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Abstract: Control of a platoon of vehicles subject to jamming attacks is addressed in this
paper. Because of jamming attacks, some communicated information and radio data are assumed
to be lost or delayed in a stochastic manner. By considering the constant time-gap spacing
policy, we propose a control strategy which under certain conditions guarantees the almost sure
regulation of the vehicles in desired relative distances. Accordingly, depending on the control
gains, the robustness of the platoon against a wide range of jamming attacks is guaranteed. The
main contribution of the paper is that the proposed control scheme is robust against jamming
attacks on both the communication network and vehicles radars. Simulation results illustrate
the performance of the proposed control strategy.
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1. INTRODUCTION

Reducing fuel consumption and the risk of accidents and
increasing the rate of transportation are the main issues
in urban traffic systems. The cooperative adaptive cruise
control (CACC) has appeared as an idea to address these
issues in modern traffic systems. Based on such technology,
each vehicle is equipped with a cruise control system to
adjust its speed to keep a safe distance from the preceding
vehicle in a cooperative manner. Accordingly, a vehicle
(driven manually by a human, or semi-autonomously, or
autonomously) will be a leader for a platoon of vehicles,
while all the vehicles are equipped with the required
sensors and vehicle-to-vehicle communication platforms to
obtain the necessary information for CACC (Xu et al.,
2019; Alipour-Fanid et al., 2017).

Due to the use of radars and communication networks,
vehicular platoons are vulnerable to several sources of
attacks. Among various sources of attacks, jamming attack
is one of main concerns due to the ease of carrying out
by using simple electronic and communication devices.
Jamming is a type of denial of service (DoS) attack defined
as the intentional emission of random radio signals to
saturate communication devices. Such attacks may lead
to data loss or delays in receiving data, and can affect the
performance of closed-loop control systems (Tanis, 2018;
Laurendeau and Barbeau, 2006).

Studies in the area of the security of vehicular platoons
mainly have been devoted to the detection of attacks in
which developing strategies for the detection and estima-
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tion of various types of attacks are considered (Merco
et al., 2018; Sargolzaei et al., 2016; Biron et al., 2018).
Moreover, recently some efforts have been done on robust
and resilient control of vehicular platoons in which robust-
ness and reconfigurability against attacks are addressed.
For instance, in (Alipour-Fanid et al., 2017), control of
a platoon of vehicles in the presence of jamming attacks
is investigated in which the jamming attack is modeled as
random data loss in communication among the vehicles. In
(Biron et al., 2017), a resilient control strategy is proposed
for vehicular platoons in the presence of DoS attacks,
where the DoS is modeled as delays in communication
among the vehicles. In (Tamba and Nazaruddin, 2017),
resilient control of vehicular platoons subject to DoS at-
tacks in communication among controllers and actuators
is studied, in which the DoS is modeled as communication
loss. Moreover, some studies also have been devoted to
increasing the robustness of vehicular platoons against
communication loss and delays, which are the main out-
comes of jamming attacks. For instance, in (Acciani et al.,
2018), an observation strategy to increase the robustness
of a platoon of vehicles subject to communication loss is
proposed. In (Harfouch et al., 2018), a switching adaptive
strategy for control of a platoon of vehicles with communi-
cation losses is proposed. In (Guo and Wen, 2016), control
of a platoon of vehicles in the presence of random data loss
is investigated. The stochastic L2 stability of platoons of
vehicles in the presence of random packet loss is addressed
in (Li et al., 2019). In (Van Nunen et al., 2019), model
predictive control is used to increase the robustness of
vehicular platoons against data loss, and in (Ge and Orosz,
2017) and (Ploeg et al., 2015), control of connected vehicles
in the presence of communication delays is studied.

Based on the existing literature on control of vehicular
platoons, it can be said that since the distances among the
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vehicles are the variables to be regulated, the performance
of the existing results relies on the accurate measurement
of the intervehicle distances. In other words, whereas var-
ious sources of uncertainties are considered in the existing
results, since intervehicle distances are the variables to
be regulated, the accurate performance of the radars in
measurement of intervehicle distances is a main assump-
tion. Thus, in those studies, only cyber/jamming attacks
on communication networks are considered, whereas radar
jamming is one of main concerns in control of connected
vehicles. Therefore, control of vehicular platoons in the
presence of radar jamming attacks requires further inves-
tigation.

