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Abstract: Driver assistance systems have become an indispensable part of today’s vehicles
technology. Especially in the commercial vehicle sector, the challenges in obtaining information
increase with rising system complexity. Compared to trucks, trailers for commercial vehicle
combinations are sparsely equipped with electronic components. This leads to difficulties in
implementation of intelligent systems for the trailer as necessary information is not provided.
Reasons for this can be an insufficient sensor equipment due to uneconomical costs or a missing
communication channel between the two vehicle units, preventing the transmission of required
truck related information to the trailer. A possible model-based method to obtain unmeasured
states is the Extended Kalman Filter. However, this approach requires elaborate preliminary
work steps of high complexity and a sophisticated domain knowledge. Alternatively, this paper
proposes the applicability of Neural Networks for estimating the required state and input
variables, namely the articulation angle and the truck’s steering angle. Two different network
types are used: the Feedforward Neural Network and the Nonlinear Autoregressive Exogenous
Neural Network. The measured input variables for the networks, in accordance with the inputs
of the Extended Kalman Filter in a previous publication, are merely trailer yaw rate and
longitudinal speed. In conclusion, a comparison between the results of the Neural Networks
and those of the Extended Kalman Filter is drawn.

Keywords: Feedforward Neural Network, Nonlinear Autoregressive Exogenous Neural Network,
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1. INTRODUCTION

Modern driver assistance systems support the driver and
increase safety and comfort in road traffic. They have
the ability to keep the vehicle on track, to initiate an
emergency brake or to monitor the blind spot (Paul et al.,
2016; Suzuki et al., 2017). In the future, these systems will
take an even more important part being the foundation of
highly automated and autonomous driving, respectively.
Most of the intelligent systems in today’s truck-semitrailer
combinations are located in the truck unit. In comparison,
trailers are sparsely equipped with electronic components.
Therefore, online on-board solutions, which need to be
supplied with trailer information, pose a tremendous chal-
lenge in commercial vehicle technology. On the one hand,
an entire sensor equipment to observe every state vari-
able of the vehicle is economically unreasonable for serial
production. On the other hand, communication channels
between the truck and the trailer unit, enabling the ex-
change of required information, are missing. Furthermore,
truck and trailer do not always build up an inextricable
link. One trailer usually is towed by various types of trucks.
Therefore, the installation of sensors at interacting inter-
faces of these two components is increasingly challenging.

A well known method to determine missing information is
the implementation of an Extended Kalman Filter (EKF),
which permits a real-time capable estimation of state val-
ues from available trailer information. In (Ziaukas et al.,
2019) this method was applied for the estimation of the
articulation angle and the steering angle. The performance
of the EKF is heavily dependent on the quality of the uti-
lized model. To sufficiently fulfill these features, a profound
system understanding and sophisticated identification pro-
cesses are necessary (Melzi and Sabbioni, 2010).

Methods of machine learning provide an alternative
promising approach for reliable state estimation. Due to
the rising data recording and storage capability as well as
the increasing computer performance, especially Artificial
Neural Networks currently attract a lot of attention. The
development of a workable Neural Network is based on a
variety of real measured and/or simulated data and the
correct choice of the network structure (Li et al., 2018;
Melzi and Sabbioni, 2010).

The literature shows a lot of successful implementations
replacing model-based estimation processes by Neural Net-
works. One drawback of EKFs for nonlinear systems is
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the loss in accuracy caused by linearization. Alternatively,
Unscented Kalman Filters (UKF) can be used to avoid the
linearization. However, this results in an increase in cal-
culation effort. In contrast, Neural Networks are capable
of representing complex nonlinearities accurately at fairly
efficient calculation effort (Li et al., 2018). In most publi-
cations the performance of simply structured Feedforward
Neural Networks (FFNNs) regarding the state calculation
of nonlinear systems gets researched first (Li et al., 2018;
He et al., 2014; Aydogmus and Aydogmus, 2015). For more
complex dependencies, in which the chronology of data is
decisive, Nonlinear Autoregressive Exogenous Neural Net-
works (NARX-NN) are used. These reflect the dynamics
of nonlinear systems better compared to FFNNs (Melzi
and Sabbioni, 2010; Nguyen and Widrow, 1990). One of
the most challenging and not to be neglected aspects by
creating a robust Neural Network is the data acquisition.
The amount of training, validation and test data affects
the results to the same extent as the number of different
driving situations and maneuvers and their coverage of the
workspace (Graeber et al., 2018).

