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Abstract:
A probabilistic performance-oriented controller design approach based on polynomial chaos
expansion and optimization is proposed for flight dynamic systems. Unlike robust control
techniques where uncertainties are conservatively handled, the proposed method aims at prop-
agating uncertainties effectively and optimizing control parameters to satisfy the probabilistic
requirements directly. To achieve this, the sensitivities of violation probabilities are evaluated
by the expansion coefficients and the fourth moment method for reliability analysis, after
which an optimization that minimizes failure probability under chance constraints is conducted.
Afterward, a time-dependent polynomial chaos expansion is performed to validate the results.
With this approach, the failure probability is reduced while guaranteeing the closed-loop
performance, thus increasing the safety margin. Simulations are carried out on a longitudinal
model subject to uncertain parameters to demonstrate the effectiveness of this approach.
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1. INTRODUCTION

Uncertainties are common in practical systems and may
lead to severe degradation of closed-loop performance.
Therefore, their influences cannot be neglected, especially
in safety-critical applications such as flight control sys-
tems. Robust control (Zhou et al., 1996; Mackenroth, 2013)
that aims at reducing the sensitivity to uncertainties is the
most widely used approach or concept for the control de-
sign of uncertain systems. In robust methods, uncertainties
are usually modeled to be bounded sets and controllers are
designed against the worst case. However, hard bounds
can hardly be quantified exactly in practice and strict
bounds or relaxed bounds would bring about either over
safe or unsafe outcomes. Moreover, the worst-case scenario
may only occur with a vanishingly small probability, thus
diminishing the design space and sacrificing potential per-
formance as well as resulting in conservative controllers.
These shortcomings can be addressed by propagating the
uncertainties precisely and searching the optimal design to
meet the probabilistic requirements directly.

Uncertainty quantification (UQ) makes the most of the
probabilistic knowledge of uncertainties to predict how
likely certain outcomes are. Monte Carlo (MC) simulation
is one of the most popular UQ techniques owing to its
ease of implementation. But the solutions converge rela-
tively slowly such that a large number of realizations are
required for accurate results, which indicates that the com-
putational cost can be prohibitively high. In recent years,
polynomial chaos expansion (PCE), a promising candidate
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for UQ, has emerged with its accuracy comparable to MC
simulation but at only a fraction of cost (Xiu and Karni-
adakis, 2002; Xiu, 2010). It has been successfully applied to
tackle the UQ problems in a wide range of areas, like flight
dynamics and orbital mechanics (Prabhakar et al., 2010;
Jones et al., 2013; Piprek and Holzapfel, 2017). Another
remarkable strength of PCE is that the statistical moments
can be obtained analytically from the expansion coeffi-
cients and the basis functions, which benefits the analysis
of robustness and control design (Nagy and Braatz, 2010;
Fisher and Bhattacharya, 2009).

In contrast to robustness concept, reliability-based de-
sign optimization (Schuëller and Jensen, 2008) maneuvers
through the search space to maintain the failure probabil-
ity within an acceptable level instead of minimizing the
sensitivity to variations. This idea has been implemented
to incorporate chance (probabilistic) constraints into ro-
bust control design and stochastic nonlinear model predic-
tive control (Kim and Braatz, 2012; Mesbah et al., 2014).
Nonetheless, in both works, the probabilistic constraints
are converted to inequalities that only related to the mean
and variance, which is still a conservative compromise.

To guarantee the closed-loop performance and avoid the
conservativeness of robust techniques, this paper presents
a PCE-based reliability-guaranteed control optimization
approach for flight control systems. In this method, un-
certainties are propagated through the flight dynamics by
means of PCE, after which the probability of failure is
minimized under the fulfillment of chance constraints. This
scheme also makes it possible to enlarge the design space
and increase the safety margin of the systems.
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In the remainder of the paper, local sensitivity analysis for
failure probability using PCE is proposed and the frame-
work of performance-based control optimization is pre-
sented. For uncertainty quantification, time-independent
PCE is employed during control optimization when the
qualities of interest are not time series, whereas time-
dependent PCE is applied to validate the design param-
eters so as to ensure the satisfaction of statistical re-
quirements. The proposed scheme is then implemented to
optimize controller parameters of a longitudinal system
subject to parametric uncertainties.