By considering the constant time-gap spacing policy, a
control strategy for a vehicular platoon is proposed in
this paper. We assume that the platoon is subject to
jamming attacks such that some vehicles at some time
instants lose communicated/radar information or receive
information with delays. The main contribution of this
paper is designing a control strategy that increases the
robustness of the platoon against both the communication
and radar jamming attacks. Specifically, we develop a
control strategy such that under some conditions on the
control gains and the jammed signals, guarantees the
almost sure convergence of the intervehicle distances to
desired values. Hence, depending on the control gains, the
robustness of the platoon against a wide range of jamming
attacks is guaranteed.

The paper organization is as follows. Preliminaries are
presented in the next section. The problem is stated in
Section 3. The proposed control strategy is presented in
Section 4. Simulation results are given in Section 5, and
the paper ends with conclusions in Section 6.

2. PRELIMINARIES

Notation and some concepts on stochastic processes are
provided in this section.

2.1 Notation

R denotes the set of real numbers. E{·} and P{·} denote
the expected value and probability of a stochastic variable,
respectively. E{X|E} expresses the conditional expected
value of X given an event E. For a scalar, | · | denotes the
absolute value. sgn(·) denotes the sign function. Moreover,
‘n.a.’ means ‘not available’, ‘a.s.’ means ‘almost surely’,
and ‘w.p.’ means ‘with probability’.

2.2 Stochastic Processes

A stochastic process is described by the triple (Ω,F ,P)
where Ω is the space of events, F is a σ-algebra on Ω, and
P is a probability measure on (Ω,F) where 0 ≤ P{·} ≤ 1
and P{Ω} = 1 (Williams, 1991). A filtration {Ft, t ≥ 0}
on (Ω,F ,P) is a family of sub-σ-algebras of F where
Fq ⊂ Ft, q < t. A stochastic process X = {X(t), t ≥ 0}
is adapted to the filtration {Ft} if X(t) is Ft-measurable
for each t ≥ 0. Now, a process X is a super-martingale
relative to {Ft} and P if (Mahmoud et al., 2003; Williams,
1991):

i) X is adapted to the filtration {Ft},

ii) E
{
|X(t)|

}
<∞,∀t,

iii) E{X(t)|Fq} ≤ X(q), t > q.

We say X(t) almost surely converges to Xf if

P{ lim
t→∞

X(t) = Xf} = 1,

and we write
lim
t→∞

X(t)
a.s.−−→ Xf .

In general, we say that an event happens almost surely if
it happens with probability 1 (Mahmoud et al., 2003).

3. PROBLEM STATEMENT

Consider a platoon of connected vehicles comprising of
a leader indexed by i = 0 and N followers indexed by
i ∈ S = {1, 2, . . . , N}, where Vehicle i − 1, i ∈ S, is the
preceding vehicle of Vehicle i. The mathematical model of
the longitudinal dynamics of the ith vehicle is considered
as follows (Santhanakrishnan and Rajamani, 2003):

ẋi(t) =vi(t),

v̇i(t) =ui(t),
(1)

where xi(t) denotes the displacement of the rear-bumper,
vi(t) is the speed, and ui(t) is the control command
(obtained via the engine and braking forces). Note that
xi(t) may not be an accessible information, and thus we
assume that just the information of the distance from the
preceding vehicle is available for each vehicle.

