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Abstract: Soil moisture plays an important role in agricultural processes, which has a significant
effect on crop evapotranspiration, the exchange of water, and energy fluxes. Recently, soil
moisture can be measured by remote sensing or proximate sensing techniques, such as thermal,
optical, and microwave measurements. However, there are limitations to the applications of these
methods, such as low spatial resolution, limited surface penetration, and vegetation. In this
study, it proposed a new low-cost soil moisture monitoring method by using a Walabot sensor
and machine learning algorithms. Walabot is a pocket-sized device cutting-edge technology for
Radio Frequency tridimensional sensing. Unlike the remote sensing tools such as unmanned
aerial vehicles (UAVs) limited by cloud cover or payload capability, the Walabot can be used
flexibly in the field and provide data information more promptly and accurately than UAVs
or satellite. By putting different moisture levels of soil on the Walabot, the Walabot can
collect radio frequency reflectance data from different levels of soil moisture. Then, machine
learning algorithms, such as principal component analysis (PCA), linear discriminant analysis
(LDA), have been applied for data processing. Results showed that Walabot has a state-of-art
performance in estimating soil moisture.
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1. INTRODUCTION

In Engman (1991), Engman et al. defined soil moisture
as the temporary storage of precipitation within a shallow
layer of the earth. The soil moisture plays an important
role in hydrological applications, such as agriculture Zhao
et al. (2018), climate change Entekhabi et al. (1994), and
meteorology Fast and McCorcle (1991). For example, the
data analysis from soil moisture monitoring can be used for
crop yield estimation, irrigation treatment inference Niu
et al. (2019c), and warning of drought Engman (1991).
Soil moisture monitoring can also be applied for pest
management Powell et al. (2007) and evapotranspiration
estimation Niu et al. (2019b). Therefore, it is important
to monitor the soil moisture accurately. Typically, there
are two types of methods for monitoring the soil moisture,
proximate sensing and remote sensing.

Proximate sensing methods for soil moisture are currently
restricted to point-specific measurements Wang and Qu
(2009). For example, researchers usually put the soil mois-
ture probes in the test field for monitoring. However, these

discrete measurements can not represent the spatial and
temporal soil moisture distribution for the whole field.

With the development of remote sensing technology, the
satellite has been widely used for soil moisture remote
sensing Engman (1990). Many researchers have proved
that optical and thermal remote sensing can be used
for soil moisture measurements. For example, in Wang
and Qu (2007), Wang et al. proposed the normalized
multiband drought index (NMDI) for remotely sensing
the soil based on the soil spectral characteristic. Since
variations of soil moisture have a significant influence on
soil surface temperature Friedl and Davis (1994), thermal
infrared remote sensing is also used for measuring the
soil temperature to correlate it with soil moisture. Active
and passive microwave remote sensing techniques are also
commonly used for soil moisture measurements Walker
(1999). For passive microwave sensors, they can measure
the intensity of microwave emission from the soil, which
is proportional to the brightness temperature, a product
of the surface temperature and emissivity Wang and Qu
(2009); Wigneron et al. (2003). However, there are dis-
advantages to these methods. Limited surface penetration
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can be a problem both for optical and thermal remote
sensing. Cloud contamination can be another issue Wang
and Qu (2009). The data acquired from the microwave has
a low spatial resolution.

Therefore, in this study, the authors proposed a new low-
cost (less than $ 1000) soil moisture monitoring method by
using a Walabot sensor and machine learning algorithms.
Walabot is a pocket-sized device and cutting-edge tech-
nology for Radio Frequency tridimensional sensing, which
has already been used in many research topics, such as
nematodes detection Niu et al. (2020), and battery voltage
detection Wang et al. (2019). It can work flexibly in the
field and provide data information accurately than remote
sensing methods with machine learning algorithms. First,
the sensor was used to collect radio frequency reflectance
of sampling soil, as shown in Fig. 1, which can detect
the physical structure of the soil moisture. Second, the
collected data were pre-processed by data enhancement
or a wavelet transform. Third, processed data was used
by PCA Wold et al. (1987) and LDA Balakrishnama and
Ganapathiraju (1998) for analysis. Results showed that
the Walabot successfully classified the different levels of
soil moisture with a state-of-art performance. Moreover,
with the development of wireless technology and micro-
electromechanical systems, and computer vision, we might
even use the Walabot to recognize real-time soil moisture
monitoring in future research.

