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Abstract: This paper extends the square Relative Normalized Gain Array (RNGA) to non-square 

multivariable systems with the detailed derivation of non-square RNGA RN properties with column-

major, i.e. ., nrR nrRN    Non-square RNGA in this paper has a row-column inequality. The 

developed interaction indicator is applied to a non-square multivariable radiator laboratory test setup for 
evaluating control-loop interactions. Closed-loop results, as well as sensitivity analysis for the RNGA-
based control-loop pairing in comparison to the RGA-based control-loop pairing, are presented in the 
paper. The results demonstrate the effectiveness of the proposed non-square RNGA over RGA for non-
square multivariable systems to have minimum interactions and better control.  

Keywords: Relative normalized gain array, Binet-Cauchy relation, generalized inverse, decentralized 
control, control-loop pairing, non-square multivariable radiator system.  



1. INTRODUCTION 

The solution to a potential problem of control-loop pairing 
for non-square systems lies with the decentralized control to 
achieve minimum interactions among the control loops. The 
importance of a decentralized control scheme lies with its 
simplicity to implement for field engineers. The primary step 
is to decide the control-loop pairing based on the loop-
interactions measure (Engell and Konik, 1985). The minimal 
loop-interactions confirm that the closed-loop performance is 
not deteriorated. Bristol (1966) introduced a relative gain 
array to decide the loop pairing for square systems, which 
constructs gain array symmetric matrix using the Schur 
product. The transient information of the system is not 
accounted for achieving the gain matrix. Chang and Yu 
(1990) extended Bristol’s RGA to its non-square version.  

     Several different forms of RGA are available, i.e. Relative 
Disturbance Gain Array (RDGA) (Chang and Yu, 1992), 
Dynamic Relative Gain Array (DRGA) (McAvoy et al., 
2003), Relative Effective Gain Array (REGA) (Xiong et al., 
2005), Relative Time-Averaged Gain Array (RTAGA) (Tang 
et al., 2018) concerning different approaches for interaction 
measurements. He et al. (2009) presented an RNGA based 
new control-loop pairing criterion for square systems. The 
RNGA accounts for steady-state gain, dead time and time 
constant parameters. As compared to DRGA, RNGA 
provides loop interactions independent of the controller type. 
Moreover, the computation of square RNGA has proven 
useful and straightforward to work with, for the field 
engineers to carry out the loop pairing decision of practical 
industrial problems (He et al., 2009). The universality of the 
non-square system with the less output-more input structure 
can be found in practical problems: mixing-tank process 
(Reeves and Arkun, 1989), Air-path scheme of a 

turbocharged diesel engine (Saidi et al., 2019), Shell control 
problem (Valchos et al., 2002), etc. The properties of non-
square RNGA for less output-more input structures are not 
explored yet. Hence, it merits investigations.  

This paper presents the RNGA for non-square multivariable 
systems with application to a radiator control system having 
less outputs-more inputs in its setup. Its Properties with the 
systematic derivation of their proofs are developed. To test 
the effectiveness, the proposed technique is applied to a non-
square multivariable radiator laboratory test setup. The 
system transfer function matrix is obtained from the 
experimental step test readings. The suitable control-loop 
pairing of the non-square radiator system is then decided. The 
minimal interactions pairing achieved here pinpoints to a 
quick and superior control setting i.e. achieving the desired 
through better controller and sensitivity performance indices. 
Internal Model Control (IMC) tuned PID controllers are 
designed for the decentralized control of the non-square 
system. The closed-loop performance resulting from the 
pairing suggested by non-square RNGA-based configuration 
is compared to that of the control configuration of the 
conventional RGA.  

Notations: Consider )(sG  is a nr   non-square process 

transfer matrix with nr  , where ).()()( sUsGsY   The term 

column-major in this paper indicates that the non-square 
matrix has more columns with less associated rows, i.e., more 
inputs and less outputs. 

2. DEFINITION OF THE NON-SQUARE RNGA 

Consider )(sY  is an 1×r  output vector and )(sU is an 1×n  

input vector.  
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the process gain, dead time and time constant respectively of 

the thi output with respect to the thj input and the variables, 

i and ,j  run over 1  to r  and 1 to .n The steady-state gain 

and the average residence time (Åström and Hägglund, 2006) 
of the transfer function entries of the non-square transfer 
matrix are  
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Using generalized inverse result (Graybill et al., 1966), the 
non-square RNGA becomes                                           
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3. PROPERTIES OF THE NON-SQUARE RNGA 

Consider the RNGA RN contained in the real-valued matrix 

space ,nrR 
 where .nr   The row sum ),(iR  the column sum 

),( jC  scaling, and permutation properties of the non-square 

RNGA are derived. Here, we list the following useful RNGA 
relations: 
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Property 1: Consider the RNGA of an nr   matrix A is 
RN , where .nr   The sum of elements in each row of the 

non-square RNGA RN
 

is always equal to ‘1’, 

.1,1)( riiR   
 

Proof: Making the use of the generalized inverse result of 
Graybill et al. (1966, p. 523), Penrose (1955) and (6), we get                                   
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Property 2: The sum of elements in each column of the non-

square RNGA ,RN  where ,nr    is always between zero 

and unity, i.e.,   .1,10 njjC    

Proof:  Consider the non-square RNGA 
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where ),det( TAA  the sizes of the matrices TAA and AAT
 

are rr  and ,nn  where .nr   Here, we recast the Binet-
Cauchy relation (Gantmatcher, 1977) for the case ,nr   i.e. 
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By using the matrix calculus (Magnus and Neudecker, 2007: 
p. 169), 
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For convenience, replace )( iq  with ))(det( ijA in (11a). 

