manner, and iterate with each other to improve

decision making. Nominal optimal local input is obtained for

each controller. In the online stage, true state is measured. All

the MPCs solve their local sensitivity equations in parallel with

the application of Jacobi iterative method. After that, the

correction vectors can be computed and the nominal inputs are

updated before implementation.

The paper is organized as follows. Section 2 presents an

overview of the proposed algorithm first. Then the algorithmic

details including the background and online stages of the

sensitivity-based DNMPC strategy is given. Section 3

demonstrates a case study on the quadruple-tank plant. Finally,

Section 4 concludes the paper.

2. ALGORITHM DESCRIPTION

For a conventional MPC controller, the input is obtained

online only after solving the optimization problem. As the

NLP problem may occupy plenty of computational time, this

control strategy could lead to a substantial time delay of input

implementation. As a result, the controller performance may

degrade. To speed up control feedback, we propose a two-

stage DNMPC algorithm, whose timeline is shown in Fig. 1.

Background computationkt 1kt Online update

Input

implementation

Distributed

sensitivity

computation

Advanced-step

distributed optimization

Fig. 1. Timeline for the proposed algorithm.

At sampling time 𝑡𝑘, the online stage is activated. At that time,

a pre-calculated input is already available. The goal of this

stage is to modify the candidate input before being

implemented. First, the true state is measured and the state

prediction error can be computed. After that, each MPC

controller formulates its local sensitivity equations. Then all

the controllers solve these equations in a distributed way to

calculate the input correction vectors. Specifically, Jacobi

iterative method is applied during the computation. Finally, the

nominal optimal inputs are modified with the correction terms,

and the corrected inputs are injected to the plant.

After input implementation of the current sampling time, the

controller enters the background stage. In this stage, the

controller prepares a candidate input for the next sampling

time. First, the future state is calculated in advance based on

the current state and input. After that, all the local controllers

perform distributed optimization iteratively. At each iteration,

each controller communicates with others to improve the

control action. After distributed optimization converges, the

nominal optimal inputs are obtained, and all the optimality

information from local controllers is stored in background. The

information is prepared for the online computation of next

sampling time 𝑡𝑘+1.

The proposed method is called advanced-step distributed

NMPC (as-DNMPC). In this method, the sensitivity update

step that solves linear systems is the only online computation

task. Compared with the conventional approach, the proposed

method has much less online computational cost.

2.1 Background computation

In as-DNMPC, there are several computational tasks in the

background stage. After input implementation of the current

sampling time 𝑡𝑘 , the future state 𝑥(𝑘 + 1|𝑘) is estimated

immediately based on the latest state 𝑥(𝑘) and input 𝑢(𝑘):

𝑥(𝑘 + 1|𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) (1)

where 𝑓(∙,∙) is the nominal system-wide plant model. For

cooperative distributed NMPC, each controller has full

knowledge of the overall system dynamics. Each MPC

performs optimization with an overall objective function and

make predictions based on the system-wide plant model. The

optimized variable is the local input of the corresponding

subsystem. Suppose the subsystem dynamics are coupled

through inputs, the prediction model for controller 𝑖 =
1,… ,𝑀 is:

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢𝑖(𝑘), 𝑢−𝑖(𝑘)) (2)

where 𝑢−𝑖 = [𝑢1
𝑇 , … , 𝑢𝑖−1

𝑇 , 𝑢𝑖+1
𝑇 , … , 𝑢𝑀

𝑇]𝑇 is the coupled input

sequence from other subsystems. For controller 𝑖 , the only

optimized input is 𝑢𝑖, while the coupling term 𝑢−𝑖 is fixed as

a constant parameter during the optimization.

