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Abstract: Accurate detection of faults in a dynamic system is very beneficial as this information
can be used in a wide variety of ways by the machine operators or designers. This advantage
becomes many folds when regarding the future condition i.e. time to failure, named remaining
useful life, is available in addition to that of the present condition. Thus, prognosis is one of
the most useful tools to improve the working of a machine as many critical decisions can be
made. Prognosis can be critical for applications that risk loss of life and property. In this paper,
a hybrid method, utilizing bond graph and artificial intelligence, is proposed for system health
estimation (SHE) and prognosis. The Bond Graph model is used to calculate Energy Activity,
which is used as a common metric for both SHE and prognosis. The proposed method is checked
by simulation on a spring mass damper system undergoing a fault.
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1. INTRODUCTION

Maintenance is one of the most important and one of the
most under appreciated aspect for the proper operation
of any system. In most of the industries, the maintenance
strategy falls under one of the two approaches i.e. Pre-
ventive maintenance and Corrective maintenance. Under
the preventive maintenance approach, maintenance action
is implemented after some fixed intervals of time. The
objective in such approach is to perform maintenance action
before the occurrence of the failure itself. On the other hand,
in corrective maintenance approach, the maintenance action
is performed once the system has failed. Both the above
mentioned approaches have certain disadvantages. While
there is a high monetary cost associated with the preventive
maintenance due to frequent maintenance actions, high cost
is also associated to corrective maintenance approach on
account of the loss in working time of machine under failure.
Therefore, a new Condition Based Maintenance approach is
gaining popularity. Under this approach, the operating con-
ditions of the system are continuously monitored. Whenever
fault (not failure) is detected, i.e. system is in a degraded
state but still in a functioning condition, further action
is suggested by the monitoring system. Condition based
maintenance is achieved using Prognostics and Health
Management (PHM). The sequence of steps involved in
PHM are shown in figure 1 and are in detail as follows
(Atamuradov et al. [2017]):

• Data processing : System is characterised by a set of
physical values that have to follow predefined trajec-
tories expressed by system input-output relations. To
check any deviation of the system from these relations,
it is necessary to obtain from the system, certain
information, in a usable format. This is done using
data processing. It consists of the following:

· Signal acquisition: This step deals with extracting
proper information from the system. It is per-
formed by sensors which measure the variations
in physical properties of the system (temperature,
flow etc.).
· Signal Processing : Signal processing prepares the

acquired signal for subsequent analysis or control.
For this the signal is first cleaned by removing
the noise and then features of the clean signal
are extracted. These features are defined by the
requirements of the analysis or control system.

• System health estimation (SHE): System health esti-
mation groups the FDI procedures allowing to esti-
mate the health state of the system (faulty or non
faulty). These procedures consist in three steps.
· Fault Detection: Fault detection investigates the

consistency between the actual values of the
system outputs provided by the sensors and the
predicted values of these outputs obtained from
the reference system model.

A fault is detected as soon as this consistency,
expressed on the form of mathematical expressions
called residuals, is not respected. Equation 1 gives
the general form of a residual where Ymeasured
is the actual value of the system output Y and
Yestimated is its estimated value predicted by the
model or other reference tables.

Residual = Ymeasured − Yestimated (1)

For example, in an vehicle transmission system,
the r.p.m of the wheel can be measured for fault di-
agnosis. The residual can be fixed as the difference
between the measured r.p.m and expected r.p.m
(calculated from the provided input and model
describing the behavior of machine). A near zero
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residual indicates that the actual system behavior
conforms to it’s expected behavior and hence,
an absence of fault. However, if the residual is
non-zero, this indicates the presence of a shift in
the system behavior from expected, hence, the
presence of a fault.
· Fault Isolation: Fault isolation consists in finding

the faulty component using sensor information
and, for examples, logic procedures, signal pro-
cessing or reference tables.

Continuing from the previous example, once it
is confirmed that there is come fault in the system,
the fault isolation is performed to pin point the
location of the fault. The fault can be in any of
the bearings, or shafts, or the gears.
· Diagnosis: Diagnosis gives an interpretation of

the nature and the cause of the fault.
Continuing from the previous example, suppose

that the fault isolation process indicates the
fault at the bearing, the fault diagnosis process
indicates the nature of the fault. The fault in the
bearing can be due to degradation, or crack, or
misalignment.