The objective of CACC for Vehicle i, i ∈ S, is to reach a
desired distance from Vehicle i − 1 by receiving required
state information from Vehicle i − 1. Let us define the
distance of Vehicle i from Vehicle i− 1 as follows:

di(t) = xi−1(t)− Li − xi(t), (2)

where Li is the length of Vehicle i. A common policy
to determine the desired value of di(t) is the constant
time-gap spacing policy (Santhanakrishnan and Rajamani,
2003). According to this policy, the desired distance of
Vehicle i from Vehicle i − 1 is determined based on the
speed of Vehicle i as follows:

ddes,i(t) = ri + hivi(t), i ∈ S, (3)

where ri is the standstill distance and hi is the time
headway which are constant. Therefore, the spacing error
of the ith vehicle can be expressed as follows:

ei(t) = ddes,i(t)− di(t), i ∈ S. (4)

To control the spacing errors (4) such that Vehicle i keeps
the desired distance ddes,i(t) from Vehicle i − 1, some
information of the preceding vehicle such as distance is
required. We assume that the distance di(t) is measured
by a local radar, and more required information from the
preceding vehicle can be achieved via the communication
network under which the vehicles exchange their states
information. A platoon of vehicles equipped with radars
and a communication network is depicted in Fig. 1.

However, the radars and the communication network may
be subject to jamming attacks such that some communi-
cation or radio data received by some vehicles may be lost
or delayed. Therefore, by defining ϑ̄(t) as the value of the
data ϑ(t) after attack, we have

ϑ̄(t) =

{
n.a. w.p. p`ϑ(t)
ϑ(t− τϑ(t)) w.p. pdϑ(t)
ϑ(t) w.p. pϑ(t)

(5)
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Fig. 1. A platoon of three vehicles.

where p`ϑ(t) + pdϑ(t) + pϑ(t) = 1. In (5), ϑ̄(t) = n.a.
implies data loss with probability p`ϑ(t), ϑ̄(t) = ϑ(t−τϑ(t))
implies receiving the information of ϑ(t) with delays with
probability pdϑ(t), where τϑ(t) > 0 denotes the delay,
and ϑ̄(t) = ϑ(t) implies receiving the correct data with
probability pϑ(t).

In this condition, the objective is to develop a control strat-
egy such that the spacing errors almost surely converge to
zero, when the communication network and the radars are
under jamming attacks.

4. MAIN RESULTS

To achieve the CACC objective for the vehicular platoon
introduced in the previous section, we propose the follow-
ing control law for each follower:

ui(t) = ξ3i(t)− λ1isi(t)− λ2iṡi(t), i ∈ S, (6)

where λ1i and λ2i are positive constant gains, and si(t)
and ξ3i(t) are designed as follows:

si(t) =ξ0i(t)− ξ1i(t),
ξ̇0i(t) =vi(t),

ξ̇1i(t) =ξ2i(t),

ξ̇2i(t) =ξ3i(t),

ξ̇3i(t) =
1

hi

(
− ξ3i(t)− ki(ξ2i(t) + hiξ3i(t))

− χi(t)ai(t)sgn(ζi(t))
)
,

(7)

in which ξ0i(t), ξ1i(t), ξ2i(t), and ξ3i(t) are auxiliary states
with arbitrary initial values, ki is a positive constant gain,
and ζi(t) is as follows:

ζi(t) =ξ2,i(t)− ξ2,i−1(t) + hiξ3i(t)

+ ki(−di(t) + ddes,i(t)).
(8)

Moreover, ai(t) ∈ {0, 1} and 0 < χi(t) are control
gains designed later. Note that as the discontinuous term
ai(t)sgn(ζi(t)) is measurable and locally bounded, Filippov
solutions for (7) exist (Filippov, 1988). Moreover, since
the leader does not follow other vehicles, s0(t) and ξ00(t),
ξ10(t), ξ20(t), and ξ30(t) are as follows:

s0(t) =0,

ξ00(t) =x0(t), ξ10(t) = x0(t),

ξ20(t) =v0(t), ξ30(t) = v̇0(t).

