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Abstract: The application of models and precision technology to optimize productivity and sustainability 

is increasingly common in agriculture. Soil moisture (SM) modelling is an important component of pasture 

growth modelling, or for runoff/catchment modelling. This paper examines a minimal modelling approach 

for SM modelling using soil moisture data from 10 locations in the Taranaki region, New Zealand. Several 

simple compartment-based models are tested with/without daylight and temperature effects on terms 

relating to SM loss, and gain from rainfall. It was found that SM dynamics differed from site to site, with 

a simple loss dynamic proportional to current SM level dominating in soils with moisture levels above field 

capacity. A SM loss term modified by temperature and day length described sites where SM was below 

field capacity. Thus, a simple model was able to fit locational data, and distinguished between differing 

dynamics based on SM level relative to field capacity. This is model is a first step towards a model-

predictive approach to soil moisture modelling requiring a minimum of measured inputs. 

Keywords: Soil Moisture, Modelling and control of agriculture, Modelling and identification of 

environmental systems, Environmental decision support systems 

1. INTRODUCTION 

Agriculture practices are increasingly turning to technology to 

optimise productivity and environmental sustainability. Such 

approaches often combine measurements and models to offer 

greater insight and inform on-farm practices. An area with 

significant potential impact for model-driven precision 

approaches concerns pasture or crop growth, where hydrology 

and nutrient models have implications for productivity, 

fertiliser use, and management of nitrogen leaching (Bryant 

and Snow, 2008). 

Soil moisture (SM) models are particularly important for 

modelling plant growth, and have implications for runoff or 

catchment modelling. SM models are found within agricultural 

programs or frameworks for crops, pasture growth, and water 

quality assessment. Many model frameworks have been 

developed for use in Australian (Ranatunga et al., 2008) and 

New Zealand contexts (Bryant and Snow, 2008, Woodward et 

al., 2008). Model structures range along a continuum from 

empirical to mechanistic models, with differing degrees of 

complexity depending on model purpose and applications.  

‘Simple’ models often utilise a ‘tipping bucket’ process, 

whereby a soil layer is filled to saturation and excess water 

leaves the system as runoff or filtration to another soil level. 

Such models can be single or multi-layer, and may include 

interactions with the groundwater table. Layers are assumed 

internally homogenous, and multi-layer models often require 

greater inputs in terms of water and soil characteristics 

(Ranatunga et al., 2008). More complex models treat soil 

structures and moisture dynamics as a continuums, and 

hydrologic flows are based off fundamental equations and 

mechanisms (Ranatunga et al., 2008).  

Models are structured differently, and require different inputs, 

depending on their intended use and degree of resolution. The 

accuracy and usefulness of empirical models is usually tied to 

the context or location from which data was derived. Other 

models, particularly those requiring less input data to tailor or 

inform the model to a particular context, can be reliable on 

average across geography or time, but less able to predict 

specific instances (Ranatunga et al., 2008). The fundamental 

trade off in any sort of modelling is the complexity of the 

model, as well as the structural and practical identifiably 

(Docherty et al., 2011), related to the amount of data required 

to make such models identifiable and informative. 

This paper presents a simple model of soil moisture based on 

a lumped compartment modelling approach. The model 

broadly replicates mechanistic trends by relating soil moisture 

gain and loss to daylight hours, soil temperature. The aim is to 

parameterise a model using a minimum of environmental data 

inputs, where model parameters thus represent overall soil 

characteristics at a particular location. This model is fit to 

environmental data from a regional council database in New 

Zealand, providing field/farm scale models of soil moisture 

suitable for forward simulation and prediction of pasture 

growth or inclusion in farm-scale modelling.  

2. METHODS 

2.1  Soil Moisture Models 

The SM models developed are based on compartment model 

principles, and intentionally kept minimal to model soil 

moisture against a minimum of measured inputs. The first 

(Model 1) modelled SM gain as proportional to direct 

conversion/infiltration of rainfall (P, mm), and SM loss as 

proportional to current soil moisture level (S): 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 + 𝛼2𝑃 (1) 

Where parameters 𝛼1 and 𝛼2 describe loss and gain respectively. 