The matrix )(ijA  has the size ),1()1(  rr  which is a 

consequence of 
ij

pq

dA

dA )(
and )(A  is an rr  matrix. 

Thus, 
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Equation (7) in conjunction with (8) and (11b) becomes  
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On further simplifications (12) reduces to 
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Equation (13) is a consequence of the Laplace expansion 

formula for the determinant. The term  runs over 1  to 
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summation sign is non-negative. Thus, the condition 
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Property 3: The non-square RNGA RN of an r  matrix A  
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Property 4: The non-square RNGA RN of an nr   matrix 
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Proof: For the input scaling, an nn   diagonal matrix nQ is 
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Property 5: Suppose rP  and nP  are two orthogonal matrices 
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4. APPLICATION OF RNGA TO A NON-SQUARE 
RADIATOR CONTROL PROBLEM 

Consider a laboratory radiator setup (Fig. 1). Here, water and 
air are fed from the hot water tank, and the air blower 
housing is equipped with 5,3  HP electric motor.  

 

Fig. 1. Schematic diagram of a laboratory radiator 
experimental setup 
 
At the radiator setup, four input variables are considered: air 
inlet temperature AINT , air inlet flow rate ,AINF  water inlet 

temperature WINT , and water inlet flow rate WINF . The output 

variables are air outlet temperature AOUTT  and water outlet 

temperature WOUTT . Fig. 2 depicts the actual laboratory 

radiator setup available for open-loop experiments. The 
design parameters of the radiator are given in Table 1. The 
operating conditions for the system identification are:   

AINF 8.08 sm , WINF 8LPM, AINT 38.3 ,0 C  

WINT 72.5 ,0 C  AOUTT 44.5 ,0 C  .650 CTWOUT   
 

Table 1. Radiator setup parameters 
Parameters Dimensions 

 
Radiator 

core 

Height )(mm  300 

Length )(mm  24 

Width )(mm  340 

 
Radiator 

fins 
(Aluminum) 

Length )(mm  24 

Width )(mm  10.89 

Thickness )(mm  0.1 

Depth )(mm  1.8 

No. of fins 185 

Radiator 
tube 

(Aluminum) 

Outer diameter )(mm  8 

Inner diameter )(mm  6 

Thickness )(mm  1 

 
The step test method for the radiator non-square transfer 
matrix identification is adopted (Ahmed et al., 2008). First, 
the air inlet flow rate AINF  is varied from its steady-state 

value, i.e., from 8.08 sm  to 10 ,sm by keeping all other 

inputs at their steady-state. The effect of change in the air 
inlet flow rate to the two output temperatures AOUTT and 

WOUTT respectively is measured and noted to get the process 

reaction curve. Similarly, the water inlet flow rate WINF  is 

varied to get a relationship with the two output temperatures. 

 
Fig. 2. Laboratory radiator experimental setup 
    
Subsequently, experimental data from the open-loop step test 
are taken for the rest of the two inputs. Using the procedure 
of the step test method, the open-loop transfer matrix is 
obtained as                                                               
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where the non-square radiator transfer matrix )(sG is 
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The closeness of the numerically simulated trajectories with 
the experimentally generated trajectories is depicted in Fig. 3, 
and Fig. 4. 

 

 
Fig. 3. A Comparison of the open-loop step test for output 1, 
experimental and model 

 
Fig. 4. A Comparison of the open-loop step test for output 2, 
experimental and model 
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Now, we choose the best suitable control-loop pairing 
utilizing the non-square RNGA theory in this paper and 
considering the input-output pairing whose associated RNGA 
matrix element is 5.0

 
and closer to unity (Seborg et al., 

2004). Considering (1)-(4) in combination with the radiator 
non-square transfer matrix of (14), the resulting non-square 
radiator RNGA matrix is 

                                                

         

.
4345.00210.06350.00486.0

0267.03470.00370.07166.0











RN

    

(15) 

The row sum property of the non-square radiator RNGA (14) 
holds, i.e.                                                                   

                      ,)00.100.1()( T=iR .21  i                   (16a) 

Furthermore, the column sum property of the non-square 
radiator RNGA (15) also holds, i.e. ,1)(0  jC                                  

               TjC ))(( ,)4078.0326.0598.0668.0( T
 

                                ,41  j .1)(0  jC                       (16b) 
The input variant, output invariant properties as well as row-
column permutations properties, can be tested for the non-
square radiator RNGA. Since their approach is 
straightforward, discussions are omitted. The non-square 

radiator RGA R is  

                                                 

          

.
6770.00279.03759.00250.0

0354.05664.00194.04884.0











R

     

(17)

 The column sum values of the non-square RGA matrix (17) 

and the value of 5.0R
ij recommends )/( 4231 UYUY   

pairing. The first two inputs are eliminated from the control 
loop configuration, which is attributed to smaller entries of 
the column sum vector, see (17). On the other hand, the non-
square radiator RNGA (15) recommends a different 
decentralized control scheme, i.e. )/( 2211 UYUY   pairing. 