In the automotive sector, several studies exist using Neural
Networks for state estimation, e.g. side-slip angle estima-
tion of passenger vehicles (Graeber et al., 2018; Chindamo
and Gadola, 2018; Melzi and Sabbioni, 2010) and roll
angle estimation in a heavy vehicle based on simulations
(Sanchez et al., 2004). In this paper, the utilization of
Neural Networks is further transferred to commercial ve-
hicles in order to estimate their specific input and state
variables based on a real test vehicle. For this purpose, the
applicability of two different types of Neural Networks, the
FFNN and the NARX-NN, is examined. In order to make
the two networks comparable to the EKF in (Ziaukas et al.,
2019), they are trained with the same measurement data
used for the model identification in the EKF approach.
Measurement data from a random driving maneuver is
used to validate the approaches. Thereby, the focus is
set on the estimation of the articulation and the steering
angle.

The paper is structured as follows. In section II the
fundamentals of Artificial Neural Networks are presented.
These include the description of the utilized network
structures as well as the main mathematical background.
Section III discusses the process of setting up the Neural
Networks by presenting the test vehicle, the data set and
the different network configurations. In Section IV the
results of the estimation through Neural Networks are
displayed and then compared to the results of the model-
based approach using the EKF in (Ziaukas et al., 2019).
The effectiveness of both estimators is demonstrated on
a real validation maneuver. The paper finishes with a
conclusion and outlook in section V.

2. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks are mathematical models,
which adopt the principles of information processing from
biological systems (Haykin, 1998). By simulating these
systems, the storage capacity, the learning ability and the
reproducibility of these systems are taken over. Artificial
Neural Networks work as black-box modeling tools, which
are able to map a p-dimensional input space onto a q-

Fig. 1. Structure of a Feedforward Neural Network

dimensional output space without knowing their depen-
dencies (Boussaada et al., 2018). They are applied in a
wide variety of areas for pattern detection, categorization,
functional approximation, optimization, prediction, stor-
age and control. Depending on the task, the appropriate
network structure has to be selected from a broad pool of
different network types (Haykin, 1998).

2.1 Feedforward Neural Network

FFNNs are the foundation of deep learning models. As
their name suggests, the flow of information takes place
only in forward direction (Boussaada et al., 2018). FFNNs
consist out of three different types of layers: the input
layer, the hidden layers and the output layer (Fig. 1).
The neurons, arranged in these layers are each connected
to all neurons of the following layer (fully connected)
(Zurada, 1992). The neurons represent the processing
unit of a Neural Network (Fig. 2). Within these, the
input component uj resulting from the previous layer is
multiplied by the weight factor wij . Subsequently, the
following neuron output ŝi is calculated using an activation
function f :

ŝi = f

(
b+

n∑
j=1

ujwij

)
, (1)

where n is the total number of inputs to the neuron, j
is the index of the considered input and i represents the
index of the neuron in the layer.

The selection of the right activation function f is network-
specific and depends on the exact application. Particularly
in hidden layers, sigmoid activation functions are suitable
for modeling non-linear relationships between the input
and the output data. Moreover, these accomplish the
requirements of continuity, differentiability and monotony.
In the output layer, a linear activation function is usually
used to map the current state of the neuron to a desired
value range (Zakharian et al., 1998).

After the network setup is completed successfully, a first
random initialization of the weights follows. Subsequently,
the weights are adjusted step by step using a suitable
algorithm in the training process (Haykin, 1998). For this
purpose, the Neural Network is fed with input data u
and the associated outputs (targets) y. By comparing the
resultant output signal ŷ with the target signal y, the
occurring error can be calculated by using a cost function.
A frequently chosen cost function is the mean squared
error (MSE):
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Fig. 2. Artificial neuron: the elementary unit in a neural
network
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Fig. 3. Architectures of the Nonlinear Autoregressive Ex-
ogenous Neural Network

MSE =
1

m

m∑
z=1

(yz − ŷz)
2

(2)

where m represents the number of training samples.

Based on this cost function an adaption of the weights is
finally made. The described process gets repeated until the
difference between the output signal ŷ and target signal y
is reduced to a minimum.