• Prognosis: Prognosis is a dynamic estimate of the
degradation of the system. This deals with calculation
of the End of Life of a system, a point in time at which
the fault increases to its maximum limit resulting in
system failure. Remaining Useful Life (RUL) of the
system is expressed by equation 2 where tfailure is
the predicted time where the system cannot continue
to operate due to complete failure and tcurrent is the
time at which the RUL is calculated.

RUL = tfailure − tcurrent (2)

This RUL is represented on figure 2.
The RUL depends highly on the degradation model,

which in-turn usually depends on the nature of the
fault. However, it should also be noted that the
prognosis indicator can be different from the residual
used in SHE.

Continuing from the previous example, if the fault
is diagnosed in a bearing due to the presence of a
crack, then crack propagation model can be used to
estimate the RUL.
• Decision making : Detecting the occurring fault and

estimating the RUL of the system can help in both
protecting the system components, the system environ-
ment and/or ensuring the continuity of service when
possible.

Decision making can range from immediate hu-
man intervention to implementation of fault tolerant
control by putting in priority users safety measures,
system protection and continuity of service.

Prognosis is the most important step of PHM and has
attracted the attention from researchers all over the world.
The quick and accurate prediction of RUL is important
because the subsequent action after the appearance of fault
depends on the RUL. The various approaches introduced
for prognosis fall under one of the following:

(1) Model-based approach: These approaches use either
a deterministic or stochastic model of the system
and physics based degradation models to perform
prognostics. (Kordestani et al. [2019])

(2) Data-based approach: These approaches use the exist-
ing data records and pattern recognition techniques
for prognosis.(Zhong et al. [2019])

(3) Hybrid approach: Many times the complete model
is not know so to fill in the gaps in the model,
data based techniques are used. Such an approach
using both elements from both model based and data
based approaches is called hybrid approach. (Liu et al.
[2016])

Irrespective of the approach used for prognosis, certain
challenges must always be addressed. These include the
representation of degradation model and failure criteria in
terms of the prognostic parameter. This is a big challenge
because degradation model and failure criteria can be more
easily set during the design stage of the system. However,
the design stage deals only with numeric value of system
parameters and not the prognostic parameter. Therefore,
a prognostic parameter which can be express the degraded
state in terms of system component values can be very
useful.

Another challenge to the prognosis process arises due to
the complex nature of systems themselves. Systems now
a days are a complex amalgamation of different domains
of physics like electrical, chemical, mechanical etc. These
domains have different laws that govern their dynamics
and require different prognostic parameters. For example,
the State of Charge of battery (Hu et al. [2015],Dong
et al. [2018]), a very common prognostic indicator an
electro-chemical systems is of no use in a mechanical
system. However, all of different domains of physics do
follow the law of conservation of energy. Hence, energy is
the common currency of exchange between the different
domains. Therefore, a prognostic parameter based on
energy is beneficial as it can be used in systems with
any combination of domains. Energy based prognostic
parameters are developed in (Jouin et al. [2016]). It was
shown that power is a good indicator for systems under
constant load, but for system under and known load, the
cumulative energy, on account of it’s always increasing
nature, is more suited for prognosis. A major drawback of
the proposed metric is that it is calculated for a system a
whole. The individual components are not differentiated
and therefore, any know information about degradation
model and failure criteria can not be exploited.

In addition to the challenges, an opportunity is observed
from the nature of the PHM process itself. It is evident
from the previous discussion about PHM that SHE and
prognosis are closely related to each other. Therefore a
common parameter for SHE and prognosis is desired. This
is well recognised and attempts have been made to extend
know SHE indicators for prognosis (Jha et al. [2016]).
However, a fundamental difference between the two lies
in the knowledge of initial conditions. In systems where
only SHE is required, the initial conditions are usually
considered as unknown. However, for systems incorporating
prognosis, a full or partial knowledge of initial conditions or
non-faulty conditions is assumed (Medjaher and Zerhouni
[2009]). Therefore if eventual prognosis is to be performed,
then the known initial conditions can be incorporated in
the SHE process.
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Fig. 1. Prognosis and Health Management process.

