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Abstract: In this paper we present a low-complexity hierarchical control approach to fan-coil-
based HVAC systems, applicable to shopping centers as exemplified through a case study of
a Danish shopping center. Although Model Predictive Control remains the optimal approach
performance-wise, we show that we can recover 66 % of the performance with the proposed
approach, when considering no model-mismatch for the Model Predictive Controller. The
recovered performance comes with the added benefits of increased reusablity and operator
transparency, given no dependence on an accurate dynamical model and lower complexity.

Keywords: Hierarchical control, MPC, building control, HVAC, energy management

1. INTRODUCTION

Buildings constitute one third of the energy consumption
in Denmark (International Energy Agency (2017)) and
while energy refurbishments of older buildings often con-
sider the building envelop itself, there is a large potential
for energy savings through updating Heating Ventilation
and Air Conditioning (HVAC) equipment which – given an
assumed lesser effort – can prove a better investment for
building owners/operators. One way of going about this is
through control applications.

Energy savings within building control have been studied
extensively, with the majority of work revolving around
Model Predictive Control (MPC) (Killian and Kozek
(2016); Shaikh et al. (2014)) and with buildings exhibiting
multi-zone characteristics, both distributed (Cai et al.
(2016)) and decentralized (Chandan and Alleyne (2014))
predictive control have been investigated.

In Petersen et al. (2019) a setpoint-manipulating MPC
for minimizing energy consumption, in a fan-coil-based
shopping center HVAC system (see Fig. 1), was designed
and evaluated through simulations. It was compared to a
simulation with historical input data, in which setpoints
were set manually by building operators. The general
issue with manually setting setpoints is that in a large
scale system, it can be difficult for operators to balance
production and demand of cooling, leading to situations
such as cooling air in fan coils, where energy has already
been spent heating it in an Air Handling Unit (AHU). In
Petersen et al. (2019), the MPC introduced the necessary
coordination, but it was concluded that the problem could
be solved using a simpler control method; i.e. with less
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Fig. 1. From left; AHU, chiller unit and Building Manag-
ment System (BMS) gateway for remote data acqui-
sition and control, situated at Kolding Storcenter, a
Danish shopping center.

complexity. The desire to consider less complexity is not
rooted in computational issues, especially when consider-
ing building systems with large time constants, rather, the
reasoning lies in control reusability and operator trans-
parency. Control reusability is key, considering impact on
energy savings when one control approach can be deployed
among multiple buildings. However, using MPC requires
an accurate system model, which severely diminishes the
reusability and induces a high initial investment, as also
demonstrated in Sturzenegger et al. (2016). This, together
with availability of both data and processing power has
sparked a significant interest in data-based and learning-
based methods; both considering learning the model, as
highlighted in the references treated in Afram et al. (2017)
and learning the control itself, e.g. using reinforcement
learning (Overgaard et al. (2019)). This does not, however,
cater to the issue of operator transparency.

This work investigates the use of hierarchical control. In
Pangborn et al. (2018) and Koeln et al. (2019), which deal
with experimental validation of hierarchical control for
thermal management, it is concluded that hierarchical con-
trol is especially suitable in complex thermal management
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systems, where a decentralized approach can result in poor
performance, due to the general difficulty of managing
couplings between subsystems.

We propose a low-complexity hierarchical control architec-
ture to coordinate production and demand in a fan-coil-
based HVAC system – avoiding heavy-use of a model in
an effort to provide reusability and operator transparency.
To the knowledge of the authors, this type of architecture
does not appear in the academic literature.

In Section 2 we present the class of HVAC systems
considered, the proposed hierarchical control framework,
and MPC as a reference approach. Following that, in
Section 3, we present a Danish shopping center as a case
study and in Section 4 we present simulation studies,
comparing the proposed hierarchical control to MPC.
Conclusions are given in Section 5.

Notation-wise, vectors are denoted in lowercase bold, e.g.
x. Time-dependence of variables, x(t), is implied and
will not necessarily be written explicitly. Derivative with
respect to time is written as ẋ.

2. METHODS

2.1 Shopping Center HVAC

Fig. 2. Fan-coil-based shopping center HVAC layout. No
return ducts/pipes are depicted to simplify the dia-
gram.

In this paper we focus on shopping centers that employ
fan coils for shop temperature control. The general HVAC
system considered is depicted in Fig. 2. The system
consists of:

• AHU supplying ventilated air with flow ṁvent and at
temperature Tvent.
• Chiller supplying chilled water at temperature Tfwd,cold

for cooling coils in fan coils.
• N shops with fan coils.