2.2 Nonlinear Autoregressive Exogenous Neural Network

The NARX-NN represents a useful extension of the FFNN,
especially with regard to the modeling of nonlinear pro-
cesses and time series (Ruslan et al., 2013). The NARX-
NN is a recurrent dynamic Neural Network, linking several
layers via feedback connections (Li et al., 2018). In contrast
to many other network types, the structure of the NARX-
NN implements a memory capability. This feature allows
the inclusion of previous values from determined or real
time series, exploiting the full performance of the NARX-
NN (Boussaada et al., 2018).

Two different architectures of NARX-NN are distin-
guished, the series-parallel architecture and the parallel
architecture (Fig. 3)(Ruslan et al., 2013). The correspond-
ing equations of the two structures are as follows:

ŷSP(t) = g

(
y(t− 1),y(t− 2), ...,y(t− ky),u(t),
u(t− 1),u(t− 2), ...,u(t− ku)

)
, (3)

ŷP(t) = g

(
ŷ(t− 1), ŷ(t− 2), ..., ŷ(t− ky),u(t),
u(t− 1),u(t− 2), ...,u(t− ku)

)
, (4)

in which ŷ(t) is the output of the NARX-NN at time t.
ŷ(t−1), ŷ(t−2), ..., ŷ(t−ky) are the previous outputs of the
NARX-NN and y(t− 1),y(t− 2), ...,y(t− ky) are the true
previous values of the time series, which are also described
as target output values. u(t),u(t−1), ...,u(t−ku) are the
inputs of the NARX-NN. In addition, ku and ky describe
the number of input and output delays. The approximation
of the function g, representing the mapping function of
the Neural Network, is based on the standard Feedforward
principle.

Particularly for the dynamic modeling of complex non-
linear systems, the usage of both network architectures
for training is beneficial in order to take advantage of the
respective configurations. For this purpose, the training
process is divided into two phases. In the first phase, the
network is trained in the series-parallel configuration. This
leads to a stabilization of the weight adjustments of the
Neural Network (Yim and Oh, 2004). After completing
the series-parallel training, however, the network is only
able to provide reliable predictions for a limited number
of future time steps, as the series-parallel training is mainly
suitable for short-term predictions. To solve this problem,
the pretrained network is further trained in the parallel
configuration. During this second training phase, the abil-
ity of long-term prediction is developed. If the network
is only trained in the parallel configuration, the iterative
learning progress can evolve in an unstable way. The rea-
son for this behavior are the randomly generated weights
at the beginning. These lead to significant deviations from
the target in the first training iterations. Subsequently, the
erroneous outputs are recursively fed back to the network,
which in turn negatively influences the output in the next
time step. The repetition of this process ultimately leads to
an enormous divergence between the output and the target
value (Yim and Oh, 2004). Therefore, it is advisable to
train the NARX-NN in series-parallel configuration before
training in parallel.

3. METHOD

The performance of Neural Networks heavily depend on
the underlying data set as well as the selected network
structure and configuration. In subsection 3.1 the test vehi-
cle is presented. This serves to create an all-encompassing
data set, as described in subsection 3.2. Subsection 3.3
discusses the process of optimizing hyper parameters to
determine the best network configuration.

3.1 The Test Vehicle

To evaluate the usability of Neural Networks for the es-
timation of steering and articulation angle based on de-
fined input variables, an off-the-shelf three-axle semitrailer
is used. This semitrailer has dimensions in accordance
with European legislation 96/53/EC and is equipped with
air suspension (Airlight II, BPW Bergische Achsen KG,
Wiehl, Germany) and an electric braking system (EBS,
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WABCO Holdings Inc., Michigan, USA). The connection
between the trailer EBS and the truck unit is established
by a point-to-point CAN-BUS (baud rate 250 kbit/s)
compliant with ISO 11992. This CAN-BUS transfers the
required information from the braking system and the
running gear.

The trailer is further equipped with a data acquisition sys-
tem (DAQ) (SIRIUS, Dewesoft d.o.o., Trbovlje, Slovenia),
supporting both analog inputs and CAN ports. The first
CAN port has the function of monitoring the information
flow between the truck and the trailer as specified in
ISO 11992. It transmits the trailer’s speed at a rate of
100 Hz, being one of two input variables of the Neural
Network. Via the second CAN port, which is connected to
the CAN bus of the truck unit (specified in J1939), the
actual steering angle is measured at a rate of 100 Hz. This
CAN connection is necessary for training and validation
reasons only in order to compare the resulting output of
the Neural Network with the true values. For the online
estimation, however, this is irrelevant.