Fig. 2. Extrapolation of Component parameter for Re-
maining Useful Life

In this paper the above mentioned challenges and oppor-
tunity is addressed and a common parameter i.e. Energy
Activity, is proposed for PHM, on account for the following:

• It works at component level and therefore can be
used for with available degradation models and failure
criteria.
• It is energy based and always increasing.
• It can exploit initial conditions at SHE stage.

This paper is organised as follows. Section 1 gives a basic
introduction to Prognosis and Health Management and
it’s various processes and challenges. In Section 2 the
concept of Energy Activity is introduced and developed
in the context of bond graph modelling. Section 3 gives
the detailed methodology of the using energy activity for
for prognosis and health management. In Section 4, the
proposed method is simulated using a spring mass damper
system and the simulation results are presented. The paper
is concluded in Section 5.

2. ENERGY ACTIVITY FOR PROGNOSIS

2.1 Bond Graph

Bond Graph (BG) (Mukherjee et al. [2006]) is a technique
based on the law of conservation of energy, used to model
the dynamic behavior of systems.

In bond graph technique, power(p) in every component
is measured as a product of an agent bringing about the
change, called generalised effort e (electric potential, force,
torque etc), and the rate of observed change (current,
linear velocity, angular velocity etc), called generalised

Fig. 3. Circuit diagram

Fig. 4. Bond Graph of the electrical system

flow f . The power flow is represented by the bond and
the positive sense of this power flow by a half arrow on
the bond. The cross-stroke at one end of a bond (named
causality) represents the cause effect relationship between
variables (i.e. which unknown variables can be calculated
from which known variables). This information is essential
to generate the Analytical Redundancy Relations useful for
FDI procedures Bouamama et al. [2003]. The components
in the system can be either energy storing elements or
energy dissipators. Components storing generalised kinetic
and potential energy are represented as I and C elements
respectively. The energy dissipators are represented as R
elements. The system can also have energy conversion
elements i.e. Transformers TF and Gyrators GY . The
different components can interact with each other and
the system in general, through either a 1 or 0 junction.
Components sharing a common 1 junction have same
generalised flow whereas those sharing common 0 junction
have a common generalised effort. External input to the
system can be either an effort source SE or a flow source
SF .

Figure 3 gives an exemple of Electrical system, the
associated BG and examples of equations that can be
deduced.

The constitutive relationships i.e. the equations governing
the interaction of components with the system are given
as:
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R1 : e2 = R1f2

R2 : f2 =
1

R1
e5

L1 : e3 = L1
df3

dt

C1 : f5 = C1
de5

dt

The structural relationship at the junctions i.e. equations
representing the structural relation between various ele-
ments are given as:

1− junction
{
e1 − e2 − e3 − e4 = 0

f2 = f3 = f4

0− junction
{
f4 − f5 − f6 = 0
e4 = e5 = e6

As shown by the BG model, all dynamic components, in any
dynamic system, irrespective of the domain interact with
energy. The components can either absorb energy during
certain phases and release the absorbed energy during the
other. Some components just dissipate energy. The amount
of energy that they interact with depends on the component
values of the system. Component values are the numerical
values of elements R, C, I, TF, GY of the BG. When a
system is under fault, the component value, and hence
the energy interaction for that of the system component
changes. As energy can not be created or destroyed, the
whole system experiences a redistribution of energy as a
consequence of the fault. Also, for a system to work properly,
every component should play it’s role in energy interaction
within certain limits. Monitoring this energy interaction in
the various components of the system can help in PHM.
This is the reason why, we propose energy-based modeling
metrics, named Energy Activity and Energy Activity Index
to monitor energy interactions between components of a
same system. As the BG explicitly shows energy exchanges
between system components, it is a logical and convenient
tool to evaluate energy activity.