Based on the prediction of (1), all the controllers solve their

NMPC problems individually, and iteration is needed for

distributed optimization. At iteration 𝑝 , the optimization

problem for controller 𝑖 is:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6098

1

0(|)

0

1

min ((|), (|)) ((|))

(1|)

. . (1|) ((|), (|), (|)), 1,...,

(|) , 1,...,

i

N

fju k j k

p

i i

i i

J l x k j k u k j k V x k N k

x k k x

s t x k j k f x k j k u k j k u k j k j N

u k j k U j N









    

 


      
   


(3)

where 𝑙(∙,∙) and 𝑉𝑓(∙) denote the stage cost and terminal

cost, respectively. After solving (3), controller 𝑖 can obtain

the optimal local input of current iteration, 𝑢𝑖
𝑝,∗

. Then all the

controllers exchange their latest optimal solutions. The final

local input is formulated by convex combination:

𝑢𝑖
𝑝
= 𝑢𝑖

𝑝−1
+ 𝑤𝑖(𝑢𝑖

𝑝,∗
− 𝑢𝑖

𝑝−1
) (4)

in which 𝑢𝑖
𝑝
 is the final input of controller 𝑖 and 𝑤𝑖 is the

weight for controller 𝑖, satisfying 𝑤𝑖 ≥ 0 and ∑ 𝑤𝑖
𝑀
𝑖=1 = 1.

The controller weights are chosen properly by a recursive

strategy as stated in Section 2 of (Stewart et al., 2011).

Based on the local inputs, the overall input 𝑢𝑝 is formulated

as 𝑢𝑝 = [𝑢1
𝑝,𝑇
, … , 𝑢𝑀

𝑝,𝑇
]
𝑇

. After each iteration, we check the

following stopping criterion:

‖𝑢𝑝 − 𝑢𝑝−1‖ < 𝜀 (5)

where 𝜀 is a fixed value. If (5) is satisfied, then convergence

is reached. Otherwise, the iterative distributed optimization

continues. For iteration 𝑝 + 1, the coupling input 𝑢−𝑖
𝑝

 is set

as the coupling term of the previous iteration, 𝑢−𝑖
𝑝−1

.

According to Section 2 of (Stewart et al., 2011), the distributed

optimization algorithm is able to converge after a sufficient

number of iterations. However, it may be time-demanding to

finish the computation. For practical concerns, we set a

maximum iteration number 𝑝𝑚𝑎𝑥 to limit the background

computational time. If the optimization procedure converges

within 𝑝𝑚𝑎𝑥 iterations, the final local input 𝑢𝑖
𝑝
 is set as the

nominal optimal solution 𝑢𝑖,𝑛𝑜𝑚 for controller 𝑖. Otherwise,

the latest local input 𝑢𝑖
𝑝𝑚𝑎𝑥 is selected as the optimum.

After the optimization procedure completes, all the controllers

preserve their optimality information to prepare for the online

stage. The information includes primal and dual variables and

the corresponding multipliers in each local controller’s

Karush-Kuhn-Tucker (KKT) conditions. They are used to

compute the Hessian and constraint Jacobian matrices, which

formulate the sensitivity equations of NMPC controllers, as

discussed below.

2.2 Online update

In this stage, all the computation tasks are performed online.

At a new sampling time 𝑡𝑘+1, the true system state 𝑥(𝑘 + 1)
can be measured, and the state prediction error ∆𝑥0 can be

computed by the following equation:

∆𝑥0 = 𝑥(𝑘 + 1) − 𝑥(𝑘 + 1|𝑘) (6)

Then all the local controllers iteratively solve their sensitivity

equations to compute the correction step for the local inputs.

For ease of understanding, the basic theory of parametric

sensitivity is briefly introduced as follows. Then the analysis

of the sensitivity for local controllers will be given.

The NMPC problem (3) can be represented as the following

parametric programming problem:

min (,)

(,) 0
. .

