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Abstract: This paper extends the square Relative Normalized Gain Array (RNGA) to non-square

multivariable systems with the detailed derivation of non-square RNGA A% properties with column-

AN e R r < n. Non-square RNGA in this paper has a row-column inequality. The

major, i.e.
developed interaction indicator is applied to a non-square multivariable radiator laboratory test setup for
evaluating control-loop interactions. Closed-loop results, as well as sensitivity analysis for the RNGA-
based control-loop pairing in comparison to the RGA-based control-loop pairing, are presented in the
paper. The results demonstrate the effectiveness of the proposed non-square RNGA over RGA for non-

square multivariable systems to have minimum interactions and better control.
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1. INTRODUCTION

The solution to a potential problem of control-loop pairing
for non-square systems lies with the decentralized control to
achieve minimum interactions among the control loops. The
importance of a decentralized control scheme lies with its
simplicity to implement for field engineers. The primary step
is to decide the control-loop pairing based on the loop-
interactions measure (Engell and Konik, 1985). The minimal
loop-interactions confirm that the closed-loop performance is
not deteriorated. Bristol (1966) introduced a relative gain
array to decide the loop pairing for square systems, which
constructs gain array symmetric matrix using the Schur
product. The transient information of the system is not
accounted for achieving the gain matrix. Chang and Yu
(1990) extended Bristol’s RGA to its non-square version.

Several different forms of RGA are available, i.e. Relative
Disturbance Gain Array (RDGA) (Chang and Yu, 1992),
Dynamic Relative Gain Array (DRGA) (McAvoy et al.,
2003), Relative Effective Gain Array (REGA) (Xiong et al.,
2005), Relative Time-Averaged Gain Array (RTAGA) (Tang
et al., 2018) concerning different approaches for interaction
measurements. He et al. (2009) presented an RNGA based
new control-loop pairing criterion for square systems. The
RNGA accounts for steady-state gain, dead time and time
constant parameters. As compared to DRGA, RNGA
provides loop interactions independent of the controller type.
Moreover, the computation of square RNGA has proven
useful and straightforward to work with, for the field
engineers to carry out the loop pairing decision of practical
industrial problems (He et al., 2009). The universality of the
non-square system with the less output-more input structure
can be found in practical problems: mixing-tank process
(Reeves and Arkun, 1989), Air-path scheme of a
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turbocharged diesel engine (Saidi et al., 2019), Shell control
problem (Valchos et al., 2002), etc. The properties of non-
square RNGA for less output-more input structures are not
explored yet. Hence, it merits investigations.

This paper presents the RNGA for non-square multivariable
systems with application to a radiator control system having
less outputs-more inputs in its setup. Its Properties with the
systematic derivation of their proofs are developed. To test
the effectiveness, the proposed technique is applied to a non-
square multivariable radiator laboratory test setup. The
system transfer function matrix is obtained from the
experimental step test readings. The suitable control-loop
pairing of the non-square radiator system is then decided. The
minimal interactions pairing achieved here pinpoints to a
quick and superior control setting i.e. achieving the desired
through better controller and sensitivity performance indices.
Internal Model Control (IMC) tuned PID controllers are
designed for the decentralized control of the non-square
system. The closed-loop performance resulting from the
pairing suggested by non-square RNGA-based configuration
is compared to that of the control configuration of the
conventional RGA.

Notations: Consider G(s) is a rxn non-square process
transfer matrix with » <n, where Y(s) = G(s)U(s). The term

column-major in this paper indicates that the non-square
matrix has more columns with less associated rows, i.e., more
inputs and less outputs.