2.2 Energy Activity

Energy Activity was introduced in Louca et al. [2010] as a
tool for physical model reduction. EA is the total energy
interaction that a component has with the system over
a time period. The major difference between energy and
energy activity is that while the energy associated with a
component can increase or decrease, the energy activity
of the component always increases with time. This makes
energy activity a more suited component for prognosis than
energy. The equations for energy and energy activity are
given by equation 3 and 4 respectively. Here, P (t) is the
power, e(t) is the generalized effort, f(t) is the generalized
flow, ∆t is the duration of the observation period beginning
at time a.

Energy =

∫ a+∆t

a

P (t)dt (3)

P (t) = e(t).f(t)

EA =

∫ a+∆t

a

|e(t).f(t)| dt (4)

Energy Activity Index of a component during a time
interval is the ratio of the energy activity of that component
to the total energy activity of the system during this
time. Therefore, energy activity index analysis provides the
relative picture of the activity of different components on
the system. The expression for calculation of energy activity
index of component i in a system with n components is
given by equation 5.

EAIi =
EAi∑n
i=1EAi

(5)

2.3 EA Computation

To calculate EA, power must be known. As shown in table
1, power can be calculated using the constitutive equations
of bond graph elements, given in differential or integral
causality and either the flow or effort information.

For more convenience, the general eq 6 is used as follows
to calculate the power.

P (t) = S(t).φ.g(S(t)) (6)

In eq 6, S(t) is the known effort or flow variable received at
the component input. The constitutive equation associated
with the element is given by φ.g(S(t)). The constitutive
equation depends upon the component value φ and the
nature of the component (R, C or I), and allows to compute
the unknown power variable (flow or effort) from the known
power variable (effort of flow respectively).

From eq 6 the EA can be expressed by eq 7.

EA =

∫ a+∆t

a

|S(t).φ.g(S(t))| dt (7)

3. PHM PROCESS USING ENERGY ACTIVITY

A general overview of PHM process using Energy Activity
is shown in figure 5.

3.1 Data Processing

This process includes the different steps shown in figure
1. A simulated system in fault-free conditions is run in
parallel with the real system. Signal acquisition on the real
system is performed using real sensors. Noise reduction is
applied on sensed signals in order to provide clean measured
outputs. In parallel, similar outputs are calculated from
the simulated system. Calculated outputs are used to
calculate reference EA and reference EAI. The de-noised
measured outputs are used to calculate real EA and real
EAI. Subsequently, fault detection is performed using the
residuals obtained from the difference between reference
and real EA.

3.2 Health Estimation

The process of filtering can modify signal phase & magni-
tude. This introduces error in the residuals. These errors
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Table 1. Element power calculation using bond graph.

Element Known variable Constitutive equation Power

f(t) e(t) = φR(f(t)) f(t)φR(f(t))

e(t) f(t) = φ−1
R (e(t)) e(t)φ−1

R (e(t))

f(t) e(t) = φc
∫
f(t)dt f(t)φc

∫
f(t)dt

e(t) f(t) = d
dt (φ

−1
C e(t)) e(t) d

dt (φ
−1
C e(t))

e(t) f(t) = φI
∫
e(t)dt f(t)φc

∫
f(t)dt

f(t) e(t) = d
dt (φ

−1
I f(t)) f(t) d

dt (φ
−1
I f(t))

can be easily removed by analysing the residuals in fre-
quency domain. As frequency of residual signal changes
when system moves from a fault-free state to faulty state,
residuals are analysed using Short Time Fourier Transfor-
mation technique. The results from Short Time Fourier
transformation are compared with a pre-trained Neural
Network to achieve fault isolation.

A fault is simulated by changing the value of a component
parameter. Therefore to have an exhaustive database,
a range of fault for every component is decided. A
fault-free system is simulated in parallel with the faulty
system. The generated residual is the difference of energy
activity indexes from faulty and fault-free system. Fourier
transformation is performed on the residuals to have a
frequency picture of the residual. The location of the peaks
is recorded in the frequency domain. The noisy peaks i.e.
peaks at high frequency and low amplitude are removed.
The remaining peaks are added to the neural network
training data.