(9)

In the presence of jamming attacks on Vehicle i, in (8),
di(t) obtained from the radar should be replaced by d̄i(t),
and ξ2,i−1(t) obtained from the communication network
should be replaced by ξ̄2,i−1(t). Therefore, in the presence
of attacks, ζi(t) is as

ζi(t) =ξ2,i(t)− ξ̄2,i−1(t) + hiξ3i(t)

+ ki(−d̄i(t) + ddes,i(t)).
(10)

In this condition, ai(t) is set to zero if at time t, Vehicle
i does not receive some data via the communication
network or its radar, and ai(t) = 1 when there is no
data loss. For simplicity in the formulation, by considering
pϑi

(t) = 1, ϑi ∈ {di(t), ξ2,i−1(t)}, as the case when Vehicle
i is not probable to be under attacks, we replace di(t)
and ξ2,i−1(t) respectively by d̄i(t) and ξ̄2,i−1(t) for all
the follower vehicles. Moreover, as the performance of the
proposed strategy relies on the accuracy of all the received
data, for Vehicle i, i ∈ S, we define

p`i(t) = P{losing radio or communication data},
pdi(t) = P{delay in radio or communication data},
pi(t) = P{all the information being correct}.

(11)

Remark 1. Note that according to (6) and (7), sgn(ζi(t))
does not appear in ui(t), and therefore there is no chatter-

ing in ui(t). Indeed, ξ̇3i(t) does not appear in ui(t), while

the existing integrator between ξ̇3i(t) and ξ3i(t) filters the
chattering in all the states.

Assumption 1. The leader displacement and speed are
bounded.

Assumption 2. While the time delays can be any bounded
value, we assume that pi(t) > pdi(t) which implies that the
probability of receiving data with delays should be less
than the probability of receiving data correctly.

Theorem 1. Consider the vehicular platoon described in
(1) under the control law (6). Under these conditions, if
for a deterministic control gain χi(t),

|ξ3,i−1(t) + kiξ2,i−1(t)|
pi(t)− pdi(t)

< χi(t), i ∈ S, (12)

we will have, limt→∞ ei(t)
a.s.−−→ 0. Moreover, all the

auxiliary states ξ0i(t), ξ1i(t), ξ2i(t), and ξ3i(t) and the
states di(t) and vi(t) almost surely remain bounded.

Proof. From (1) and (7), it follows that

s̈i(t) = ui(t)− ξ3i(t), i ∈ S. (13)

By substituting ui(t) from (6) into (13), one gets s̈i(t) =
−λ1isi(t) − λ2iṡi(t) which implies that si(t) and ṡi(t)
remain bounded and converge to zero. Moreover, from (1)

and (7), it follows that ẋi(t) = ξ̇0i(t) = vi(t). Therefore,
there exists a constant ci such that xi(t) = ξ0i(t) + ci, and
since ξ0i(t) = si(t) + ξ1i(t), it implies that

xi(t) = si(t) + ξ1i(t) + ci. (14)

Considering (7), one gets

vi(t) = ṡi(t) + ξ2i(t). (15)

Thus, according to (14) and (15), di(t) and ddes,i(t) defined
in (2) and (3) can be restated as follows:

di(t) =si−1(t) + ξ1,i−1(t) + ci−1 − Li − si(t)
− ξ1i(t)− ci,

ddes,i(t) =ri + hiṡi(t) + hiξ2i(t).

(16)

Accordingly, we consider the following modified error:

εi(t) =ri + hiξ2i(t)− ξ1,i−1(t)− ci−1 + Li

+ ξ1i(t) + ci.
(17)

We will show that limt→∞ εi(t)
a.s.−−→ 0, and since si(t),

si−1(t), and ṡi(t) converge to zero, according to (4) and

(16), we will conclude that limt→∞ ei(t)
a.s.−−→ 0. By letting
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zi(t) = ε̇i(t) + kiεi(t),

we consider the following Lyapunov candidate:

Vi(t) =
1

2
zi(t)

2. (18)

From (7), we recall that

ξ̇3i(t) =
1

hi

(
− ξ3i(t)− ki(ξ2i(t) + hiξ3i(t))

− χi(t)ai(t)sgn(ζi(t))
)
.