2. DEFINITION OF THE NON-SQUARE RNGA

Consider Y (s) is an »x1 output vector and U(s)isan nx1
input vector.
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the process gain, dead time and time constant respectively of
the i

Now, G(s)=(G;)= ,where k;,(t;);,(7.); are

output with respect to the j’h input and the variables,
iand j, run over 1 to » and 1ton. The steady-state gain

and the average residence time (Astrdm and Higglund, 2006)
of the transfer function entries of the non-square transfer
matrix are

k= (ky) = (G;(0)), by = (7.); +(14);- (1)
introducing a convenient computational notation,
B= (Ey) =(b; 1), the Normalized Gain Array (NGA) can be

Now,

defined as A= K o B, where ‘o’
two non-square matrices. Thus,

is the Schur product between

k..
4 :k,»»B =k b,_ = (1b)

/ / / (T )1/ + (td )U
Using generalized inverse result (Graybill et al., 1966), the

non-square RNGA becomes
2B = 4o(A") = A0 (AT (A44TY Y = 404" 4. (2)
In the component-wise setting (2) can be recast as
AN = () = (4y(A47) " A),). 3
After combining (3) with (1b), we get

RN Ay Z((ZA’¢A/¢) )l}/ vJ

_ kig kip ky ky
7 P (Tc)i¢ +(td)iq) (Tc)j¢ +(td)M) . (Tc);j +(td)y' (Tc)ij +(td)ij
iy
)

3. PROPERTIES OF THE NON-SQUARE RNGA

Consider the RNGA AV

space R”", where r < n. The row sum R(;), the column sum

contained in the real-valued matrix

C(j), scaling, and permutation properties of the non-square

RNGA are derived. Here, we list the following useful RNGA
relations:

A = 44Ny = A, )

ZﬂRN ZAIJA; D Ay = ZAi¢Agj
7 v

=(44"); = R(), (6)
+ +
ZAW o Z%szﬁ Z%Am
l =j
=(A H;=CQ). ()
Property 1: Consider the RNGA of an rxn matrix 4 is

Z%W 22‘411‘4;

/1RN, where r <n. The sum of elements in each row of the

non-square RNGA AN s
RG)=1,1<i<r

always equal to ‘I,

Proof: Making the use of the generalized inverse result of
Graybill et al. (1966, p. 523), Penrose (1955) and (6), we get

R@i) = (A447); = (4 AT (44", = (1), =1.

Property 2: The sum of elements in each column of the non-
square RNGA N where r<n,
and unity, i.e., 0<C(j)<1,1< j<n.
Proof: Consider the non-square RNGA
RN _ 1 At/ da
T2 dA

is always between zero

(®)

where o = det(4A4"), the sizes of the matrices 447 and A’ 4
are ¥xr and nxn, where r <n. Here, we recast the Binet-
Cauchy relation (Gantmatcher, 1977) for the case 7 <n, i.e.

det(44") = Zdet(ATA), = Z(detA(K))z,

15;«5(”)
N

n
Note that1< KS[ J, [ is a subset contained in the product

7

n
space, where 1</ S(
-

J, rxhas 7 tuples (Vidyasagar, 1985).

By using the matrix calculus (Magnus and Neudecker, 2007:
p. 169),

;% e > (detd(x))? [ =2 D detA(x )ddZZ(K)
1<K§(rj 1SK£(J
€
Note that
ddet A(x) _ Z dV (k") A, (k)
dA; — dA;
—Z(dv‘”’( )A,,q( K)+V 5 () "q( U, g ). (10)
1] 1]

The term V,, (k") is the cofactor of the element 4, () , where
n—1 n

j and ISKS[ J that must
r—1 r
include the ;™ column of (4;)- The size of (V,, (k")) is
(r—1)x(r—1). After combining (9) and (10), we get

ISqu,ISiSr,ISK'S(

=2 ) detA(K)V,, (x). (11a)

d4; 1<,<<(” 11)

For convenience, replace V,, (x') with det(4” (k")) in (11a).

The matrix A47(x') has the size (r—1)x(r—1), which is a

d4,,, (k)
d

i

consequence of and A(x") is an rXr matrix.

Thus,
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57“ =2 ZdetA(x')V,.q (k")=2 ZdetA(x')det(A"f ().
4 ls;«'s(:’:ll) ls;«'s(:’:llj
(11b)
Equation (7) in conjunction with (8) and (11b) becomes
DoAY det A(x")det(4” (1))
AR 1 4y da _ s 1)
~ 7 2 addy )
, , D (det A(x))
1sxg(:’)
(12)
On further simplifications (12) reduces to
Z detA(K’)Z Ay det(47 (x")
1s;<'s(”_l) i
RN r—1
2=
i Z(detA(K))z
ISKS(Z)
= Z(detA(/c’))z Z(detA(K))2 . (13)

1s;('s(”’1) 15;<s(”)
r—1 r

Equation (13) is a consequence of the Laplace expansion

formula for the determinant. The term x runs over 1 to (n)
r

and x' runs over 1 to [n_llj Each term within the
r_

summation sign the condition

0<C(j)<1 holds.

is non-negative. Thus,

Property 3: The non-square RNGA AN of an r x matrix A4

is output scaling-invariant, where r < n.