0

s

f s q

c s q
s t

s









 (7)

where 𝑠 is the optimized variable (primal variable) and 𝑞 is

the fixed parameter. According to sensitivity theory, the

optimal solution 𝑠∗ is an implicit function of the parameter 𝑞

and can be represented as 𝑠∗(𝑞) (Fiacco, 1983). For problem

(7), the optimal solution 𝑠∗(𝑞0) can be computed with the

nominal parameter 𝑞0. When the parameter changes to 𝑞1, an

approximate solution of the true optimum 𝑠∗(𝑞1) can be

obtained by taking a correction step based on the nominal

solution through parametric sensitivity. The sensitivity

equation for (7) is:

[
𝐻 𝐴 −𝐼
𝐴𝑇 0 0
𝑉 0 𝑆

] [
∆𝑠
∆𝜆
∆𝑣
] = − [

∇𝑠,𝑞𝐿

∇𝑞𝑐
𝑇

0

] ∙ ∆𝑞 (8)

where 𝜆 is the equality multiplier, 𝑣 is the bound multiplier,

𝐿 is the Lagrangian function, 𝐻 is the Hessian matrix, 𝐴 is

the constraint Jacobian matrix, 𝑉 = 𝑑𝑖𝑎𝑔(𝑣) is the bound

multiplier matrix and 𝑆 = 𝑑𝑖𝑎𝑔(𝑠) is the primal variable

matrix. ∆𝑞 = 𝑞1 − 𝑞0 is the perturbation step of parameter.

These matrices and the sensitivity vectors ∇𝑠,𝑞𝐿, ∇𝑞𝑐
𝑇 can

be computed based on the nominal solution 𝑠∗(𝑞0).

After solving equation (8), we can extract ∆𝑠 from the

solution vector ∆𝑑 = [∆𝑠𝑇 , ∆𝜆𝑇 , ∆𝑣𝑇]𝑇 and make the

following correction:

𝑠̃(𝑞1) = 𝑠∗(𝑞0) + ∆𝑠 (9)

where 𝑠̃(𝑞1) is the first-order approximation of the true

optimum 𝑠∗(𝑞1) . Since (8) is a linear system, the

computational cost for sensitivity approximation is very cheap.

In our case, problem (3) is parametric in the initial state 𝑥0

and the coupled input sequence 𝑢−𝑖
𝑝−1(𝑘 + 𝑗|𝑘). According to

sensitivity theory, the perturbation steps of these two

parameters, ∆𝑥0 and ∆𝑢−𝑖 , should appear in the sensitivity

equation. The sensitivity equation for local controller 𝑖 is:

[

𝐻𝑖 𝐴𝑖 −𝐼

𝐴𝑖
𝑇 0 0
𝑉𝑖 0 𝑆𝑖

] [

∆𝑠𝑖
∆𝜆𝑖
∆𝑣𝑖

] = − [

∇𝑠𝑖,𝑥0𝐿

∇𝑥0𝑐
𝑇

0

] ∙ ∆𝑥0 − [

∇𝑠𝑖,𝑢−𝑖𝐿

∇𝑢−𝑖𝑐
𝑇

0

] ∙ ∆𝑢−𝑖

(10)

Where ∆𝑢−𝑖 = [∆𝑢1
𝑇 , … , ∆𝑢𝑖−1

𝑇 , ∆𝑢𝑖+1
𝑇 , … , ∆𝑢𝑀

𝑇]𝑇 and ∆𝑠𝑖 =
[∆𝑥𝑇 , ∆𝑢𝑖

𝑇]𝑇 . Here, we denote 𝐽𝑖,−𝑖 = ∇𝑠𝑖,𝑢−𝑖𝐿 , 𝑁𝑖,−𝑖 =

∇𝑢−𝑖𝑐
𝑇 and 𝐺𝑖 = ∇𝑥0𝑐

𝑇 . In fact, 𝐽𝑖,−𝑖 and 𝑁𝑖,−𝑖 are the

coupling matrices among subsystems, which can be computed

in the background stage based on the dynamic equations. Note

that ∇𝑠𝑖,𝑥0𝐿 = 0, (10) can be represented as:

[

𝐻𝑖 𝐴𝑖 −𝐼

𝐴𝑖
𝑇 0 0
𝑉𝑖 0 𝑆𝑖

] [

∆𝑠𝑖
∆𝜆𝑖
∆𝑣𝑖

] = − [
0
𝐺𝑖
0
] ∙ ∆𝑥0 − [

𝐽𝑖,−𝑖
𝑁𝑖,−𝑖
0

] ∙ ∆𝑢−𝑖 (11)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6099

In this equation, all the matrices can be computed in the

background stage after solving problem (3). Once the true state

𝑥(𝑘 + 1) is measured, the initial state perturbation ∆𝑥0 can

be computed. However, for controller 𝑖 , the coupled input

perturbation ∆𝑢−𝑖 is unknown. Therefore, we need to assume

a certain value for ∆𝑢−𝑖 in solving (11).