Models 2, 3, and 4 modified Model 1 (Equation 1) to include 
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the influence of soil temperature (°C) and/or day length on the 

moisture loss: 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 (

𝑇𝑠

20
) + 𝛼2𝑃 (2) 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 (

𝐷𝐿

12
) + 𝛼2𝑃 (3) 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 (

𝑇𝑠

20
) (

𝐷𝐿

12
) + 𝛼2𝑃 (4) 

In Equations 2 – 4 soil temperature 𝑇𝑠 was divided by 20°C, 

and 𝐷𝐿 by 12 hours, to scale these terms relative to an 

approximately optimum pasture growth temperature and half 

of a 24 hour period, respectively. This scaling allows some 

degree of consistency in magnitude between similar 

parameters in different model formulations.  

Models 5 and 6 account for two different pathways of moisture 

loss, where a loss proportional to S might reflect drainage, and 

a loss proportional to S and 𝑇𝑠 and/or 𝐷𝐿 might include/reflect 

a loss to transpiration or evaporation: 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 − 𝛼1𝑏𝑆 (

𝑇𝑠

20
) + 𝛼2𝑃 (5) 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 − 𝛼1𝑏𝑆 (

𝑇𝑠

20
) (

𝐷𝐿

12
) + 𝛼2𝑃 (6) 

Models 7 and 8 adjusted the conversion of precipitation P to 

soil moisture S in two ways: 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 − 𝛼1𝑏𝑆 (

𝑇𝑠

20
) + 𝛼2𝑃 (

30

𝑆
) (7) 

𝑑𝑆

𝑑𝑡
= −𝛼1𝑆 − 𝛼1𝑏𝑆 (

𝑇𝑠

20
) (

𝐷𝐿

12
) + 𝛼2𝑃 + 𝛼2𝑏𝑃 (

30

𝑆
) (8) 

In Equations 7 and 8, at higher SM levels the conversion of 

rainfall to SM is reduced, as would be expected in saturated or 

near-saturated soil. A scaling factor of 30% is chosen as an 

approximate average SM across the data sets used, to keep the 

30/S term near 1 for average soil moisture levels. 

Models are fitted to environmental data using integral-based 

fitting (Docherty et al., 2012) and least squares methods. For 

Model 8 the least squares fitting function was: 

A𝑥 = 𝐛 

A = [− ∫ 𝑆 𝑑𝑡
𝑡

𝑡0

, − ∫ 𝑆 (
𝑇𝑠

20
) (

𝐷𝐿

12
) 𝑑𝑡

𝑡

𝑡0

, ∫ 𝑃𝑑𝑡,
𝑡

𝑡0

 ∫ 𝑃 (
30

𝑆
) 𝑑𝑡

𝑡

𝑡0

] 

𝐛 = [𝑆|𝑡 − 𝑆|𝑡0 ] 

(9) 

In Equation 9, integrals are calculated using the trapezium rule 

on measured data. 

Day length represented the number of hours of daylight in a 

day, which was calculated from day of year and latitude using 

a function written for the Matlab (gubertoli, 2016). 

2.2  Soil Moisture Data 

Soil moisture data spanning 365 days was pulled from the 

Taranaki Regional Council (TRC) website (Taranaki Regional 

Council, 2019a). The TRC monitors a number of 

environmental factors at locations around the Taranaki 

Region. Environmental monitoring points were filtered to 

those which measured daily averages for SM (%), soil 

temperature (°C), and precipitation (mm). Where available, 

daily average ambient temperature (°C) and wind speed 

(km/hr) were also downloaded. 

Data meeting this criteria was found for 11 rural locations 

around Taranaki, shown in Figure 1. Data from one location, 

Waitotara at Rimunui Station, was discarded because data only 

spanned 2-3 months, not a full year. Latitude was determined 

to 2 decimal places using Google maps. Broad soil types for 

each location were also determined from the TRC website 

(Taranaki Regional Council, 2019b). Soil Moisture sensor 

type and depth was not specified, and is assumed here to be 

similar across all locations, and representative of SM in the 

root zone.  