(19)

Let us define

Ξi(t) =
1

hi
(ξ3,i−1(t) + kiξ2,i−1(t)). (20)

If we add and subtract the right-hand side of (19) by Ξi(t),
from (7) and (17), one gets

ε̈i(t) =− hiΞi(t)− kiε̇i(t)− χi(t)ai(t)sgn(ζi(t)). (21)

Then, according to the definition of zi(t), (21) yields

żi(t) = −hiΞi(t)− χi(t)ai(t)sgn(ζi(t)). (22)

Thus, the conditional expected value of the time derivative
of Vi(t) along (22) is as follows:

E{V̇i(t)|Ft} = zi(t)
(
− hiΞi(t)

− χi(t)E
{
ai(t)sgn(ζi(t))

∣∣Ft

})
,

(23)

where Ft is a filtration as follows:

Ft =
{
zi(%), i ∈ S ∪ {0}, 0 ≤ % ≤ t

}
,

in which zi(%) = {xi(%), vi(%), ξ0i(%), ξ1i(%), ξ2i(%), ξ3i(%)}.
Now, we analyze zi(t)χi(t)E

{
ai(t)sgn(ζi(t))

∣∣Ft

}
. Since in

the case of data loss, ai(t) = 0, from (11), it follows that

ai(t) = 0 w.p. p`i(t). (24)

By considering (10) and (11), one gets

ζi(t) =ξ2,i(t)− ξ2,i−1(t) + hiξ3i(t)

+ ki(−di(t) + ddes,i(t)) w.p. pi(t).
(25)

From (7) and (17), we have

ξ2,i(t)− ξ2,i−1(t) + hiξ3i(t) = ε̇i(t), (26)

and from (16) and (17), one can say that

−di(t) + ddes,i(t) = εi(t) + si(t)− si−1(t) + hiṡi(t). (27)

As a result, from (26) and (27) and according to the
definition of zi(t), (25) yields

ζi(t) = zi(t) + ki(si(t)− si−1(t) + hiṡi(t)) w.p. pi(t).

Thus, as si(t), si−1(t), and ṡi(t) are bounded and converge
to zero, for a nonzero zi(t), there exists a finite time tf such
that for t ≥ tf ,

sgn(ζi(t)) = sgn(zi(t)) w.p. pi(t). (28)

Therefore, by considering (24) and (28), for t ≥ tf , one
gets

zi(t)χi(t)E
{
ai(t)sgn(ζi(t))

∣∣∣Ft

}
= zi(t)χi(t)δi(t)sgn(zi(t)),

(29)

where 0 < pi(t) − pdi(t) ≤ δi(t) ≤ 1 (see Assumption 2).
Note that δi(t) = pi(t)−pdi(t) implies the worst case when
the delays always inverse the sign of ζi(t). Now, from (23)
and (29), it follows that

E{V̇i(t)|Ft} =zi(t)
(
− hiΞi(t)

− χi(t)δi(t)sgn(zi(t))
)
.

(30)

By considering (12), one gets

χi(t)δi(t)− |ξ3,i−1(t) + kiξ2,i−1(t)| > 0. (31)

Therefore, by letting

Υi(t) = χi(t)δi(t)− |ξ3,i−1(t) + kiξ2,i−1(t)| > 0,

from (20) and (31), it follows that

−hiΞi(t)zi(t)− χi(t)δi(t)zi(t)sgn(zi(t))

≤ −Υi(t)zi(t)sgn(zi(t)).
(32)

Now, from (30) and (32), one gets

E{V̇i(t)|Ft} ≤ −Υi(t)zi(t)sgn(zi(t)).

Based on all the above-mentioned issues, it can be said
that for t ≥ tf , E{V̇i(t)|Ft} is negative definite. According
to (7), zi(t) remains bounded in the finite time t < tf .

Thus, as E{V̇i(t)|Ft} is negative definite for t ≥ tf ,
E{Vi(t)} is bounded implying the almost sure boundedness
of Vi(t) as well (if the boundedness is not almost surely,
there exist nonzero probabilities for unboundedness which
has contradiction with the boundedness of E{Vi(t)}).
Thus, Vi(t) satisfies the second and third conditions of
super-martingales given in Section 2.2, and if we consider
the filtration Ft, it satisfies all the conditions of super-
martingales. Therefore, by invoking the super-martingales
convergence theorem (Mahmoud et al., 2003), there exists
Vif ≥ 0 such that

lim
t→∞

Vi(t)
a.s.−−→ Vif . (33)

Furthermore, we can conclude that

lim
t→∞

E{Vi(t)} = 0. (34)

Thus, from (33) and (34), we have Vif = 0, which from
(18) implies that

lim
t→∞

zi(t)
a.s.−−→ 0.