Proof: For the output scaling, an » xr diagonal matrix Q, is
pre-multiplied to the normalized gain matrix 4, where
0,=(q0)1<i<rl<j<r Since the property

(QrA)Jr =A4"0,; " holds (Lawson and Hanson, 1974), the
output scaled RNGA can be written as
AN =04 (A4° 0N = (0.4 © (Q7'(AN).
Thus,
AN =0 0)i0445) O 07 6,545)
¢ ¢

_ -1 _ _ 2RN
= (Qr)iiAij (Q,)ii A;» _Aij A;i - ﬂij :

Property 4: The non-square RNGA A of an r x n matrix
A input scaling-variant, where r < n.
Proof: For the input scaling, an nxn diagonal matrix O, is

post-multiplied to the normalized gain matrix 4,
(40,)". Considering O, = (9;9;),1<i<n1<j<n,and

1e.,

making the wuse of the inverse

AT =A"(A44"Y", we arrive at

(40,)" =0, 4" (40;4") ™" = (((40;4") )" 40,),
(40,1 =((4Q; AT T 40, =(4)7 0,70, (4")")T 40,
The rxr square matrix (A+)TQ,,71Q,;1((AT)+)T can be
rewritten as

AH"0,7'0, (AN = (A i)(g >SN,

where ((4)7) is an rxn matrix, (q,-_zé}j) is an nxn

right generalized

diagonal matrix, ((AT);,-) is an nxr matrix. Thus, (i, )
components of the 7x7 matrix (A+)TQ,,_1Q,Z_1((AT)+)T

and the rxs matrix 4Q, are

AL AL
-1 -1 $idj
(@' 0,70, (Y= D, =5, (40,), = 454,
1<¢g<s dy
respectively. The notation A; is the (i, /)™ component of the

right generalized inverse of the » x n matrix A4, were r < n.
Proving an element of the input scaled non-square RNGA

AN is different from that of the non-square RNGA A will
suffice the adequacy of the non-square RNGA as an input
scaling-variant. Thus, for simplified notation, /iﬁN # lﬁN is
demonstrated. The RNGAs are

AN = (40,004 0,70, (AN ) 4Q,, A = Ao (4").
AN =(40), () 0,70, (AN 40y, X = 4y
Alternatively,

R = (401 (470,70, (4T 40,1,

_A A;lA;—l 2 RN_A +
= 112 z 2 Aﬂ‘haﬂu =A141

1< j<r1<g<n ¢

Thus, 4% = A%,

Property S: Suppose P. and P, are two orthogonal matrices
of the sizes 7 xr andn x n respectively. Consider the RNGA
matrix A isA®, and construct the

of an rxn

matrix P.AP,, the RNGA ARV of the matrix P AP, satisfies

the condition: A%V =PA*Np  where 22 = 40 AH.
Proof: The orthogonal
B =P P =P
Now, on applying the definition of the non-square RNGA to
the matrix P.AP,, we have

AN = (P.AP,)o((P,AP,)")" =(P.AR,)o (P, 4" 7).

After introducing the orthogonal matrix property and
extending the property 2 of Grosdidier et al. (1985), we have

matrices have  properties,

e —1 —1\T T
IR = (P.AP) o (P A*P Y = (P.AP,)) o (P.(A") P,))
T RN
= P.(4o(A))P, =PIV P,
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4. APPLICATION OF RNGA TO A NON-SQUARE
RADIATOR CONTROL PROBLEM
Consider a laboratory radiator setup (Fig. 1). Here, water and
air are fed from the hot water tank, and the air blower
housing is equipped with 3 —¢,5 HP electric motor.