2. LOCAL SENSITIVITY ANALYSIS USING PCE

2.1 Polynomial Chaos Expansion

The polynomial chaos expansion of a random system
response r can be expressed as an infinite weighted sum of
orthogonal polynomials (Xiu and Karniadakis, 2002; Xiu,
2010):

r(ξ) =

∞∑
i=0

aiΨi(ξ), (1)

where ξ = [ξ1, ξ2, . . . , ξp]
T ∈ Rp denotes independent

standard random variables with finite variance, Ψi(ξ)
denotes the multivariate polynomial basis functions, and
ai denotes the corresponding expansion coefficients. The
functions Ψi(ξ) can be constructed as the product of
univariate polynomial basis functions, i.e.,

Ψi(ξ) =

p∏
r=1

ψmi
r
(ξr), (2)

where ψmi
r
(ξr) represents the mi

rth-degree univariate poly-

nomial basis functions with mi
r representing the multi-

index that contains all possible combinations of univariate
basis functions. The basis ψ can be selected from the
Wiener-Askey scheme based on the distribution of ξr (Xiu
and Karniadakis, 2002).

In practical applications, (1) is truncated up to the order of
N (i.e., the items with order higher than N are neglected):

r(ξ) ≈
P∑
i=0

aiΨi(ξ), (3)

where the total number of expansion coefficients is

P + 1 =
(N + p)!

N !p!
. (4)

2.2 Stochastic Collocation via Pseudospectral Approach

Several techniques have been developed to calculate the
expansion coefficients and stochastic collocation is one of
the most efficient methods with strong convergence in the
mean-square sense (Xiu, 2010).

In general, the expansion coefficients can be obtained by
the orthogonal projection of (3) to each polynomial basis:

ai =
1

γi
E[r(ξ)Ψi(ξ)] =

1

γi

∫
Ω

r(ξ)Ψi(ξ)ρ(ξ) dξ, (5)

where E[·] denotes the expectation with respect to ρ(ξ)
which is the probability density function (PDF) of ξ, Ω
denotes the support of ξ, and γi = E[Ψ2

i (ξ)]. The idea of

pseudospectral approach (Xiu, 2007) is to approximate the
integral in (5) by a cubature rule:

ai ≈
1

γi

Q∑
j=1

r(ξ(j))Ψi(ξ
(j))w(j), (6)

where Q is the number of nodes of the cubature rule with
Mth-order accuracy, and (ξ(j), w(j)) are the nodes and
their corresponding weights.

Apart from the numerical error, the algorithm error in-
cludes the projection error because of the finite expansion
(3) and the cubature error by the Q-point rule (6). They
can be refined by increasing the order of PCE N and
the cubature node number Q respectively provided the
response r is sufficiently smooth.

It should be noted that the cubature rule employing a
tensor grid (Xiu, 2010) suffers from the curse of dimen-
sionality due to the exponential growth of computational
burden with the increasing number of random variables.
Sparse grid is a choice to alleviate this problem (Xiu,
2010).

2.3 Statistical Information

When the expansion coefficients are obtained, the esti-
mation of statistical information is only a post-processing
step. The mean of r is given by

µ = E[r] ≈
P∑
i=0

ai E [Ψi] = a0. (7)

The variance, i.e., the square of the standard deviation σ,
can be approximated as

σ2 = E[(r − µ)2] ≈
P∑
i=1

P∑
j=1

aiaj E [ΨiΨj ] =

P∑
i=1

γia
2
i . (8)

The skewness α3 and the kurtosis α4 can be estimated
(Sudret, 2014) by

α3 =
1

σ3 E[(r − µ)3]