The rest of the paper is organized as follows. In Section
2, we give a more detailed introduction for the Walabot
sensor, data collection, and analysis. Results and discus-
sions are presented in Section 3. In Section 4, concluding
remarks are presented for using Walabot to detect soil
moisture.

2. MATERIAL AND METHODS

2.1 Study site

This research was conducted at Mechatronics, Embedded
Systems and Automation (MESA) Lab in Atwater, Cali-

fornia, USA (37◦22
′
30.6

′′
N , 120◦34

′
40.9

′′
W ).

2.2 Walabot

The sensor being used is Walabot Developer (Vayyar
Imaging Ltd), as shown in Fig. 2. The Walabot Developer
is a programmable 3D sensor that uses radio frequency to
see through the soil and creates a reflectance image within
one second. The frequency range is 3.3 - 10 GHz (US/FCC
model) and 6.3 - 8 GHz (EU/CE model). The average
transmit power of both models is below 41dBm/MHz and
do not have any health problem. In principle, the Walabot
uses an antenna array to illuminate the area in front of
it, and captures the returning signals. The signals are
produced and recorded by VYYR2401 A3 System-on-Chip
integrated circuits.

Based on the technical specs Walabot (2018), the Walabot
can sense the environment by transmitting, receiving,
and recording signals from multiple antennas. Multiple
transmit-receive antenna pairs’ recordings are analyzed to
build a 3D image of the environment. Then, researchers

Fig. 1. Radio Frequency reflectance

can detect changes in the environment by analyzing the
sequences of images. The sensor is also capable of short-
range imaging into dielectric environments, such as drywall
and concrete. Therefore, it can be used in many study
areas as follows:

1. In-Room / Wall imaging
2. Object detection, location and tracking
3. Speed measurement and motion sensing
4. Dielectric properties of materials sensing

2.3 Experiment setup

In this study, the authors used Walabot to detect different
levels of soil moisture. The experiment was conducted in
the MESA Lab. The soil was sampled in an almond field
near the lab and was divided into 3 cups, as shown in
Fig. 2. All the soil samplings are from the same spot in
the almond field to make sure they are homogeneous. The
soil was dried out to make sure all the 3 cups of soil are at
the same lowest moisture level. The weights of three cups
of dry soil are 632 grams, 630 grams, and 634 grams. 6 g
or 8 g water was added in every cup each time (10 times in
total) to increase the soil moisture until the soil moisture
is saturated, as shown in Table 1.

Table 1. Soil samplings

Soil condition Soil sample 1 Soil sample 2 Soil sample 3

Dry 632g 630g 634g
1 640g 638g 642g
2 648g 646g 648g
3 654g 652g 656g
4 660g 660g 664g
5 668g 668g 670g
6 676g 674g 678g
7 682g 682g 686g
8 690g 690g 692g
9 696g 696g 700g

10 (Saturated) 704g 704g 708g

2.4 Data collection and processing

The Walabot was used to measure the soil moisture every
time after the water was added. Each measurement by the
Walabot was repeated ten times to reduce the likelihood
of errors or anomalous results so that it could increase the
confidence interval.
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Fig. 2. Walabot data collection

For image processing, the authors used two different ma-
chine learning methods, the Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). Both of
them can reduce the dimensionality of the datasets and
increase the classification accuracy.

Principle Component Analysis. Principle Compo-
nent Analysis (PCA) is a fast and flexible unsupervised
method for data dimensionality reduction Jolliffe (2011).
It can achieve linear projection to a lower-dimensional
subspace by using singular value decomposition. It is a
linear transformation that rotates the axes of the data
along the direction that maximizes its variance, allowing
data to be projected into a lower-dimensional subspace
Jolliffe (2011). These new axes, or “loadings,” are found
by calculating the eigenvectors W of the data’s covariance
matrix, where X is an M × N matrix representing M
samples of size N:

XTX = Wλ (1)

The eigenvalue λ represents the importance of the loading
in transforming the data. As the loadings are sorted in
descending order, W can be truncated to r columns, which
can then be used to project data along r dimensions,
preserving the dimensions that contribute most to the
variance of the distribution. W is often obtained with Sin-
gular Value Decomposition (SVD) instead of performing
the Eigen decomposition of XTX, as it is more computa-
tionally efficient.