Fig. 1. Schematic diagram of a
experimental setup

laboratory radiator

At the radiator setup, four input variables are considered: air
inlet temperature 7', , air inlet flow rate F,;,, water inlet

temperature 7y, , and water inlet flow rate Fy;, . The output
variables are air outlet temperature 7, and water outlet
temperature 7,7 . Fig. 2 depicts the actual laboratory

radiator setup available for open-loop experiments. The
design parameters of the radiator are given in Table 1. The
operating conditions for the system identification are:

F,y =8.08m/s , Fy,, = SLPM, T,y =383 °c,
Ty =72.5°C, Tyour =44.5°C, Tyour =65°C.

Table 1. Radiator setup parameters

Parameters Dimensions
Height (mm) 300
Radiator Length (mm) 24
core Width (mm) 340
Length (mm) 24
Width (mm) 10.89
Radiat .
aciator Thickness (mm) 0.1
fins
(Aluminum) Depth (mm) 1.8
No. of fins 185
Radiator Outer diameter (mm) 8
tube Inner diameter (mm) 6
(Aluminum) Thickness (mm) 1

The step test method for the radiator non-square transfer
matrix identification is adopted (Ahmed et al., 2008). First,
the air inlet flow rate F,;, is varied from its steady-state
value, i.e., from 8.08m/s to 10m/s,by keeping all other
inputs at their steady-state. The effect of change in the air
inlet flow rate to the two output temperatures 7. and
Tyour respectively is measured and noted to get the process
reaction curve. Similarly, the water inlet flow rate Fy;y is
varied to get a relationship with the two output temperatures.

Fig. 2. Laboratory radiator experimental setup

Subsequently, experimental data from the open-loop step test
are taken for the rest of the two inputs. Using the procedure
of the step test method, the open-loop transfer matrix is
obtained as

)" =GU, U, U, U,
where the non-square radiator transfer matrix G(s) is

~09826¢ 1374 2570271968 1093066 1807 (21540012

1+42435s 1+32922s 1+73241s 1+787255s

—01556¢ 71 08045e 10565 (3003 ;1986s 55y ~182Ts

1+25162s 1+30264s 1+120274s 1+59261s

(14)

Note that (1} Y2)" = (Tyour Tyour)” and (U; Uy U3 Uy)"

=Fuv Fov Tuy TWIN)T'

The closeness of the numerically simulated trajectories with
the experimentally generated trajectories is depicted in Fig. 3,
and Fig. 4.

Fig. 3. A Comparison of the open-loop step test for output 1,
experimental and model

Fig. 4. A Comparison of the open-loop step test for output 2,
experimental and model
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Now, we choose the best suitable control-loop pairing
utilizing the non-square RNGA theory in this paper and
considering the input-output pairing whose associated RNGA
matrix element is > 0.5 and closer to unity (Seborg et al.,
2004). Considering (1)-(4) in combination with the radiator
non-square transfer matrix of (14), the resulting non-square
radiator RNGA matrix is

RN _ 0.7166 —0.0370 0.3470 -0.0267
—0.0486 0.6350 —0.0210 0.4345 | )

The row sum property of the non-square radiator RNGA (14)
holds, i.e.

R(i)=(1.00 1.00)7, 1<i<2. (16a)

Furthermore, the column sum property of the non-square
radiator RNGA (15) also holds, i.e. 0<C(j) <1,

(C(H)T = (0.668 0.598 0.326 0.4078),
1<j<4,0<C(j)<1. (16b)
The input variant, output invariant properties as well as row-
column permutations properties, can be tested for the non-
square radiator RNGA. Since their approach is
straightforward, discussions are omitted. The non-square

radiator RGA A% is

g [0.4884 —-0.0194 0.5664 -0.0354

A . (17)
-0.0279 0.6770

~(-0.0250 03759
The column sum values of the non-square RGA matrix (17)

and the value of /111; >0.5recommends (¥;-U;/Y,-U,)
pairing. The first two inputs are eliminated from the control
loop configuration, which is attributed to smaller entries of
the column sum vector, see (17). On the other hand, the non-
square radiator RNGA (15) recommends a different
decentralized control scheme, i.e. (¥, —U,/Y, —U,) pairing.