To solve all the local sensitivity equations, Jacobi iterative

method is applied. At iteration 𝑟 , controller 𝑖 solves the

following equation assuming that ∆𝑢−𝑖 remains at the value

of its previous iteration:

[

𝐻𝑖 𝐴𝑖 −𝐼

𝐴𝑖
𝑇 0 0
𝑉𝑖 0 𝑆𝑖

] [

∆𝑠𝑖
𝑟

∆𝜆𝑖
𝑟

∆𝑣𝑖
𝑟

] = − [
0
𝐺𝑖
0
] ∙ ∆𝑥0 − [

𝐽𝑖,−𝑖
𝑁𝑖,−𝑖
0

] ∙ ∆𝑢−𝑖
𝑟−1 (12)

At each iteration, all the controllers solve their local sensitivity

equations in parallel. After solution, we formulate the overall

solution vector ∆𝑑𝑟 = [∆𝑑1
𝑟,𝑇 , … , ∆𝑑𝑀

𝑟,𝑇]
𝑇

 from (12) and

check the following condition:

‖∆𝑑𝑟 − ∆𝑑𝑟−1‖ < 𝛿 (13)

where 𝛿 > 0 is a constant and ∆𝑑𝑖
𝑟 = [∆𝑠𝑖

𝑟,𝑇 , ∆𝜆𝑖
𝑟,𝑇 , ∆𝑣𝑖

𝑟,𝑇]
𝑇
.

If (13) is satisfied, the Jacobi algorithm converges. Otherwise,

we update the value of ∆𝑢𝑖−1 and re-solve (12). For real-time

implementation concerns, we set a maximum iteration number

𝑟𝑚𝑎𝑥 for the Jacobi method. If the method does not converge

within 𝑟𝑚𝑎𝑥 iterations, the computation procedure will be

stopped, and the latest solution vector ∆𝑑𝑟𝑚𝑎𝑥 is taken as the

final solution.

Remark 1. The convergence of the Jacobi iterative method

depends on the values of the matrices 𝐻𝑖 , 𝐴𝑖, 𝑉𝑖, 𝑆𝑖 , 𝐽𝑖,−𝑖 ,

𝑁𝑖,−𝑖 . All the existing theorems in this field can be used to

check the convergence of the algorithm. Due to space

limitations, we will not go into the details here.

When the computation procedure terminates, all the

controllers take the latest solution ∆𝑢𝑖
𝑟 from ∆𝑑𝑟 as the

input correction vector ∆𝑢𝑖. The nominal optimal local input

is corrected thereby:

𝑢𝑖,𝑛𝑒𝑤 = 𝑢𝑖,𝑛𝑜𝑚 + ∆𝑢𝑖 (14)

In this stage, local sensitivity equations are formulated for all

controllers by applying parametric sensitivity to their NMPC

problems. Jacobi iterative method is performed solve these

linear systems, and the input correction vectors can be

obtained from the solution vectors. The nominal local inputs

are updated online based on the correction and then

implemented to the plant.

2.3 Algorithm procedure

The proposed algorithm applies a two-stage strategy. During

the background stage, there are three computational tasks,

listed as follows.

(a) Advanced-step prediction: Set 𝑝 = 0. Estimate the future

state 𝑥(𝑘 + 1|𝑘) with the current state 𝑥(𝑘) and input

𝑢(𝑘). Set the estimated state as the initial state for the

optimization problem of all local controllers.