To generate corresponding comparative values for the ar-
ticulation angle of the semitrailer, a suitable sensor is
attached to the kingpin of the trailer (V.S.E. Vehicle Sys-
tems Engineering B.V., Veenendaal, Netherlands). This
sensor provides the true articulation angle between truck
and trailer as an analog input at a sampling rate of 1000
Hz for training and validation only. In order to achieve
comparability with the model-based approach utilizing an
EKF, the yaw rate of the trailer is used as the second input
value of the Neural Network in addition to the trailer’s
speed. It is measured using a six-axis inertial measurement
unit (DS-GYRO1, Dewesoft d.o.o., Trbovlje, Slovenia) at
a rate of 1000 Hz, which is also fitted to the trailer.

3.2 Data Set

An all-encompassing data set for training, validation and
testing is the foundation of every machine learning appli-
cation. All-encompassing in context of vehicle technology
means a complete coverage of the workspace as well as
the inclusion of a large number of different maneuvers
(Graeber et al., 2018).

A complex street ride can be reduced to a limited number
of fundamental maneuver types. These are a straight-
ahead drive, varying sine maneuvers including a sine
sweep, a steer wheel step and constant circles at different
velocities. Through the definition of different maneuver
types, the generation of a transparent and high-quality
data set is significantly facilitated.

In order to satisfy the requirements of a high amount of
training data while covering the entire workspace, mea-
surement data of the specified maneuvers were recorded
with different amplitudes and frequencies of the steering
angle and at different vehicle speeds. The resulting data set
contains measurement data from 26 different maneuvers,
the same as for the parameter identification in Ziaukas
et al. (2019).

3.3 Network Configuration

In addition to the data set, the second crucial factor
is the configuration of the network structure. The most

important structural parameters of FFNNs are the number
of hidden layers and the number of hidden neurons. For
the NARX-NN, the number of input and feedback delays
needs to be determined additionally.

Network structures with one hidden layer have proven
to be sufficient in many research projects (Chindamo
and Gadola, 2018; Melzi and Sabbioni, 2010; Li et al.,
2018). If the complexity of the relationships to be mapped
increases, it is advisable to raise the number of hidden
layers. However, the implementation of more than two
hidden layers is usually unnecessary, since most functions
can be approximated by a maximum of two layers (Heaton,
2015).

The selection of the number of neurons in the hidden
layers depends on various factors such as the amount of
input and output neurons, the quantity of training data,
the complexity of the approximation function. For the
truck-semitrailer combination nonlinearities occur in the
tire characteristics and several trigonometric functions (see
Ziaukas et al. (2019)). The optimal number of neurons is
determined empirically by repeating the training process
for different sized networks in the range of 5 to 100 neurons
per layer. Each network structure is trained with Bayesian
regularization backpropagation 10 times with random ini-
tial weights. The networks with the best test performance
where chosen resulting in a structure of 2 neurons for
the input layer, 40 in the first and second hidden layer
and 1 neuron in the output layer (2/40/40/1), whereas
the network size for the NARX-NN was determined to be
2/20/1 with 2 input and 2 feedback delays. For the hidden
layers a sigmoid activation function was chosen, whereas
the activation function of the outputlayer is linear.

4. ESTIMATION RESULTS

This section presents the results for estimating articulation
and steering angle using the FFNN and the NARX-NN.
Moreover, a comparison of the presented method to the
previously presented EKF is drawn.

4.1 Neural Networks

In a first working step, the performance of the FFNN
described in section 3.3 is examined for estimating the
articulation and the steering angle. The performance of the
best resulting network, based on the MSE on the training
data, is shown for a random driving maneuver with a speed
between 10 and 70 km h−1 are shown in Fig. 4.

For the estimation of the articulation angle the FFNN
shows a good performance. The result corresponds to the
measured data at large angles, representing narrow turns
at low vehicle speeds as well as at small angles, displaying
sine travels at higher vehicle speeds. On the other hand,
the estimation of the steering angle shows a strongly de-
teriorated result. Remarkable are the considerable delays
between the calculated and the target signal. Furthermore,
the extreme values of the steering angle signal are not
reached when turning.