Hot water to heating coils in fan coils is supplied at
temperature Tfwd,hot by, e.g., district heating. Shop tem-
perature, Tshop,i, for the i-th shop can be regulated by
manipulating shop supply temperature, Tsupply,i. This is
done through heating and cooling valves in the fan coils.
We consider a Constant Air Volume (CAV) setup for the
fan coils; they are either ON or OFF.

We assume a decentralized control configuration, where
each shop has its own temperature controller, manipu-
lating valve openings to reach desired shop temperature,
Tshop,r,i. The AHU is controlled through operator-given
setpoints, Tvent,r and ṁvent,r, and the chiller through the
setpoint Tfwd,cold,r.

2.2 System dynamics

We present the main dynamics considered for the system
described in Section 2.1. The model is based on the
previous work done in both Petersen et al. (2018) and
Petersen et al. (2019) where we employ a grey-box RC-
equivalent modeling paradigm, treating each shop as a
thermal zone with a lumped thermal capacitance.

Temperature dynamics Letting N denote the number of
shops, the shop temperature dynamics of the i-th shop is
given by:

Cshop,i Ṫshop,i = Q̇FC,i + Q̇center,i + Q̇int,i (1)

where Cshop,i is the lumped thermal capacitance of shop i,

Q̇center,i is the heat flow to/from the surroundings, Q̇FC,i

is the fan-coil-supplied heat flow and Q̇int,i models internal
heat gain, e.g. from occupancy, lighting and appliances.

The supply temperature dynamics are modeled as:

Csupply,i Ṫsupply,i = Q̇AHU,i + Q̇cool,i + (2)

Q̇heat,i + Q̇recirc,i − Q̇FC,i

where Csupply,i is a lumped thermal capacitance for the fan

coils. Q̇AHU,i is the heat flow supplied by the AHU, Q̇cool,i

is the heat flow supplied by the chiller and Q̇heat,i is heat
flow from heating. Some air is recirculated in the fan coils,
modeled by the heat flow Q̇recirc,i.

Heat flows The heat flow supplied by fan coils to shops
is given by:

Q̇FC,i = ṁFC,i cp,air (Tsupply,i − Tshop,i) (3)

where ṁFC,i is flow of air and cp is specific heat capacity.

Heat exchange with the surroundings, Q̇center,i, is given as:

Q̇center,i = UAcenter (Tcenter − Tshop,i) (4)

where UA is a heat transfer coefficient and Tcenter is
a lumped shopping center temperature, modelling the
temperature in the shopping center as a whole:

Ṫcenter = τextract (Textract − Tcenter) (5)

+ τamb (Tamb − Tcenter)

where τ is a time-constant, Textract is temperature of air
extracted from shops by the AHU (return air) and Tamb

is ambient temperature (outside). The heat flow supplied
by the AHU to the fan-coils is modeled as:

Q̇AHU,i = ṁFC,i cp,air (Tvent − Tsupply,i) (6)

Q̇AHU =

N∑
i

Q̇AHU,i (7)

For heating and cooling, the heat flows are modeled as:

Q̇cool,i = αcool uvalve,cool,i cp,w (Tfwd,cold − Tsupply,i) (8)

Q̇heat,i = αheat uvalve,heat,i cp,w (Tfwd,hot − Tsupply,i) (9)

Q̇chiller =

N∑
i

Q̇cool,i (10)
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where α is a constant modeling both coil efficiency and
valve characteristics and uvalve,i is valve opening degree.
Given the assumption that each shop has its own tem-
perature controller, the valve openings are controlled by
PI regulators included in the model. Q̇recirc,i is modeled as
a heat exchange with extract air:

Q̇recirc,i = UAFC (Textract − Tsupply,i) (11)

Finally, first order dynamics govern the control of both
AHU and chiller:

Ṫvent = τAHU (Tvent,r − Tvent) (12)

Ṫfwd,cold = τchiller (Tfwd,cold,r − Tfwd,cold) (13)

2.3 Hierarchical control framework

Fig. 3. Hierarchical control framework; separating produc-
tion (AHU, chiller) from demand (shops).

To introduce the necessary coordination we consider a
hierarchical control framework, depicted in Fig. 3.