≈ 1

σ3

P∑
i=1

P∑
j=1

P∑
k=1

aiajak E [ΨiΨjΨk]

=
1

σ3

P∑
i=1

P∑
j=1

P∑
k=1

aiajak

p∏
r=1

eirjrkr ,

(9)

and

α4 =
1

σ4 E[(r − µ)4]

≈ 1

σ4

P∑
i=1

P∑
j=1

P∑
k=1

P∑
l=1

aiajakal E [ΨiΨjΨkΨl]

=
1

σ4

P∑
i=1

P∑
j=1

P∑
k=1

P∑
l=1

aiajakal

p∏
r=1

eirjrkrlr ,

(10)

where

eirjrkr = E
[
ψmi

r
(ξr)ψmj

r
(ξr)ψmk

r
(ξr)

]
, (11)

and

eirjrkrlr = E
[
ψmi

r
(ξr)ψmj

r
(ξr)ψmk

r
(ξr)ψml

r
(ξr)

]
. (12)

Once the type of basis polynomials is chosen, eirjrkr
and eirjrkrlr are constant and can even be evaluated
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analytically. For example, for Hermite polynomials (Xiu,
2010),

eirjrkr =
ir!jr!kr!

(sr − ir)!(sr − jr)!(sr − kr)!
, (13)

where sr ≥ ir, jr, kr and 2sr = ir + jr + kr is even.

2.4 Violation Probability Sensitivity Analysis

Assume that design variables k = [k1, k2, . . . , kd]
T ∈ Rd

are uncorrelated with standard random variables ξ (i.e.,
they do not affect each other), the sensitivity1 of r can be
obtained by differentiation of (3):

∂r(ξ)

∂k
≈

P∑
i=0

∂ai
∂k

Ψi(ξ). (14)

This is directly the PCE (using the same basis functions
as that in (3)) of the sensitivity ∂r/∂k and the coefficients
∂ai/∂k can be approximated by pseudospectral approach:

∂ai
∂k
≈ 1

γi

Q∑
j=1

∂r(ξ(j))

∂k
Ψi(ξ

(j))w(j). (15)

Consider the violation probability of the random output r

Pv = P (r(k, ξ) > rb), (16)

where rb is the predefined threshold that should not be
exceeded. It is in essence a complementary cumulative
distribution function (CCDF) and can be estimated di-
rectly using the first few moments of the random variable.
Moments up to fourth order are utilized to achieve this
goal by the fourth moment method for reliability analysis
(Zhao and Ono, 2001):

βF =
3(α4 − 1)βS + α3(β2

S − 1)√
(9α4 − 5α2

3 − 9)(α4 − 1)
, (17)

βS =
µ− rb
σ

, (18)

Pv = Φ(βF ), (19)

where βF and βS are reliability indexes based on fourth
moment and second moment method respectively. Φ(·)
denotes the cumulative distribution function (CDF) of
standard normal random variable. Compared to more ac-
curate methods such as the Pearson system and poly-
nomial normal transformation (Zhao and Lu, 2007), the
fourth moment method is simpler and more convenient to
be applied.

According to the chain rule, the sensitivity of Pv can be
described as

∂Pv
∂k

=
∂Pv
∂a

∂a

∂k
, (20)

where a = [a0, a1, a2, . . . , aP ]T is the vector of PCE
coefficients. Since Pv can be approximated by the first four
moments of r and the moments can be estimated by the
PCE coefficients, the violation probability is a function of
expansion coefficients a. With this explicit relationship,
the evaluation of ∂Pv/∂a can be achieved readily. Note
that it is constant and can be calculated once the number
of random variables p, the type of polynomials, and the
degree of PCE N are determined.