The large discrepancy in the results may be explained
by the system affiliation of the two target variables.
The articulation angle is obtained at the kingpin and
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Fig. 4. Estimation result for articulation (θ) and steering
angle (δ) with FFNN (2/40/40/1) for a test maneuver.
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Fig. 5. Estimation result for the steering angle (δ) with
the NARX-NN (2/20/1) for a random maneuver.

thus at the junction of the truck-semitrailer combination.
Therefore, the state variable of the articulation angle can
be counted both to the trailer unit and to the truck unit.
By contrast, the input variable of the steering angle only
belongs to the truck unit. The input variables of the Neural
Network are solely data that relate to the trailer unit. Due
to this fact also input or state variables of the trailer unit,
in this case the articulation angle, seem better predictable
by the FFNN. Input or state variables which do not
correspond to this subunit of the system, in this case the
steering angle, seem correspondingly worse represented by
the FFNN.

Because of the unsatisfactory results of the steering angle
prediction, a NARX-NN is used subsequently. This net-
work type has significantly better properties for mapping
dynamic characteristics. It is configured as described in
section 3.3. The results are shown in Fig. 5.It is noticeable
that the final result is much more congruent with the
real measured steering angle. The delays within the course
are clearly reduced. Furthermore, the extreme points are
mapped much better.
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Fig. 6. Comparison between the results of the Neural
Networks and the EKF for a similar maneuver.

The identical network configuration has also been inves-
tigated for the prediction of the articulation angle. The
results do not significantly differ from the results of the
FFNN shown in Fig. 4. However, the training time of
NARX-NNs is approximately 2 to 5 times longer depend-
ing on the number of hidden layers. In addition, the FFNN
offers the possibility of tearing data series apart and thus
using each individual data point as an independent train-
ing state. With the NARX-NN, the individual maneuvers
must remain in their original form. Considering these
aspects a preference of the NARX-NN is not reasonable.
Therefore, the estimation of the articulation angle is per-
formed with the FFNN.

4.2 Comparison to Extended Kalman Filter

Finally, the developed results of the Neural Networks are
compared to those of the EKF similar to Ziaukas et al.
(2019) in terms of their performance, see Fig. 6, and their
complexity . For the estimation of the articulation angle,
the machine learning approach provides a slightly better
result. The MSE of the Neural Network is 0.9 (◦)

2
, whereas

the MSE of the EKF results to 0.9823 (◦)
2
. The estimation

of the steering angle yields in a similar result. The EKF
performs worse with an MSE of 4.6845 (◦)

2
. The MSE

for the Neural Network is calculated to 3.0983 (◦)
2
. In

both cases, however, a minimal time delay remains in the
estimated curves.

Concerning the development effort, the model-based EKF
approach is quite consuming. The model needs to be
derived from the underlying physical effects by domain
experts. In case of a grey-box model, as presented in
Ziaukas et al. (2019), a parameter identification procedure,
which includes solving a nonlinear optimization problem,
becomes necessary. Furthermore, the EKF covariances
have to be determined posing another challenge. A total
of 38 parameters need to be determined.The benefits on
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the other hand are a distinguished system understanding
and insight. In comparison, the main challenges of the
machine learning Neural Network approach are the selec-
tion of a suitable network type and the development of
a complete and prepared data set. In addition, the opti-
mal network configuration has to be determined, causing
problems, since no consistent procedure exists for the set-
ting/selection of the hyper parameters. The FFNN has a
total of 1801 parameters and the NARX-NN a total of 121.
It is advantageous that the setup of Neural Networks does
not require a profound knowledge of the system relations.

5. CONCLUSION AND OUTLOOK

In this paper, two different types of Neural Networks,
the FFNN and the NARX-NN, have been presented for
estimation of articulation and steering angle in a truck-
semitrailer combination. A structured comprehensive data
set has been developed and the best possible network
configurations have been determined. For the estimation
of articulation angle, the FFNN shows a very good perfor-
mance. Results for estimating the steering angle using the
FFNN are significantly worse, leading to the application
of NARX-NN with better results. Comparing the Neural
Networks with the model-based approach of an EKF, it
can be concluded that the Neural Networks show a slightly
better performance for the test maneuvers. The develop-
ment of the model-based approach requires profound do-
main knowledge and also involves nonlinear identification
processes. For these reasons, Neural Networks for state
estimation should be considered as an alternative.

Future works may focus on combining model-based an ma-
chine learning approaches to get the advantages of both.
Another aspect that should be considered is the computa-
tional effort. Due to the use of different software/libraries
the drawing of a precise comparison was not possible yet.
Furthermore, transfer ability to other vehicles (other truck
and/or trailer combinations) and the robustness against
parameter variations (e.g. load, tires) and other changing
influences (e.g. environmental conditions) need to be ana-
lyzed.
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