Where:

• Q̇AHU is the heat flow from AHU to the shops 1 .
• Q̇chiller is the heat flow from chiller to the shops.
• uAHU ∈ Rnu,AHU is control input affecting Q̇AHU.
• uchiller ∈ Rnu,chiller is control input affecting Q̇chiller.

and where:

Q̇produced = Q̇AHU + Q̇chiller (14)

Q̇demand = Q̇produced + ∆Q̇shop (15)

Here, Q̇demand =
∑N

i Q̇demand,i, denotes the total demand

for all the shops considered. When Q̇produced = Q̇demand,
the system is balanced and the shops have enough heat-
ing/cooling capacity to meet the heating/cooling demand.

In case Q̇produced 6= Q̇demand, then there is a discrepancy,
given as:

1 Or more specifically, the fan coils.

∆Q̇shop =

N∑
i

∆Q̇shop,i = Q̇demand − Q̇produced (16)

Note that ∆Q̇shop can be both positive and negative;
positive in case of a heating demand and negative in the
case of a cooling demand.

We can now formulate our primary control objective as
minimizing ∆Q̇shop, or equivalently as:

Q̇produced,r = Q̇produced + ∆Q̇shop (17)

Q̇produced → Q̇produced,r for t→∞ (18)

Assuming we have perfect tracking of Q̇produced,r:

Q̇produced,r(t) =

∫ t

t0

∆Q̇shop(t) dt+ Q̇produced(t0) (19)

Revealing, that this approach is in fact an integral con-
troller – integrating the demand to form the reference
production.

The primary control objective can be met in many different
ways if not considering the characteristics of either AHU
or chiller – and can also be met by manually operating the
setpoints of the AHU and chiller, as the capacities just
have to be large enough to not saturate the fan coil valves
for longer durations. Instead, it is more interesting to
introduce a secondary control objective, to also minimize
the cost of Q̇produced.

2.4 Hierarchical Controller

We propose a controller with the objectives presented in
Section 2.3 that does not require a dynamical model
of the system; instead we only consider static model
equations for the heat flows taken into account, namely
Q̇AHU and Q̇chiller, which in this case are given by (7) and
(10) in Section 2.2.

For ∆Q̇shop, we could let it be based on the heat flows
considered for the shop temperature dynamics. This choice
will however be very model-dependent. Instead, we pro-
pose to estimate ∆Q̇shop as:

∆Q̇shop = ṁvent,nom cp,air

N∑
i

ei (20)

where ṁvent,nom is the nominal air flow from the AHU
and ei is the error signal for the i-th shop temperature
controller. If we let C be the cost (e.g. power consumption)

of supplying Q̇produced, we can formulate an optimization

problem, which seeks to minimize ∆Q̇shop and Cproduced:

u = [uAHU,uchiller]
T

(21)

min
u
J = qd (Q̇produced,r − Q̇produced)2 + qc C (22)

subject to:

umin ≤ u ≤ umax

where Q̇produced is given as a function of u, qd and qc are
tuneable weights and ≤ is taken element-wise.

In Fig. 3 we only consider an AHU and a chiller. The
method would however also handle any other given cooling
unit or heating unit, as the production is abstracted away
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behind Q̇produced,r, which can potentially be both positive
when considering heating and negative when considering
cooling. In the case of an economizer – or any passive
cooling or heating unit – its contribution could be directly
handled as a disturbance added to Q̇produced. Due to the
proposed demand estimate being based on error signals
it is however handled transparently, as we only act on
deviations.

2.5 Reference Controller: MPC

For comparison purposes, we present a MPC with the same
objectives as for the hierarchical controller in Section 2.4.
This reference controller will require a dynamical model
and here we use the model described in Section 2.2. We
let the dynamics be given by:

ẋ = f(x,u,uex,p) (23)

where x ∈ Rnx is the state, u ∈ Rnu is controllable
inputs, uex ∈ Rnu,ex is exogenous inputs and p ∈ Rnp

are parameters. Then we pose an optimal control problem
to be solved with a receding horizon:

min
u
JMPC =

∫ tf

t0

J dt (24)

subject to:

ẋ = f(x(t),u(t),uex(t),p) (dynamics)

umin ≤ u ≤ umax

and subject to constraints on states as well.