(b) Iterative distributed optimization: At iteration 𝑝 , each

controller solves its NMPC problem (3). After that,

controller 𝑖 obtains the optimal local input 𝑢𝑖
𝑝,∗

. Then

formulate the final local input 𝑢𝑖
𝑝

 by convex

combination. Check stopping criterion (5) each time until

it is satisfied or the maximum iteration number 𝑝𝑚𝑎𝑥 is

reached. Store the latest solution as the nominal optimal

local input 𝑢𝑖,𝑛𝑜𝑚.

(c) Optimality information collection: Collect primal and

dual variables of problem (3) for each controller. Compute

all the matrices and sensitivity vectors in (11) based on the

nominal solution and store them in the background.

During the online stage, there are three steps as follows.

(a) Measure or estimate the actual system state 𝑥(𝑘 + 1) .

Compute the state prediction error.

(b) Solve local sensitivity equations for all controllers, based

on the assumption that the coupled terms are fixed, and

apply Jacobi iterative method to reach convergence. If the

algorithm converges or reaches the maximum iteration

number, the computation procedure stops. After that,

extract the local input correction step ∆𝑢𝑖 for each

system from the solution vector ∆𝑑𝑖.

(c) Each controller updates its nominal local input by (14),

and implements the updated input 𝑢𝑖,𝑛𝑒𝑤 to the system.

Set 𝑘 = 𝑘 + 1 and return to the background stage.

3. CASE STUDY

We apply the proposed algorithm to the quadruple-tank plant,

with its diagram shown in Fig. 2. In this plant, the bottom

liquid is pumped to the four tanks by two pumps. For each

stream, a fixed portion of the flow is directed into one lower

tank and the rest is directed into the upper tank on the opposite

side. In addition, the two upper tanks discharge into the two

corresponding lower tanks.

The plant is divided into two subsystems based on relative gain

array analysis in (Alvarado et al., 2011). The states of

subsystem 1 are the liquid levels of Tank 1 and Tank 3, and

the input is the flow rate of Pump 2. The states of subsystem 2

are the liquid levels of Tank 2 and Tank 4, and the input is the

flow rate of Pump 1.

Tank 3 Tank 4

Tank 1 Tank 2

Pump 1 Pump 2

Fig. 2. Diagram of the quadruple-tank plant.

The dynamics of the plant can be described by the following

equations:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6100

1

1 1 2 3 3 1

2

4 2 5 4 6 2

3

2 3 7 2

4

5 4 8 1

dh
K h K h K u

dt

dh
K h K h K u

dt

dh
K h K u

dt

dh
K h K u

dt

   

   

  

  













 (15)

where ℎ𝑖, 𝑖 = 1,… ,4 represents the liquid levels of the four

tanks and 𝑢𝑖, 𝑖 = 1,2 are the flow rates of the two pumps.

The values of the parameters 𝐾𝑖, 𝑖 = 1,… ,8 can be found in

(Yu et al., 2019).

The control problem is to track piecewise constant setpoints

for the liquid levels of the lower two tanks. Therefore, the

liquid levels of Tank 1 and Tank 2 are the outputs of the plant.

In this study, the tracking problem is transformed into a

regulation problem based on different steady-state values of

the setpoints. Then a step response test is performed to observe

the system dynamics. The sampling time of the plant is set as

20s. For each controller, the same system-wide objective

function is used. For the stage cost matrices, 𝑄 =
𝑑𝑖𝑎𝑔(10,10,0,0) and 𝑅 = 𝑑𝑖𝑎𝑔(0.01,0.01) . The terminal

cost weight matrix 𝑃𝑓 = 𝑑𝑖𝑎𝑔(10,10,0,0) . The prediction

horizon 𝑃 = 50 and the control horizon 𝑀𝑐 = 5. Each local

controller satisfies 𝑢𝑖(𝑘 + 𝑗|𝑘) = 𝑢𝑖(𝑘 + 𝑀𝑐 − 1|𝑘) for 𝑖 =
1,… ,𝑀 and 𝑗 = 𝑀𝑐 , … , 𝑃 − 1. For background computation,

the maximum iteration number 𝑝𝑚𝑎𝑥 is 100 and the constant

is 𝜀 = 10−2 . For Jacobi method, the maximum iteration

number 𝑟𝑚𝑎𝑥 is 10 and the constant 𝛿 = 10−3.