As discussed earlier, for fault isolation, Fourier transfor-
mation is performed on the residuals. However, in a real
system, fault can occurs after some period of fault-free
operation. Hence, the residuals change from zero to non-
zero after some time. In such a case, a direct fourier trans-
formation does not properly capture the change in behavior
of residuals. Therefore, short time fourier transformation
is used. In short time fourier transformation (Liu et al.
[2016]), the residual signal is divided into small windows
of equal duration, and subsequently fourier transformation
is applied on it. The signal processing used for training
the neural network is also applied to the results in the
time-frequency map.

The window for short time fourier transformation should
be equal to the simulation time used for training the neural
network. This assures that the neural network is able to
recognise the pattern properly. The window of short time
fourier transformation should also be more than the time
∆t used in equation 7 to calculate the energy activity.

3.3 Fault Prognosis

Once fault isolation is achieved, the mathematical form of
Energy Activity can be used to calculate the real variation
in the fault parameter, and furthermore the remaining
useful life, assuming that the allowable limits of a parameter
are known for failure.

In order to estimate the dynamics of the degradation (i.e.
the time variation in the value of parameter), the time
derivative of the EA is required.

As the fault (degradation) is due to a modification of the
value of the component parameters in time, the Energy
Activity for a faulty component can be expressed as a
function of the component input signals, which itself is a
function of the all the component parameters φ (considered
as time varying) and time t. (See equation 8)

EA = f(S(φ), t) (8)

From equation 8 the following can be calculated

dEA =
∂EA

∂S

∂S

∂φ
dφ+

∂EA

∂t
dt (9)

dEA

dt
=
∂EA

∂S

∂S

∂φ

dφ

dt
+
∂EA

∂t
(10)

• dEA
dt is the time derivative of the Energy Activity

calculated from the real system.
• ∂EA

∂t represents the variation of the Energy Activity
only in time, i.e. due to no change in φ. This term
can be calculated as the time derivative of the Energy
Activity of the fault free system.
• ∂S

∂φ represents the variation of the input signal of

the component due to the modification of compo-
nent parameter value. As the dynamic model of the
component is known as a pre-requisite this value can
be calculated easily.

• ∂EA
∂S depends on the nature of relation g in the

equation 10.

Assume for example, that the constitutive equation for an
R element is given by eq 11

e(t) = R.f(t) (11)

The EA associated to this element can be calculated using
eq 12.

EA =

∫ b

a

|e(t).f(t)| dt = R

∫ b

a

f(t)2dt (12)

Using the general notations proposed be eq 8, eq 12 is
written as eq 13
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Fig. 5. Generalised procedure.

EA = R

∫ b

a

S2dt (13)

Therefore, for a generalised R element

∂EA

∂S
= R

∫ b

a

∂S2

∂S
dt = 2R

∫ b

a

Sdt (14)

Hence, the degradation rate of a faulty component, cal-
culated as degradation rate of it’s component value φ, be
expressed using both eq 10 and 14 as

∂φ

∂t
=

dEA
dt −

∂EA
∂t

2R
∫ b
a
Sdt · ∂EA∂S

(15)

The eq 15 can be integrated as shown by eq 16 to estimate
the evolution of component value (of the degrading compo-
nent) over time, when the value of the said component is
known in non-faulty condition (φ0).

φ(t) =

∫
dφ

dt
dt+ φ0 (16)

The continuous calculation can then be extrapolated
according to a know degradation trend. If a degradation
trend is unknown, then a polynomial equation can be
used to extrapolate the component value. The Remaining
Useful Life can be easily calculated if the safe limits of the
component values are known beforehand (figure 2). The
trend of component degradation is extrapolated to find
the point in time when the component value reaches the
allowable limit. This point is the End of Life. The time
difference between present and end of life is the Remaining
Useful Life.

4. APPLICATION

4.1 System

In order to illustrate the proposed methodology, a sim-
ulation is performed using a simple spring-mass-damper

system. The system is shown in figure 6. The pre-requisites
i.e. the dynamic model using bond graph, and the ideal &
and safe working limits of components are given by figure
7, and table 2 respectively.

Fig. 6. Spring Mass Damper System.

Fig. 7. Bond Graph of Spring Mass Damper System.