1 The sensitivitiy in this paper is the partial derivative of the output
with regard to the design variables.

Uncertainty
quantification

Optimization

Uncertainties

Design
variables

Initial

configuration Optimal design

Statistical metrics

Fig. 1. Scheme of performance-based control optimization

3. PERFORMANCE-ORIENTED CONTROL
OPTIMIZATION

Consider a class of closed-loop dynamic systems subject
to uncertain parameters{

ẋ(t) = f(x(t),u(t),k,θ)
y(t) = g(x(t),u(t),θ)

, (21)

where x ∈ Rnx is the vector of system states, u ∈ Rnu

is the vector of inputs, θ ∈ Rp is the vector of uncertain
parameters, and y ∈ Rny is the vector of system outputs.
In this context, k is a vector of control gains. The functions
f(·) and g(·) describe system dynamics and are assumed
to be differentiable and known. In practical problems, θ
is usually a vector of non-standard random variables, in
which case the isoprobabilistic transform is adopted to
transfer it into the standard vector ξ (Sudret, 2014).

3.1 Design by Time-Independent PCE

In many safety-critical systems where probabilistic re-
quirements must be satisfied, controllers should be de-
signed based on the control performance such that these
requirements are fulfilled directly. In order to achieve this
goal, uncertainty quantification and optimization are em-
ployed to estimate and minimize the statistical metrics
respectively, as depicted in Fig. 1.

During controller design, time-domain specifications such
as overshoot for step response and maximum deviation
for gust reaction are always studied. They are usually
quality indicators of the system performance over the
overall sampling interval and can be described as

z = h(y(t)), (22)

where z is a vector of time-independent performance
metrics (i.e., no time series) and h(·) is the nonlinear
function calculating the metrics.

Taking the closed-loop system (21) and the process cal-
culating time-independent metrics (22) as an integrated
system, the dynamic system is converted to be a static
one, since the output z is not time-related with certain
input u and time-invariant parameters θ and k. Based on
the chain rule, the sensitivity of z can be calculated by

Sz =
∂z

∂k
=
∂z

∂y

∂y

∂x

∂x

∂k
. (23)

Let Sx = ∂x/∂k and Sy = ∂y/∂k. Sx can be obtained
by the numerical integration of the differential equation
(Gerdts, 2011)

Ṡx =
∂ẋ

∂x
Sx +

∂ẋ

∂k
(24)
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Fig. 2. Control optimization using PCE

with initial condition Sx(t0) = 0, where t0 is the initial
time. In addition, ∂y/∂x can be calculated by system
functions and ∂z/∂y can be obtained according to given
metrics.

With the knowledge of Sz, the derivatives ∂a/∂k and the
sensitivity of violation probability ∂Pv/∂k can be evalu-
ated by (15) and (20) respectively. Select an element from
Pv as failure probability Pf while regarding the others
as probabilistic constraints Pc. And then, optimization
with known gradients is conducted to minimize the failure
probability under the satisfaction of constraints:

min
k

Pf (k)

s.t. Pc(k) < b,
c(k) < 0,

(25)

where b is the threshold for Pc(k), and c(k) is a group
of deterministic constraint functions. The control design
by time-independent PCE is summarized in Fig. 2, where
“calc” is the abbreviation of “calculation”.

In this framework, uncertainties are propagated efficiently
and accurately, which enables the fast recursive optimiza-
tion and the direct fulfillment of probabilistic require-
ments. Meanwhile, the conservative concept of robust
methods is avoided, thus making it possible to explore
further performance in the enlarged design space. The
minimization of failure probability increases the safety
margin as well.

3.2 Validation by Time-Dependent PCE

Due to the errors generated from the fourth moment
method during control optimization, validation should be
executed to proof the compliance with requirements.