PCA can also maximize the variance of the projected data.
Therefore, PCA is commonly used in exploratory data
analysis and making predictive models.

Linear Discriminant Analysis. Linear Discriminant
Analysis (LDA) is a classifier with a linear decision bound-
ary. It is generated by using Bayes’ rule to fit class con-
ditional densities to the data. It assumes that all classes
share the same covariance matrix. After that, the LDA
model can be used to reduce the dimensionality of the
input data by projecting it to the most discriminative
directions. The model will maximize the distance between
means of classes relative to some center point for all

classes, while minimizing the variance, or scatter, within
each category. In the following equation, C is the number
of classes, Ni is the size of class i, µ is the mean of all data
points, µi is the mean of class i, and xj is the jth data
point in class i:∑C

i=1Ni(µi − µ)(µi − µ)T∑C
i=1

∑Ni

j=1(xj − µi)(xj − µi)T
(2)

The optimized solution contains eigenvectors, which are
descending order of their eigenvalues, which can be used
to reduce the dataset similar to PCA. Optimizing for
both within and between-class scatter is essential because
only maximizing distance between means could lead to
scenarios where the variance is high along the axis with
great mean distances, increasing the chance that there are
points from different classes overlapping. Minimizing the
variance ensures that data from each class are grouped
tightly along the new axis, increasing separability. Then,
the output dimensionality is usually less than the number
of classes so that LDA is a very strong dimensionality
reduction Friedman et al. (2001).

3. RESULTS AND DISCUSSION

Each radio frequency reflectance image was converted into
a 2048-dimension vector for data processing. The data
was distributed as 67% for training and 33% for testing.
Since the dataset is small for training eleven classifiers,
the authors distributed the eleven soil conditions into five
different levels from dry to saturation. As shown in Fig. 3
and Fig. 4, Dry means the dry soil. WetTotal stands for
the saturated soil. Soil conditions 1, 2, and 3 are included
in Wet1. Wet2 contains the soil conditions 4, 5, and 6.
Wet3 includes the soil conditions 7, 8, and 9.

Several classifiers in scikit-learn were used for compari-
son, such as “Nearest Neighbors,” “Linear SVM,” “RBF
SVM,” “Gaussian Process,” “Decision Tree,” “Random
Forest,” “Neural Net,” “AdaBoost,” “Naive Bayes,” and
“QDA”. In this soil moisture monitoring problem, the
accuracy of these classifiers is shown in Table 2. The best
classifiers are “Nearest Neighbors,” “Gaussian Process,”
“Decision Tree,” “Random Forest,” “Neural Net,” and
“Naive Bayes” with an accuracy of 95%. The “QDA” is
with 90% accuracy. The “Linear SVM” and “AdaBoost”
are worst with 55% accuracy.

Table 2. Classifiers accuracy

Classifiers Accuracy

Nearest Neighbors 0.95
’Linear SVM’ 0.40
’RBF SVM’ 0.95

’Gaussian Process’ 0.95
’Decision Tree’ 0.95

’Random Forest’ 0.95
’Neural Net’ 0.95
’AdaBoost’ 0.55

’Naive Bayes’ 0.95
’QDA’ 0.90

Scikit-learn’s accuracy classification score function evalu-
ated the performance of the classifiers. This function com-
putes the subset accuracy, in which the labels predicted
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for sampling must exactly match the corresponding true
labels. Estimators use this score method as the evaluation
criterion for the classification problems. All scorer objects
follow the convention that higher return values are better
than lower return values.

3.1 LDA

Several LDA methods are used for soil moisture clas-
sification, as shown in Table 3. decision function(X) is
for predicting confidence scores of soil samples. fit(X, y[,
store covariance, tol]) is for fitting the LDA model accord-
ing to the given soil images training data and parameters.
fit transform(X[, y]) is for fitting data and transform it.
get params([deep]) is used for setting parameters for the
estimator. Then, predict(X) can predict the class labels for
soil samples. predict log proba(X) and predict proba(X)
can estimate the probability. Finally, score(X, y[, sam-
ple weight]) can return the mean accuracy on the given
soil images test data and labels. set params(**params)
is for setting estimator parameters. transform(X) is for
projecting data to maximize soil class separation.