 
     Two decentralized IMC tuned PID controllers using the 
RGA pairing (1-3/2-4) and RNGA pairing (1-1/2-2) are 
designed through the standard IMC tuning procedure 
(Skogestad, 2003). Controller parameters are listed in Table 
2. The controller structure is ).)1(1()( ssksG dicc    

 
Table 2. Decentralized PID controllers for both control 

configurations of radiator example 

Loop 
1-1/2-2 pairing (RNGA)  

Loop 
1-3/2-4 pairing (RGA) 

ck  i  d  ck  i  d  

1-1 -2.43 49.305 5.912 1-3 2.697 82.576 8.279 
2-2 1.928 38.544 6.501 2-4 2.372 68.396 7.914 

    
    Fig. 5(a) shows the closed-loop response of air outlet 

temperature )(1 AOUTTY for a step-change in the reference .1rY  

On the other hand, Fig. 5(b) shows the behavioural pattern of 

water outlet temperature )(2 WOUTTY under interactions from 

the change in the reference 1rY . Note that the second output is 

set-point change-free. Figs. 5(c)-5(d) shows the closed-loop 
responses considering a step set-point change to the reference 

,2rY keeping the set-point of first output unchanged. Figs. 

5(a)-5(d) show the corresponding IAE values.   

 
Fig. 5. Closed-loop results for radiator example (Blue lines: 
RNGA recommended pairing, Red lines: RGA recommended 
pairing)    
       Fig. 6 displays the Bode plots of both the pairings 

(RNGA and RGA) associated with outputs 1Y  and 2Y  

respectively. The Bode plots (Fig. 6) reveals that in the 
RNGA recommended pairing the phase crossover frequency 

pc  has increased. As a result, the Gain Margin (GM) has 

increased by 26.01% and 12.73%, see Table 3. Figs. 7(a) and 
7(b) show the absolute sensitivity plot for both the pairings 

associated with the outputs 1Y  and 2Y  respectively. The 

peak ms  in the sensitivity plot describes the amplification due 

to input disturbances and uncertainties. 

   
 

Fig. 6. Bode plot comparison of both the pairings associated 

with the output 1Y and .2Y  

 
Fig. 7. Graphical representation of absolute sensitivity.  
       
       It is observed that the RGA pairing suffers from more 
amplification in contrast to the RNGA pairing. Table 3 
summarizes the characteristics of the Bode plots and the 
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sensitivity performance indices. Moreover, sensitivity 
analysis is a good measure of robustness performance as well 
(Åström and Murray, 2008). The inverse of maximum 
absolute sensitivity ms is known as the Stability Margin (SM). 

The ms values in Table 3 result in 27.62% and 8.16% rise in 

SM on utilizing the RNGA recommended pairing for control 
of output 1Y and 2Y  respectively.

 
From Figs. 5-7 and Tables 

2-3, the proposed non-square RNGA in this paper gives a 
better suggestion of the control-loop pairing for minimum 
interactions amongst the loop with enhanced sensitivity and 
robustness performance. 
 

Table 3. Characteristics of Bode plot and sensitivity 
performance indices 

 

Loop 
RNGA recommended (1-1/2-2) pairing 

GM PM gc  pc  ms  ms  

1-1 2.32 68.9 0.179 0.051 1.77 0.166 
2-2 2.63 71.3 0.165 0.043 1.63 0.15 

 

Loop 
RGA recommended (1-3/2-4) pairing 

GM PM gc  pc  ms  ms  

1-3 1.84 55.45 0.121 0.054 2.26 0.11 
2-4 2.34 68.95 0.134 0.039 1.76 0.12 

5. CONCLUSION 

In this paper, non-square RNGA for the less output-more 
input multivariable systems with the systematic derivation of 

proofs of the non-square RNGA nrR nrRN   , properties 
is presented. The theory of RNGA developed is applied to a 
non-square radiator laboratory setup with four inputs and two 
outputs. The results of the experiment carried out on the 
radiator setup are utilized to obtain the non-square transfer 
matrix. Then by applying the RNGA to this non-square 
transfer matrix, the control configuration for the 
decentralized control is achieved. This proves the usefulness 
of the proposed method to the real field practical problem. 
Closed-loop results indicate the usefulness of the proposed 
non-square RNGA-based pairing over RGA-based pairing for 
minimum interactions and better control of non-square 
multivariable systems. The method proposed in this paper is 
suggestive for field engineers dealing with the control 
problem of non-square multivariable systems.  
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