3. CASE STUDY: KOLDING STORCENTER

As a case study, we consider Kolding Storcenter, a Danish
shopping center. Kolding Storcenter is divided up into
clusters of shops; each cluster featuring a fan-coil-based
HVAC layout as described in Section 2.1. A demo-area
has been established for the Smart Energy Shopping Cen-
ters (SEBUT) project, consisting of one cluster of shops –
and the rooftop AHU and chiller supplying the fan coils
of these shops. The AHU can both heat and cool, using a
built-in heat pump and direct expansion coils.

Instrumentation has been established for the demo-area
using a ’piggyback’-approach, by interfacing with the
existing BMS through a communication gateway unit 2 .
This allows extraction of measurement data and allows for
manipulation with exposed setpoints. Table 1 presents
an overview of the, for this paper, considered inputs
and outputs of the BMS, which can be manipulated and
measured.

3.1 Model parameterization

Parameters for the model described in Section 2.2 have
been identified using a combination of:

• Manual flow measurements from fan coils
• Measurements from BMS
• Shop dimensions and table-lookup

The parameters that could not be identified directly (e.g.
lumped time constants) were identified by posing and
solving a Least Squares Estimation problem. No heat
2 Neogrid Technologies. URL: https://neogrid.dk

Table 1. BMS I/O

Name Description Type

AHU

Tvent Supply temperature Output
Tvent,r Supply temperature setpoint Input
Textract Extract temperature Output
ṁvent Supply air flow Output

PAHU,cool AHU power consumption (cooling only) Output

Chiller

Tfwd,cold Forward temperature Output
Tfwd,cold,r Forward temperature setpoint Input
Pchiller Chiller power consumption Output

Shops

Tshop,i Shop temperature Output
Tshop,r,i Shop temperature setpoint Output
Tsupply,i Fan coil supply temperature Output

interaction between shops is considered as internal heat
gains have been found to dominate the energy balance,
given the quantity of display lighting. We can therefor
consider Q̇int,i constant during opening hours. Note that
shops are not exposed directly to sunlight and thus no heat
gain from solar load is considered.

Parameters (for a single shop) are given in Table 2 and
a comparison of shop temperature between a simulation
and measurements is presented in Fig. 4, simulating 8
days; 4. September to 12. September – the model is deemed
accurate enough for both control purposes and simulation
studies.

Table 2. Model parameters (single shop)

Area Cshop Csupply Q̇int

250 m2 2.0 MJ K−1 1.0 MJ K−1 4.0 kW

UAcenter UAFC αcool αheat

2.0 kW K−1 2.0 kW K−1 0.1 kg s−1 0.1 kg s−1

τAHU τchiller τextract τamb

1 h 1 h 1 h 6 h

ṁvent,nom Tfwd,hot

3.3 kg s−1 55 ◦C

0 1 2 3 4 5 6 7 8

[d]

18

19

20

21

22

23

T
sh

o
p
,i

[◦
C

]

Measurements
Model

Fig. 4. Comparing simulation of model to measurements
extracted from BMS. Shop temperature for a single
shop. Shaded areas indicate that the shop is closed.

3.2 Estimating power consumption

In order to not only balance production and demand but
also meet the objective of minimizing cost, a measure for
cost is needed; here we consider power consumption for
both AHU and chiller.
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For the chiller, we estimate power consumption as a
function of ∆T = Tamb − Tfwd,cold, where Tamb is the
ambient temperature. The best fit was found by assuming
the function to be a 3rd degree polynomial. The results
are given in Fig. 5.

In the case of the AHU, we have measurements of power
consumption for cooling. As such, the power consumption
of the fans is not included and, given the ambient condi-
tions, active heating is not present for the time period un-
der consideration. A näıve approach would be equivalent to
that of the chiller, estimating power consumption as only
dependent on a ∆T = Tamb−Tvent. However, recirculation
and heat recovery plays a significant role for the AHU
introducing a dependence on Textract. Thus, for the AHU
we formulate a 2nd degree polynomial dependence on both
∆Tamb = Tamb − Tvent and on ∆Textract = Textract − Tvent,
yielding:

P̂AHU,cool(∆Tamb,∆Textract) = (25)

a0 ∆T 2
amb + b0 ∆Tamb +

a1 ∆T 2
extract + b1 ∆Textract + c

Results are given in Fig. 5, as both a time series compari-
son and a histogram of the error between measurement and
estimation. There are improvements to be made in the case
of the AHU, as either filtering, the inclusion of dynamics
or perhaps a faster sampling time of the data will provide
better results. Both fits are deemed convincing enough to
be used in a control setting.