Equations (3) and (6) can be readily extended to be
time-dependent for outputs y in (21), resulting in time-
dependent stochastic collocation via pseudospectral ap-
proach as follows:

y(t, ξ) ≈
P∑
i=0

ai(t)Ψi(ξ), (26)

ai(t) ≈
1

γi

Q∑
j=1

y(t, ξ(j))Ψi(ξ
(j))w(j). (27)

When the optimal design is obtained, the time-dependent
PCE will be implemented to approximate the time evo-
lution of system output PDF ρ(t,y), thus guaranteeing
the statistical performance. This step is only uncertainty
quantification as shown in Fig. 3. In order to increase the

 
( )

j
ty

 jθ

k

Time-dependent PCE

System
functions

Cubature
rule

( )ta PDF
calc

( )t, y

Fig. 3. Validation using PCE

accuracy of PDF estimation, MC simulation or advanced
means such as Latin hypercube sampling (LHS) will be
performed on the obtained cheap surrogate model.

4. APPLICATION IN FLIGHT CONTROL

The proposed approach is implemented to optimize the
control parameters of a longitudinal model subject to time-
invariant parametric uncertainties.

4.1 Simulation Model

The control plant is a linearized model of longitudinal
mode with filters, actuator dynamics and structural mode.
Three aerodynamic derivatives are considered and the
relative errors with regard to their reference values are
assumed to be normally distributed[

Mα/Mα,ref

Mq/Mq,ref

Mη/Mη,ref

]
∼ N

[ µαµq
µη

]
,

 σ2
α 0 0
0 σ2

q 0
0 0 σ2

η

 ,

where Mα, Mq, and Mη are aerodynamic moments about
angle of attack α, pitch rate q and elevator deflection η.
The mean µα = µq = µη = 1 and the standard deviation
σα = σq = ση = 0.2. A PID controller with feedforward
control is applied:

q̇cmd = kHnz,cmd + knz
nz + kI

∫
(nz,cmd − nz) dt+ kqωy,

where q̇cmd is the command of pitch acceleration, ωy is
the pitch angular rate, nz and nz,cmd are the vertical
load factor and its command. k = [kH , knz

, kI , kq]
T is the

control gains to be tuned.

The closed-loop system can be represented as{
ẋ = Ax+Bu
y = Cx

,

where A, B, and C are system matrices that are functions
of uncertain parameters and control gains. Output y is
only nz. Input u = [nz,cmd, wz]

T consists of step command
for vertical load factor and vertical discrete gust of the
standard “1-cosine” shape (Moorhouse and Woodcock,
1980), which is described as

wz =


0, d < 0
Vm
2

[
1− cos

(
πd

dm

)]
, 0 ≤ d < dm

Vm, d ≥ dm
where wz is the vertical wind velocity, Vm = 13.9m/s is
the gust amplitude, dm = 91.4m is the gust length, and d
is the traveled distance.

4.2 Control Optimization and Validation

In this example, both tracking behavior and gust reaction
(i.e., nz,cmd and wz are activated separately) are taken
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Fig. 4. Comparison of sensitivity Sy

into consideration during the control optimization as both
are critical to flight safety. The events of interest here are
defined in Table 1.

Table 1. The definition of events of interest

Response type Specifications Events of interest

Gust reaction Maximum deviation emax emax < −0.45
Step response Overshoot σ% σ% > 20%
Step response 80% rising time tr tr > 1s

The probability of 80% rising time larger than 1s can be
transformed to be that of the maximum response within
the first 1s smaller than 80%. Therefore, all the specifi-
cations presented in Table 1 are problems of calculating
the maximum value of the response (i.e., z is the infinite
norm of y). In this case, the derivative ∂z/∂y in (23) can
be estimated by the derivation of q-norm ‖y‖q in which q
is assumed to be very large (q = 105 in this example).

In this application, 4th-order PCE with Hermite polyno-
mials and a cubature rule which is the tensor product of
Gaussian quadrature nodes (4 nodes in each dimension
and 64 nodes in total) are performed. When y is gust
reaction, z is emax, and uncertain parameters are assumed
to be reference values, the sensitivities Sy, Sz and ∂Pf/∂k
by analytical method and finite difference are compared
in Fig. 4, Table 2 and Table 3 respectively. Note that
feedforward gain kH does not influence the output here.
Fig. 4 shows that the time evolutions of Sy by analytical
solution almost exactly match those by finite difference.
In Table 2, Sz estimated by the two methods are quite
close with errors only about 1%. Though the numerical
results are regarded to be references in this application,
they are not exactly accurate owing to the errors in nu-
merical calculation. As for ∂Pf/∂k in Table 3, larger errors
are introduced due to the fourth-moment method when
estimating exceeding probabilities.