Figure 1: Locations of Soil Moisture monitors around Taranaki, with 

current soil moisture. Modified from image accessed 18/10/2019 

(Taranaki Regional Council, 2019a) 

2.3  Analysis 

Model error was calculated as the percent absolute difference 

between the measured and modelled SM.  

𝐹𝑖𝑡𝑡𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 = 100 ×
𝑎𝑏𝑠(𝑆 − 𝑆𝑚𝑒𝑎𝑠)

𝑆𝑚𝑒𝑎𝑠

 (10) 

Fitting error here is the relative percentage error, not difference 

in the SM % units recorded. 

Once the model with lowest overall error was established, 

model-fit parameters were analysed in the following ways: 

 The model was fit to all 365 days of data, and model 

parameters compared by location and soil type 

 Model 1 fit to data on 7-day and 30-day intervals, and 

changes in parameters plotted over time.  

A model is considered viable if it maximally fits data, while 

also attempting to minimise the environmental measurements 

required to inform the model. Only model 1 was used in the 

second analyses as the shorter time frames did not in some 

cases provide sufficient variation in temperature, day length, 

or rainfall to identify all model parameters in Models 5-9.  
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SM model parameters were compared by location and soil 

type. Median (IQR) SM for a location was compared to the 

field capacity and wilting point (WP) typical of broad soil type, 

where these thresholds were drawn from (O'Geen, 2013).  

3. RESULTS 

Model-fit parameters for Models 1-8 are shown in Table 2, and 

the forward simulation for selected models in Figure 2. The 

basic model (Model 1) was able to capture trends and some 

response to individual precipitation events well in all locations 

but one (Figure 2,Kaupokoni). Including temperature and/or 

day length effects (Models 2–4) improved model-fit for some 

locations and worsened it for others. Including SM saturation 

effects in models 7 and 8 reduced model error. Model 8 

performed best (med. [IQR]: 2.9 [6.2 – 10.8)% error), as it 

included terms from Models 1-4, allowing stronger fits to 

some terms on a location by location basis (Table 3), thus 

bringing together the location-specific benefits of each model. 

Figure 3 shows parameter changes on a weekly and monthly 

basis, where selected locational results are representative of 

overall trends/results across all sites. Model fit to data is 

extremely good when model parameters are allowed to vary. 

Figure 2 shows these changes in the rate of soil moisture gain 

and loss are not directly functions of daylight, or ambient 

temperature. Seasonal trends are apparent, where rainfall 

uptake is most often minimised in winter, even if overall 

moisture and rainfall levels are similar to autumn.  

Delineating parameters on a weekly basis shows more 

parameter variability for no appreciable gain in model fit 

accuracy across most sites. At this time-resolution the 

parameters are likely susceptible to noise directly related to 

rainfall events, particularly in the case of large rainfalls.  

Location-specific parameters in Table 3 show SM-

proportional SM loss (𝜶𝟏-type) is higher in non-coastal loam 

sites, compared to a loss with temperature and daylight effects. 

Four out of five of these 𝜶𝟏-type dominated losses occurred in 

where average SM was higher than the typical field capacity 

(Table 3), and vice versa. The 𝜶𝟏𝒃-type losses were strongest 

where SM was lower than the field capacity. No trends were 

apparent in precipitation infiltration.  

4. DISCUSSION 

4.1  Model performance 

 A simple model relating rainfall to SM in pasture was fit to 

365 days of SM data. It was found that a model accounting for 

temperature, SM, and day length effects on rainfall infiltration 

and SM loss (Model 8) was able to capture overall trends very 

well in all 10 data sets, with median [IQR] error of 2.9 [6.2-

10.8] %. In 6 data sets the largest discrepancy between model 

and SM measurements occurred in late summer when SM was 

at its lowest. In some locations, the model was also unable to 

capture the extent of day-day variability in SM levels, likely 

due to changing seasonal effects. For example, the Uruti site 

in Figures 2 and 3 shows improved infiltration of rainfall in 

late spring and early autumn, compared to mid-summer and 

winter. Overall results suggest this simple model can estimate 

SM levels at 8 sites around Taranaki.  