Moreover, the almost sure boundedness of Vi(t) implies the
almost sure boundedness of zi(t). In this condition, since
zi(t) is a Hurwitz polynomial of εi(t) as zi(t) = ε̇i(t) +
kiεi(t), εi(t) and ε̇i(t) almost surely remain bounded (due
to the input to state stability of Hurwitz linear systems
(Khalil, 2002)) and converge to zero. By considering (4)
and (27), it can be said that

ei(t) = εi(t) + si(t)− si−1(t) + hiṡi(t). (35)

Since εi(t) almost surely remains bounded and converges
to zero, and si(t) − si−1(t) + hiṡi(t) is bounded and
converges to zero, according to (35), ei(t) remains bounded
and almost surely converges to zero. To complete the proof,
we show that ξ0i(t), ξ1i(t), ξ2i(t), ξ3i(t), vi(t), and di(t)
almost surely remain bounded. From (17), one gets

ξ2i(t) =
1

hi

(
− ξ1i(t) + ξ1,i−1(t) + εi(t)− ri + ci−1

− Li − ci
)
.

(36)

By considering (7), (36) and its time derivative yield

ξ̇1i(t) =
1

hi

(
− ξ1i(t) + ξ1,i−1(t) + εi(t)− ri + ci−1

− Li − ci
)
,

ξ̇2i(t) =
1

hi

(
− ξ2i(t) + ξ2,i−1(t) + ε̇i(t)

)
.

(37)

Since ξ10(t) and ξ20(t) are bounded (due to (9) and
Assumption 1) and εi(t) and ε̇i(t), i ∈ S, almost surely
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remain bounded, from (37), the almost sure boundedness

of ξ1i(t), ξ2i(t), and ξ̇2i(t) can be concluded (due to the
input to state stability of Hurwitz linear systems) which
from (7), they imply the almost sure boundedness of ξ3i(t).
Since si(t) and ξ1i(t) are almost surely bounded, from (7),
the almost sure boundedness of ξ0i(t) can be concluded.
Then, from (15) and (16), the almost sure boundedness
of vi(t) and di(t) is concluded as well, and the proof is
completed. �
Remark 2. According to Theorem 1, certain conditions
for the vehicular platoon in the presence of jamming at-
tacks are derived such that the spacing errors almost surely
converge to zero. However, as pdi(t) and pi(t) are unknown
and the exact values of ξ2,i−1(t) and ξ3,i−1(t) may be
unknown (due to attacks), it is not straightforward to
guarantee (12). Indeed, Theorem 1 implies that larger χi(t)
leads to more robustness against jamming attacks. Next,
we propose to design χi(t) as a function of {Fq}, q < t, as
follows (if χi(t) is a function of {Fq}, it is deterministic
and the proof of Theorem 1 is still valid):

χi(t) = κ1i|ξ̄3,i−1(q) + kiξ̄2,i−1(q)|+ κ2i, (38)

where κ1i and κ2i are positive constants, and ξ̄3,i−1(q) and
ξ̄2,i−1(q) imply any ‘available’ (deterministic) information
before time t. Therefore, (12) is guaranteed if

|ξ3,i−1(t) + kiξ2,i−1(t)|
pi(t)− pdi(t)

< κ1i|ξ̄3,i−1(q) + kiξ̄2,i−1(q)|+ κ2i.

(39)

Hence, Theorem 1 provides a control strategy with a
criterion to increase the robustness against jamming at-
tacks such that depending on the magnitudes of κ1i and
κ2i, the robustness of the performance of the vehicular
platoon against a range of jammed signals is guaranteed.
Accordingly, larger κ1i and κ2i lead to more robustness
against jamming attacks. However, larger κ1i and κ2i may
lead to larger control efforts. Indeed, increasing the robust-
ness may be corresponding to larger costs (more energy
consumption). These issues are illustrated by numerical
examples in the next section.