After the approximation of gradients, optimization under
constraints (25) is performed, where

Pf (k) = P (emax < −0.45) ,

Pc(k) = [P (σ% > 20%) , P (tr > 1s)]
T
,

b = [15%, 12%]
T
,

Fig. 5. Time evolution of the PDF of gust reaction

and deterministic constraints c(k) ensure the stability and
limit the oscillations of control input and system output.

The optimal control gains are then validated by time-
dependent PCE. Fig. 5 and Fig. 6 show the time evolutions
of the PDF of gust reaction and that of step response.
The results of time-dependent PCE (64 simulations) are
compared with those by MC simulation (105 simulations).
Probabilistic boundaries are depicted in Fig. 7 and Fig. 8.
In these two figures, each boundary contains upper and
lower bound. The 90% upper bound, for example, means
that the estimated probability of being no larger than this
bound is 90%. All these results demonstrate that the time-
dependent validation by PCE is effective and efficient as
the results almost exactly match these by MC simulation
but require less computational effort.

The violation probabilities estimated during control op-
timization and those during validation are compared in
Table 4. In comparison with the validation results, the rel-
ative error of the overshoot violation probability estimated
in design phase is as high as about 31% while the other
two are less than 4%. This is mainly because of the fourth-
moment method, which estimates CDF with only the first
four moments. Finite moments are not enough to describe
all the characteristics of an arbitrary CDF, and the errors
are especially obvious in the tails of a PDF. Consequently,
greater discrepancies tend to occur in the tails. Despite
this, the failure probability is reduced under constraints,
hence ensuring the control performance and increasing the
safety margin.

Table 2. Comparison of sensitivity Sz

Sensitivities
Numerical

results
Analytical

results
Relative
errors

∂z/∂knz −7.306 × 10�2 −7.351 × 10�2 0.62%
∂z/∂kq 5.669 × 10�2 5.748 × 10�2 1.40%
∂z/∂kI 6.006 × 10�2 6.066 × 10�2 1.00%

Table 3. Comparison of sensitivity ∂Pf/∂k

Sensitivities
Numerical

results
Analytical

results
Relative
errors

∂Pf/∂knz 1.750 × 10�1 1.743 × 10�1 0.36%
∂Pf/∂kq −1.352 × 10�1 −1.392 × 10�1 2.94%
∂Pf/∂kI −1.302 × 10�1 −1.289 × 10�1 0.93%
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Fig. 6. Time evolution of the PDF of step response

0 1 2 3 4 5
Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
er

tic
al

 L
oa

d 
Fa

ct
or

Mean
MC: 90% bound
PCE: 90% bound
MC: 99% bound
PCE: 99% bound

Fig. 7. Probabilistic boundaries of gust reaction
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Fig. 8. Probabilistic boundaries of step response

5. CONCLUSIONS

This paper develops a performance-based flight control
optimization approach using PCE. Instead of the conserva-
tive realizations of robust techniques, this method propa-
gates uncertainties effectively and fulfills the statistical re-
quirements directly, hence maximizing the safety under the
premise of ensuring the control performance. Simulation
results suggest that it is able to guarantee the performance

Table 4. Failure probabilities

Violation
probabilities

Design
results

Validation
results

Relative
errors

P (emax < −0.45) 18.89% 18.48% 2.22%
P (σ% > 20%) 1.29% 1.88% 31.38%
P (tr > 1s) 4.76% 4.95% 3.84%

and obtain accurate solutions except the cases with small
probabilities. The concept will be improved to deal with
rare events in our future work.
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