Model fit was improved when parameters were fit across 30 

days. Shorter fitting periods resulted in parametric noise 

related to insufficient variation in environmental data to 

successfully delineate terms. Monthly parameter variation 

highlights seasonal changes in soil characteristics and climate 

Table 1: Location details. Superscripts on soil type reflect drainage class, as per the NZ Soil Classification system (Milne et al., 1995) 

Location Lat Soil type Topography 
Rainfall 

(mm) 

Ambient  

Temp. (°C) 
Soil Temp. (°C) 

Wind Speed 

(km/hr) 

Hilsborough -39.06 Brown loam5 Flat/rolling 0 [0 – 4.5] 14.1 [11.9-18.0] 14.4 [11.6 – 18.6] 12.5 [9.3 – 16.9] 

Kapoaiaia -39.27 Coarse sand5 Coastal flat 0 [0 – 3] 14.6 [12.7 – 17.4] 15.6 [12.7 – 15.8] 18.0 [12.8 – 24.7] 

Kaupokoni -39.54 Loam5 Coastal flat 0 [0 – 3] 13.7 [11.6 – 17.1] 15.6 [12.0 – 20.5] n/a 

Mangatete 

Bridge 
-39.22 

Fine sandy 

loam5 Flat 0.5 [0 – 5.5] 13.2 [11.0 – 15.6] 14.2 [11.3 – 19.4] n/a 

Motunui -39.00 Black loam5 Coastal flat 0 [0 – 3.4] 13.8 [11.6 – 17.3] 14.0 [11.4 – 18.7] n/a 

Patea -39.74 Loamy sand3 Coastal flat 0.2 [0 – 3.0] 13.7 [11.5 – 17.0] 15.1 [11.9 – 19.4] 18.5 [12.5 – 25.2] 

Pohokura Saddle -39.16 Brown loam5 River valley 0.5 [0 – 5.0] n/a 14.4 [11.0 – 18.7] n/a 

Taungatara -39.43 Loam5or 2 flat 0.5 [0 – 5.0] 13.1 [10.7 – 16.3] 14.3 [11.2 – 18.5] 15.3 [12.3 – 20.5] 

Uruti -39.03 Brown loam5 Hill country 0.5 [0 – 5.5] n/a 14.8 [11.6 – 18.7] 9.5 [7/5 – 13.0] 

Waitotara – 

Hawken’s Rd 
-39.83 

Silt loam/clay 

loam5 
River flat 0.2 [0 – 3.2] 13.4 [11.1 – 16.7] 14.3 [11.7 – 19.2] n/a 

Table 2: Parameter values and error from model-fit to all 365 days of data for each location. Values are median [IQR]. 
 Model Parameters Abs. 

Err. (%)  𝜶𝟏 𝜶𝟏𝒃 𝜶𝟐 𝜶𝟐𝒃 

Model 1 0.0116 [0.0091-0.0170]  0.0888 [0.0559-0.1143]  3.9 [8.5 - 16.2] 

Model 2 0.0112 [0.0051-0.0140]  0.0387 [0.0361-0.0731]  4.3 [9.5 - 15.6] 

Model 3 0.0073 [0.0053-0.0123]  0.0477 [0.0384-0.0736]  4.5 [8.3 - 14.2] 

Model 4 0.0068 [0.0035-0.0096]  0.0294 [0.0265-0.0505]  4.4 [9.0 - 15.6] 

Model 5 0.0103 [0.0041-0.0126] 0.0021 [0.0000-0.0109] 0.0968 [0.0559-0.1356]  3.8 [7.6 - 13.8] 

Model 6 0.0099 [0.0046-0.0121] 0.0020 [0.0000-0.0065] 0.0940 [0.0496-0.1356]  3.8 [7.3 - 12.9] 

Model 7 0.0012 [0.0000-0.0091] 0.0082 [0.0022-0.0125] 0.0751 [0.0551-0.0874]  3.2 [6.9 - 12.6] 

Model 8 0.0097 [0.0007-0.0121] 0.0045 [0.0013-0.0127] 0.0173 [0.0001-0.1139] 0.0466 [0.0132 0.0761] 2.9 [6.2 - 10.8] 
 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16926



 

 

     