Remark 3. Note that in (38), ξ30(t) = v̇0(t), and such
information can be provided via an accelerometer; other-
wise, to satisfy the inequality (39), instead of ξ̄30(t), we
can use the change of v̄0(t) over a short period of time (by
considering the robustifying effect of κ1i and κ2i).

5. SIMULATION RESULTS

We consider a platoon of five vehicles comprising of a
leader and four followers. We assume that the leader is
moving with a speed of 20m/s, and the followers initial
states, (di(0)m, vi(0)m/s), are (5, 18), (4.5, 17), (7, 18), and
(9, 21), respectively. The objective is to achieve a platoon
of vehicles such that each follower keeps the desired
distance (3) from the preceding vehicle by employing the
CACC law proposed in Theorem 1. We assume that L1 =
4m, L2 = 3.5m, L3 = 3m, and L4 = 3.5m, and let ri = 2m
and hi = 0.2s, i ∈ S. Moreover, for i ∈ S, the control gains
are set to ki = λ1i = λ2i = 1. We assume that Vehicles 1
and 2 are under jamming attacks after t = 10s, and three
scenarios are considered discussed below.

Scenario 1. Without loss of generality and for simplicity,
for each follower vehicle, the effects of the attack on the
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Fig. 2. Distance of each follower vehicle from the preceding
vehicle in Scenario 1.
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Fig. 3. Control efforts of the follower vehicles in Scenario
1.
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Fig. 4. Deterioration of the performance of the platoon in
Scenario 2 by increasing the probability of the jammed
signals.

radar and the communication network are assumed to
be the same. For Vehicles 1 and 2, the probabilities of
data loss are supposed to be 0.1 and 0.1 + 0.05 cos(0.2t),
respectively, the probabilities of receiving information with
delays are considered to be 0.2| sin(t)| and 0.3, respectively,
and we have used positive sinusoidal functions with a
bound of 2 to model time delays. Moreover, to design χi(t)
in (38), we have set κ1i = 1 and κ2i = 5. Under these
conditions, the distance of each follower vehicle from the
preceding vehicle is depicted in Fig. 2. According to the
figure, the vehicles reach the desired distances (3), while
the radars and the communication network associated with
Vehicles 1 and 2 are under jamming attacks. Moreover, the
control efforts of the follower vehicles are depicted in Fig.
3.

Scenario 2. We repeat Scenario 1, and just for Vehicle 1,
we increase the probability of data loss to 0.25. As shown
in Fig. 4, the controller of Scenario 1 cannot handle such
jammed signals. Thus, as depicted in Fig. 4, the distance
among Vehicle 1 and Vehicle 0 will be increased. Moreover,
the follower vehicles control efforts are depicted in Fig. 5.

Scenario 3. To show the effect of increasing χi(t) in
increasing the robustness of the platoon against jamming
attacks, we have repeated Scenario 2, and we increase κ1i
and κ2i, i ∈ S, to κ1i = 1.4 and κ2i = 7. As depicted in
Fig. 6, by employing these control gains, the robustness
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Fig. 5. Control efforts of the follower vehicles in Scenario
2.
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Fig. 6. Distance of each follower vehicle from the preceding
vehicle in Scenario 3 by increasing the probability of
the jammed signals and increasing the robustness of
the control law.
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Fig. 7. Control efforts of the follower vehicles in Scenario
3 by increasing the robustness of the control law.

of the platoon is increased such that in the presence of
the jamming attacks considered in Scenario 2, the follower
vehicles reach the desired distances (3). Moreover, as
depicted in Fig. 7, by increasing the robustness of the
control law, the control efforts of most follower vehicles
are increased.

6. CONCLUSIONS AND FUTURE WORK

A control strategy to increase the stochastic robustness
of a vehicular platoon against jamming attacks on the
communication network and the vehicles radars was ad-
dressed in this paper. We proposed a framework such
that depending on the control gains, the compensation
of the effect of the jammed signals was realized such
that the spacing errors almost surely converged to zero.
Accordingly, based on the magnitudes of the control gains,
the robustness of the vehicular platoon against a range
of jammed signals was guaranteed. Control of nonlinear
vehicular platoons with unknown model parameters in the
presence of jamming attacks is another problem to be
investigated as future work.
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