To demonstrate the control performance, the plant-model

mismatch is introduced by perturbing the parameter 𝐾3 from

its nominal value 𝐾3,𝑛𝑜𝑚. We set the perturbed values of 𝐾3

as 0.5𝐾3,𝑛𝑜𝑚 , 0.65𝐾3,𝑛𝑜𝑚 , 0.8𝐾3,𝑛𝑜𝑚 , respectively. Two

algorithms, ideal DNMPC and as-HDNMPC, are used for

comparison. Ideal DNMPC uses a standard implementation

approach, which computes the optimal control law online

based on the current measurement. The control input is

injected to the plant until optimization is finished. The control

algorithm proposed in Yu et al. (2019) is named as-HDNMPC.

The output profiles of Tank 1 and Tank 2 under different

magnitudes of mismatch are shown in Figs. 3 and 4,

respectively. The time indices of the proposed algorithm under

different cases are shown in Table 1.

Fig. 3. Liquid level of Tank 1 under different mismatch cases.

Fig. 4. Liquid level of Tank 2 under different mismatch cases.

Table 1. Time indices of as-DNMPC under different

magnitudes of mismatch.

Value of

𝐾3/𝐾3,𝑛𝑜𝑚

Average

online

computational

time/CPUs

Maximum online

computational

time/CPUs

Maximum

iteration

number

0.5 0.0582 0.1248 3

0.65 0.0548 0.1248 3

0.8 0.0761 0.1560 2

As shown in Figs. 2 and 3, all algorithms are able to achieve

setpoint tracking in all cases. The two sensitivity-based

algorithms produce almost identical control action, as they

have similar procedure for input computation. The output

profiles of the proposed algorithm is a little lagging compared

to that of ideal DNMPC, due to the suboptimal solution

obtained by the sensitivity-based strategy. Table 3 shows that

the average computational time is less than 0.1 CPUs in all

cases. Moreover, the maximum time is less than 0.2 CPUs

under different magnitudes of mismatch. As for the iteration

number, it requires 3 iterations to solve sensitivity equations at

most, which is much smaller than the maximum iteration

number 𝑟𝑚𝑎𝑥. This implies that the Jacobi method is able to

converge in a few iterations. Therefore, the proposed strategy

can provide time-critical control actions.

We then focus on the mismatch scenario when the perturbed

parameter 𝐾3 = 0.8𝐾3,𝑛𝑜𝑚, and compare the time indices with

ideal DNMPC algorithm. Table 2 shows the time indices of the

two algorithms.

Table 2. Time indices for each algorithm.

Algorithm

Average online

computational

time/CPUs

Maximum online

computational

time/CPUs

As-DNMPC 0.0542 0.0936

As-HDNMPC 0.0681 0.1716

Ideal-DNMPC 0.3143 4.5396

Table 2 shows that the average online computational time of

as-DNMPC is about 24.2% of the time spent in ideal-DNMPC.

As for the maximum online computational time, ideal-

DNMPC reaches 4.5396 CPUs, which is about 29 times of that

of ideal-DNMPC. For the ideal control strategy, the online

computational cost is large as distributed optimization is

performed online. In contrast, the proposed algorithm only

needs to solve a set of sensitivity equations online. As seen in

Table 1, only 2 Jacobi iterations are required to solve

sensitivity equations. Compares with our previous work, the

newly developed algorithm requires less computational time

for input computation. This is because all the controllers solve

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6101

their local sensitivity equations in parallel, and convergence

can be achieved with few iterations. Therefore, the proposed

strategy can provide time-critical control actions.

Remark 2. In all mismatch cases, the background distributed

optimization is able to converge within 𝑝𝑚𝑎𝑥 iterations. In

other words, the maximum iteration number is not activated at

any sampling time.