 

aspects not currently modelled. Such aspects might include the 

effect of frosts, or light rainfall extended over longer periods, 

compared to the more singular rainfall patterns seen in 

summer, which can effect surface SM and overall rainfall 

runoff or infiltration. Winds likely also contribute, and future 

work will consider modifying Model 8 by wind speed to 

account for this. However, overall wind speeds do not appear 

to significantly differ month to month (not shown here), and 

thus do not directly account for seasonal changes.. An example 

of underlying seasonal changes can be seen in Uruti in Figure 

2 and 3, where a one-off mid-summer rainfall does not seem 

to affect SM levels significantly, but rainfall over several days 

less than a month later has a more effect on SM.  

 Models were constructed to capture SM gain by different 

processes. The simple linear dependence on SM levels in 

Model 1 was thought to capture drainage or diffusive-type 

mechanisms (𝜶𝟏-type), while inclusion of a temperature and/or 

day length dependant terms captures evaporative or 

transpiratory losses (𝜶𝟏𝒃-type).  

A location-by location comparison of model parameter values, 

(Table 3), showed strong trends with soil type. Of the 𝜶𝟏-type 

dominated losses, 4/5 occurred in soils that were had higher 

average SM than the typical field capacity for that soil type, 

and vice versa. The Waitotara and Patea sites were the 

exception, where at Waitotara median [IQR] SM was lower 

than field capacity. At the Patea site, SM levels were much 

greater than the typical soil field capacity, but 𝜶𝟏-type and 

𝜶𝟏𝒃-type losses were near-evenly matched, at approximately 

the same magnitude as the 𝜶𝟏-type dominated losses. Overall, 

a 𝜶𝟏-type (potentially drainage) loss is associated with SM 

greater than the field capacity, while 𝜶𝟏𝒃-type losses are 

associated with SM levels within the plant-available water 

(PAW) region.  

 
Figure 2: Model solution (S in Equations 1 – 9) fitted to measured soil moisture (SM), temperature and rainfall data at 10 locations in 

Taranaki. The first data point occurs at October 10th (day 284 of year), and data spans 365 days. Cyan bars denote daily rainfall in mm. The 

Motouni and Uruti sites are presented on a longer x-axis scale to clarify interesting model features. 
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Association of 𝜶𝟏-type losses with SM above field capacity 

could be explained by ‘free-drainage’ through gravity effects 

when SM is greater than field capacity. In contrast, within the 

PAW region daylight and temperature dependant pasture 

transpiration effects are expected to dominate, which was 

typical of SM less than field capacity in Table 3. Thus, the 

proposed model is able to distinguish between SM behaviours 

above and below field capacity. Future work will explore and 

validate these explanations for observed behaviours.  

4.4 Limitations & Future work 

The parameters 𝛼2 and 𝛼2𝑏 are used to describe conversion of 

precipitation to SM levels. Future work will explore alternative 

parameterisations to more explicitly quantify runoff and the 

 
Figure 3: Model solution (S in Equations 1 – 9) fitted to measured soil moisture (SM), temperature and rainfall data at 10 locations in 

Taranaki. The first data point occurs at October 10th (day 284 of year), and data spans 365 days. Vertical lines denote seasons. 

Table 3: Site-specific parameter values for Model 8. Values that are relatively higher within the gain/loss parameter pairs (𝛼1 and 𝛼2 

respectively) are highlighted. Superscripts on soil type reflect soil drainage class, as per the NZ Soil Classification system. Fld Cap is field 

capacity, and WP is wilting point, drawing from (O'Geen, 2013) for broad soil types. 