Two decentralized IMC tuned PID controllers using the
RGA pairing (1-3/2-4) and RNGA pairing (1-1/2-2) are
designed through the standard IMC tuning procedure
(Skogestad, 2003). Controller parameters are listed in Table
2. The controller structure is G, (s) = k,(1+(1/7;5) +7,5).

Table 2. Decentralized PID controllers for both control
configurations of radiator example

1-1/2-2 pairing (RNGA) 1-3/2-4 pairing (RGA)

Loop Loop

k, T 7, k, T 7,
1-1 -2.43 49305 5912 1-3 2,697 82576 8279
2-2 1.928 38.544 6.501 2-4 2372 6839 7914

Fig. 5(a) shows the closed-loop response of air outlet
temperature Y, (7 opr) for a step-change in the reference Y.
On the other hand, Fig. 5(b) shows the behavioural pattern of
water outlet temperature Y, (T}, ) under interactions from
the change in the reference Y, . Note that the second output is

set-point change-free. Figs. 5(c)-5(d) shows the closed-loop
responses considering a step set-point change to the reference

Y,,, keeping the set-point of first output unchanged. Figs.
5(a)-5(d) show the corresponding TAE values.

Fig. 5. Closed-loop results for radiator example (Blue lines:
RNGA recommended pairing, Red lines: RGA recommended
pairing)

Fig. 6 displays the Bode plots of both the pairings
(RNGA and RGA) associated with outputs Y, and Y,
respectively. The Bode plots (Fig. 6) reveals that in the
RNGA recommended pairing the phase crossover frequency
@, has increased. As a result, the Gain Margin (GM) has

increased by 26.01% and 12.73%, see Table 3. Figs. 7(a) and
7(b) show the absolute sensitivity plot for both the pairings
associated with the outputs Y, and Y, respectively. The
peak s,, in the sensitivity plot describes the amplification due

to input disturbances and uncertainties.

Fig. 6. Bode plot comparison of both the pairings associated
with the output ¥ and ¥,.

Fig. 7. Graphical representation of absolute sensitivity.

It is observed that the RGA pairing suffers from more
amplification in contrast to the RNGA pairing. Table 3
summarizes the characteristics of the Bode plots and the
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sensitivity performance indices. Moreover, sensitivity
analysis is a good measure of robustness performance as well
(Astréom and Murray, 2008). The inverse of maximum
absolute sensitivity s,, is known as the Stability Margin (SM).

The s,, values in Table 3 result in 27.62% and 8.16% rise in

SM on utilizing the RNGA recommended pairing for control
of output Y, andY, respectively. From Figs. 5-7 and Tables
2-3, the proposed non-square RNGA in this paper gives a
better suggestion of the control-loop pairing for minimum
interactions amongst the loop with enhanced sensitivity and
robustness performance.

Table 3. Characteristics of Bode plot and sensitivity
performance indices

RNGA recommended (1-1/2-2) pairing

Loop
GM PM W,, @, S a,,.
1-1 232 68.9 0.179 0.051 1.77  0.166
2-2 2.63 713 0.165 0.043 1.63 0.15
RGA recommended (1-3/2-4) pairing
Loop
GM PM @, D, S a,,.
1-3 1.84 55.45 0.121 0.054 2.26 0.11
2-4 2.34 68.95 0.134 0.039 1.76 0.12

5. CONCLUSION

In this paper, non-square RNGA for the less output-more
input multivariable systems with the systematic derivation of
proofs of the non-square RNGA %Y e R™" r < n properties
is presented. The theory of RNGA developed is applied to a
non-square radiator laboratory setup with four inputs and two
outputs. The results of the experiment carried out on the
radiator setup are utilized to obtain the non-square transfer
matrix. Then by applying the RNGA to this non-square
transfer matrix, the control configuration for the
decentralized control is achieved. This proves the usefulness
of the proposed method to the real field practical problem.
Closed-loop results indicate the usefulness of the proposed
non-square RNGA-based pairing over RGA-based pairing for
minimum interactions and better control of non-square
multivariable systems. The method proposed in this paper is
suggestive for field engineers dealing with the control
problem of non-square multivariable systems.
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