Table 2. Ideal value of system components

Element Value in
SI

Lower
safe limit

Upper
safe limit

Force (F) 10

Spring stiffness (k) 100 85 105

Mass (M) 10 9 11

Damping
coefficient (b)

0.5 0.4 0.6

4.2 Neural Network Training

The first step is to pre-train a neural network. The fault
range for training the neural network are those given in
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(a) Fault in Spring

(b) Fault in Mass

(c) Fault in Damper

Fig. 8. Neural Network Dataset.

table 2. For creating the training data-set, the fault range
for every component is divided into 20 equal intervals. The
residual expressing the difference between the reference EA
(calculated from the non faulty model) and the EA obtained
in the faulty case is computed at the I element i.e. mass.
The frequency-amplitude graph used for training of neural
network is shown in figure 8. The x-axis represents the
frequency in Hz and the y-axis represents the amplitude.
The cross marks of different colors represent the peaks
observed at different magnitudes of faults. From the
figures it is evident that peaks locations can provide a
unique fault signature to the components and can be
easily used to train a neural network. A default pattern
recognition/classification algorithm provided in MATLAB
is used with 5 hidden layers. 70% of the available database
is used for training while 15% of database is used for
validation and testing each.

Fig. 9. Time-Frequency map of Short Time Fourier Trans-
formation.

4.3 Fault Isolation

During the simulation, a fault condition is indicated by
deviation in the component value from ideal. For the
purpose of the simulation, the fault magnitude is modelled
as change in component value. Fault is introduced in the
spring. The variation in spring stiffness is shown in figure
10. A fault is introduced at 5 seconds which continues
to decrease the spring stiffness. At 50s from the start of
simulation, a corrective action is simulated and spring
stiffness starts to increase to recover its initial value at
100s. The Time-Frequency map obtained from the Short
Time Fourier Transformation is applied on the obtained
residual. The Time-Frequency map is shown in figure 9.
The data entries corresponding to the each time interval are
given as input to the neural network trained in the previous
step. The neural network is able to correctly predict the
fault location as spring.

4.4 Fault Prognosis

The equation 15 is used for evaluating the spring stiffness
change rate. The change in spring stiffness φ introduces a
change in the damper input S, which affects the Energy
Activity. The calculated stiffness change rate is passed
through a median filter in order to remove sharp peaks
due to numerical anomalies. The stiffness change rate after
filtering is shown in figure 11. This change rate can be
integrated to find the actual spring stiffness. The calculated
variation of spring stiffness is shown in figure 12. The error
in the calculated spring stiffness is shown in figure 13. From
the figure it is evident that the spring stiffness is calculated
with good accuracy.

At any time when the fault is observed the trend of
the parameter variation can be extrapolated using a
polynomial equation. For the current example a first order
polynomial is used. The point of failure a.k.a. End of
Life is reached when the extrapolation trend reaches the
allowed limit of the component value. The Remaining
Useful Life is continuously monitored. Once the corrective
action is applied the calculation of Remaining Useful Life
is continued. This represents the amount of time for which
the corrective action can be applied before the component
value overshoots the allowable limits. Calculation of End
of Life is shown in figure 12.
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Fig. 10. Fault as a variation in spring stiffness.

Table 3. Calculated End of Life

Cause of variation End of Life Time

Fault 55s

Corrective action 113s

Fig. 11. Calculated Parameter variation Rate.

Fig. 12. Calculation of End of Life.

Fig. 13. Error in calculated spring stiffness.

5. CONCLUSION

In this paper a model based method for Prognosis and
Health Management is proposed using Energy Activity.
Both the diagnosis and prognosis processes are completed
using variants of Energy Activity as a metric. Diagnosis

is achieved by using a combination of Neural Network
and Short Time Fourier Transformation. Given that the
dynamic model of the system is known, the neural network
is trained using fault simulations and does not require
failure data. The prognosis process is completed using
the mathematical nature of Energy Activity for energy
dissipators. This can also be a limitation for the proposed
process as the prognosis process can not utilize the energy
storing elements. The proposed method is simulated for
finding the end of life of a spring mass damper system
undergoing a fault. The method is able to predict the fault
location correctly and recreate the parameter values of the
component under fault with good accuracy.
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