Location Soil type Topography 𝜶𝟏 𝜶𝟏𝒃 𝜶𝟐 𝜶𝟐𝒃 Avg. SM (%) Fld cap. (%) WP (%) 

Hilsborough Brown loam5 Flat/rolling 0.0007 0.0065 0.0081 0.0207 26.9 [22.6-29.3] 25 – 33% 10-15% 

Kapoaiaia Coarse sand5 Coastal flat 0.0178 0.0018 0.1171 0.0132 25.6 [19.6-28.9] 6 - 10% 3-6% 

Kaupokoni Loam5 Coastal flat 0.0026 0.0173 0.1597 0.0000 28.9 [22.5-36.2] 25 – 33% 10-15% 

MangateteBridge Fine sandy loam5 flat 0.0000 0.0127 0.0265 0.0000 13.7 [7.0-17.2] 15-25% 6-11% 

Motunui Black loam5 Coastal flat 0.0003 0.0141 0.0021 0.0540 25.8 [20.8-30.2] 25 – 33% 10-15% 

Patea Loamy sand3 Coastal flat 0.0091 0.0012 0.0001 0.0761 28.9 [27.4-29.9] 12 - 15% 5-7% 

PohokuraSaddle Brown loam5 River valley 0.0139 0.0025 0.0000 0.1962 43.2 [38.6 46.5] 25 – 33% 10-15% 

Taungatara Loam5or 2 flat 0.0121 0.0077 0.1139 0.0392 38.2 [33.6-41.1] 25 – 33% 10-15% 

Uruti Brown loam5 Hill country 0.0104 0.0013 0.0000 0.1049 39.3 [35.8-41.0] 25 – 33% 10-15% 

WaitotaraHawken Silt /clay loam5 River flat 0.0118 0.0001 0.0434 0.0589 28.4 [25.5-30.4] 30-37% 15-23% 
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effect of soil moisture saturation. Conservation of mass should 

also be considered, as per the approach of (Walker et al., 

2004), to compare SM increases to precipitation volumes. 

Where the soil moisture increases by more than theoretically 

possible, results suggest either sensor error, or geographic 

considerations such as runoff pooling or subterranean flow.    

The proposed model often overestimated SM levels at the end 

of summer, when SM levels are at their lowest. In this low SM 

region values are nearer wilting point, so it is likely non-linear 

dynamics are required in this region. Future work could 

consider parametric identification of a location-specific 

estimate of field capacity using available data and carefully 

formulated models. An anticipated potential issue is lack of 

identifiability at locations where peak SM levels do not exceed 

field capacity - SM dynamics not measured cannot be captured 

in model-based methods. 

The model developed here is only tested on SM measurements 

across 10 locations, and future work should expand its 

application. However, this model has been tested on a variety 

of differing locations, topographies, and soil types within the 

Taranaki region, a promising first result. The data provided did 

not detail SM sensor type or methodology, which could vary 

with site. One study of SM measurement techniques under 

field conditions shows general consistency of measurements 

between different sensors, with differing tendencies to 

exaggerate or undercut peaks/troughs resulting from rainfall 

events (Walker et al., 2004).  

In addition, it was not clear at what depth SM measurements 

were taken. It is assumed all measurements are taken from 

around the root-zone. Deeper measurements may blunt or 

delay the magnitude of response to rainfall, or introduce new 

dynamics. Future work can examine the effect of SM sensor 

depth on measured and modelled SM. 

The current model is fit to a full 365 days of SM data. Future 

work will look at the minimum amount of SM data required to 

inform the model for accurate forward prediction 

extrapolations using precipitation. Where a simple model to 

fully describe SM across all four seasons is not possible, 

monthly parameter fitting can create ‘virtual soils,’ similar to 

a ‘virtual patient’ approach (Chase et al., 2018), where 

seasonal and site-specific effects can be lumped and imposed 

under forward simulation. Such ‘virtual soils’ could be used to 

guide water management. 

This study is a first step towards a larger scale dairy modelling 

system, where SM levels are important for pasture growth 

modelling. The aim is to model phenomenon in a manner as 

simple as possible, making use of readily available data, 

without tying model-systems to empirically derived and thus 

highly localised models.    

5.  CONCLUSIONS 

A simple minimal compartment model to describe soil 

moisture levels was developed and fit to soil moisture data 

from 10 sites in the Taranaki region. Model fit to data was 

good, and soil moisture dynamics in response to rainfall 

differed from site to site. A simple loss proportional to current 

soil moisture level was dominant in soils with moisture levels 

above field capacity, and terms modified by temperature and 

day length described sites where soil moisture was below field 

capacity. This is model is a first step towards soil moisture 

modelling requiring a minimum of measured inputs. 
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