4. CONCLUSIONS

In this paper, a fast two-stage cooperative DNMPC algorithm

is proposed to reduce the computational delay in MPC

implementation. In the background stage, the future state is

estimated in advance based on the nominal model. Each local

controller then solves its local NMPC problem and

communicates with others to improve the decision making.

The nominal optimal input sequence is obtained at

convergence. In the online stage, the state prediction error is

calculated after new measurement. Then each controller solves

its sensitivity equation with Jacobi iterative method to

compute the input correction vector. The nominal optimal

input is updated online and implemented to the plant. A case

study demonstrates good performance of the method.

5. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of

NSFC-Zhejiang Joint Fund for the Integration of

Industrialization and Informatization (No. U1509209) and

National Key Research and Development Program (No.

2017YFE0106700).

REFERENCES

Alvarado, I., Limon, D., Muñoz de la Peña, D., Maestre, J.M.,

Ridao, M.A., Scheu, H., Marquardt, W., Negenborn, R.R.,

De Schutter, B., Valencia, F., Espinosa, J. (2011). A

comparative analysis of distributed MPC techniques

applied to the HD-MPC four-tank benchmark. Journal of

Process Control, 21, 800-815.

Christofides, P.D., Scattolini, R., Muñoz de la Peña, D., Liu, J.

(2013). Distributed model predictive control: A tutorial

review and future research directions. Computers and

Chemical Engineering, 51, 21-41.

Dunbar, W.B. (2007). Distributed receding horizon control of

dynamically coupled nonlinear systems. IEEE

Transactions on Automatic Control, 52 (7), 1249-1263.

Diehl M., Bock H.G., Schlöder J.P. (2005). A real-time

iteration scheme for nonlinear optimization in optimal

feedback control. SIAM Journal on Control and

Optimization, 43, 1714-1736.

Fiacco, A.V. (1983). Introduction to Sensitivity and Stability

Analysis in Nonlinear Programming. Academic Press,

New York.

Findeisen, R., Allgöwer, F. (2004). Computational delay in

nonlinear model predictive control. IFAC Proceedings

Volumes, 37 (1), 427-432.

Kogel M., Findeisen R. (2017). Low latency output feedback

model predictive control for constrained linear systems. In

Proceedings of 2017 IEEE 56th Annual Conference on

Decision and Control (CDC), 1925-1932. Melbourne,

Australia.

Liu, J., Muñoz de la Peña, D., Christofides, P.D. (2009).

Distributed model predictive control of nonlinear process

systems. AIChE Journal, 55 (5), 1171-1184.

Liu, J., Chen, X., Muñoz de la Peña, D., Christofides, P.D.

(2010). Sequential and Iterative Architectures for

Distributed Model Predictive Control of Nonlinear

Process Systems. AIChE Journal, 56 (8), 2137-2149.

Mayne, D.Q. (2014). Model predictive control: Recent

developments and future promise. Automatica, 50, 2967-

2986.

Necoara, I., Savorgnan, C., Dinh, Q.T., Suykens, J., Diehl, M.

(2009). Distributed nonlinear optimal control using

sequential convex programming and smoothing

techniques. In Proceedings of Joint 48th IEEE Conference

on Decision and Control and 28th Chinese Control

Conference, 543-548. Shanghai, China.

Scattolini, R. (2009). Architectures for distributed and

hierarchical Model Predictive Control – A review.

Journal of Process Control, 19, 723-731.

Stewart, B.T., Wright, S.J., Rawlings, J.B. (2011).

Cooperative distributed model predictive control for

nonlinear systems. Journal of Process Control, 21, 698-

704.

Wolf, I.J., Marquardt, W. (2016). Fast NMPC schemes for

regulatory and economic NMPC – A review. Journal of

Process Control, 44, 162–183.

Yu, T., Zhao, J., Xu, Z., Chen, X., Biegler, L.T. (2019)

Sensitivity-based hierarchical distributed model

predictive control of nonlinear processes. Journal of

Process Control, 84, 146-167.

Zavala, V.M., Biegler, L.T. (2009). The advanced-step NMPC

controller: Optimality, stability and robustness.

Automatica, 45, 86-93.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6102