Table 3. LDA Method

Methods

decision function(X)
fit(X, y[, store covariance, tol])

fit transform(X[, y])
get params([deep])

predict(X)
predict log proba(X)

predict proba(X)
score(X, y[, sample weight])

set params(**params)
transform(X)

The performance of the LDA for soil moisture monitoring
was shown in Fig. 3. There are five different soil moisture
levels with different colors, Dry, Wet1, Wet2, Wet3, and
WetTotal, which means the soil sampling is saturated.
LDA classifiers firstly reduced the original dimension to
2 components. As seen from Fig. 3, different colors mean
different soil moisture levels and the axes of the figure
are dimensionless., the LDA can classify the five different
levels of soil moisture in different areas of the coordinate,
so that the LDA can classify the soil moisture with an
accuracy of 100 %.

3.2 PCA

In PCA methods, fit(self, X[, y]) is to fit the model
with the input soil images data X. fit transform(self,
X[, y]) is for fitting the model with X and apply
the dimensionality reduction on X. get covariance(self)
is for computing the data covariance with the gener-
ative model. get params(self[,deep]) is to get parame-
ters for the estimator. get precision(self) is for com-
puting the data precision matrix with the generative
model. Then, inverse transform(self, X) can transform the
data back to its original space. Finally, score(self, X[,
y]) can return the average log-likelihood of all samples.
score samples(self, X) can return the log-likelihood of each

Fig. 3. LDA results for soil moisture measurement

Table 4. PCA Method

Methods

fit(self, X[, y])
fit transform(self, X[, y])

get covariance(self)
get params(self[,deep])

get precision(self)
inverse transform(self, X)

score(self, X[, y])
score samples(self, X)

set params(self, params)
transform(self, X)

sample. set params(self, params) can help set the param-
eters of the estimator. transform(self, X) is being used for
applying dimensionality reduction to soil images input.

In Fig. 4, PCA can also classify the soil moisture suc-
cessfully but not entirely. As shown in Fig. 4, WetTotal
points are on the left and right sides of the image. The
Wet3 and Wet2 data points did not drop in the same
area. The reason might be that the PCA can not detect
the features difference from the data. Similar to LDA, the
PCA classifiers firstly reduced the original dimension to
2 components. Then, each classifier was tested against
reduced dimensionality data with the component as 2.
Results showed that LDA performs much better than the
PCA method.

4. CONCLUSION

Soil moisture monitoring is essential in precision agricul-
ture, which has a significant effect on crop evapotran-
spiration, the exchange of water, and energy fluxes. Soil
moisture can be measured by many remote sensing or
proximate sensing techniques, such as thermal, optical,
and microwave measurements. However, there are limit-
ing factors for the applications of these methods, such
as low spatial resolution, limited surface penetration and
vegetation. In this study, the authors used a portable
sensor to classify different soil moisture successfully. By
using the PCA and LDA machine learning methods, the
Walabot can recognize small changes in different levels of
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Fig. 4. PCA results for soil moisture measurement

soil moisture and can detect soil moisture difference with
an accuracy of 100 % by LDA algorithms, which shows a
state-of-art performance in estimating soil moisture. As
a pocket-sized device cutting-edge technology for radio
frequency tridimensional sensing, we believe the sensor can
work flexibly in the field and provide data information
more promptly and accurately than traditional remote
sensing or proximate sensing method.

So far, the Walabot can only detect the difference in soil
moisture. In the future, we will compare it with different
soil moisture sensors to see if we can find the regression
model and quantify the soil moisture measurements by us-
ing Walabot. With the development of wireless technology
and microelectromechanical systems and computer vision,
it might be able to be mounted on unmanned ground
vehicles (UGVs) for proximate sensing Niu et al. (2019a);
Tian et al. (2019); thus we can use the sensor to recognize
real-time soil moisture monitoring.
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