4. SIMULATION STUDIES

Simulation studies have been conducted to evaluate the
performance of the proposed hierarchical controller, com-
pared to both a reference controller, MPC, and to a
simulation with historical inputs – a nominal case. All
simulations have been done using CasADi (Andersson
et al. (2019)) through Python, where the nonlinear system
dynamics have been formulated. Given that measurements
from the BMS are obtained with a sampling time of 5 min,
this has also been chosen as sampling time for all simula-
tions.

As a measure of cost, C, we use the power consumption
estimates given in Section 3.2:

C = P̂tot = P̂AHU,cool + P̂chiller (26)

and as controllable inputs we choose:

u = [Tvent,r, Tfwd,cool,r]
T

(27)

We use qd = 2 and qc = 1 in all cases.

4.1 Hierarchical Controller setup

We employ the hierarchical controller outlined in Sec-
tion 2.4 and in the expression for Q̇produced we as-
sume steady-state, letting Tvent = Tvent,r and Tfwd,cold =

Tfwd,cold,r. In calculating Q̇produced,r, we consider two ap-
proaches:

Mean over last hour Let ∆t = 1 h; then:

Q̇produced,r(t) = (28)

1

∆t

∫ t

t−∆t

Q̇produced(t) + ∆Q̇shop(t) dt

0 5 10 15 20 25 30

[d]

0

5

10

15

[k
W

]

PAHU,cool (measured)

P̂AHU,cool(∆Tamb,∆Textract)

−6 −4 −2 0 2 4 6 8

[kW]

0

50

100

150

PAHU,cool − P̂AHU,cool

−15 −10 −5 0 5 10 15 20 25

∆T [K]

5

10

15

20

25

30

[k
W

]

Pchiller (measured)

P̂chiller(∆T ) = 0.62 ∆T 3 + 16.0 ∆T 2 + 160 ∆T + 5485 [W]

Fig. 5. Power consumption estimation for both AHU and
chiller, for demo-area in Kolding Storcenter. Coeffi-
cients for the AHU fit found as: (a0, b0, a1, b1, c) =
(131.0, 1741,−69.85, 114.0, 5750). Data used was from
15. August to 8. October, with Tamb from 2 ◦C to
30 ◦C and Tfwd,cold from 11 ◦C to 14 ◦C.

We denote this version H-1h

Mean over next hour Exploiting the inherent periodic
behavior, with period time Td = 24 h (see Fig. 4), we use
yesterdays data to predict and calculate the next reference,
again with ∆t = 1 h:

Q̇produced,r(t) = (29)

1

∆t

∫ t−Td+∆t

t−Td

Q̇produced(t) + ∆Q̇shop(t) dt

We denote this version H-23h.

4.2 Reference Controller (MPC) setup

Using CasADi allows for also posing, discretizing and
solving optimal control problems using (in this case) a
multiple-shooting approach; this has been applied for the
reference MPC design. The sample time is as for the
simulation, 5 min and the prediction horizon chosen to
be 2.5 h. Given that we do not know exogenous inputs
in advance, we also here exploit the periodic behavior and
use inputs from the previous day (delayed 24 h). Note that
we consider u̇ as our control input.
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4.3 Simulation setup and results

We only consider 2 shops for this simulation, with slightly
different consumption profiles, given by their different shop
temperature references:

Tshop,r = [21.5 ◦C, 22.0 ◦C]
T

(30)

Simulating 8 days, 4. September to 12. September, using
historical data we compare the four cases:

• Nominal (Purely historical inputs)
• Hierarchical Controller (H-1h)
• Hierarchical Controller (H-23h)
• MPC

Given that actuation (fan coils ON) is limited to operator
set schedules, control authorithy is limited to these sched-
ules; not exactly opening hours but resembling working
hours of staff. The results are presented in Fig. 6, with
shaded regions depicting when fan coils are turned OFF.
Common between the three control strategies attempted,
is that they all use the chiller to a lesser extent than in the
nominal case, as visible in the response of Tfwd,cold. The
main difference lies in the use of the AHU, where the MPC
almost avoids using it, the H-23h uses it to some extent
and the H-1h even more. Tracking performance is very
similar, as visible from both the response of ∆Q̇shop and
Tshop. The results also show, from looking at the excitation
of the valve openings, how both hierarchical control and
MPC end up using the heating valve to a lesser extent,
as air from the AHU is delivered at a higher temperature;
avoiding first spending energy cooling the air in the AHU
and the heating it up again in the fan coils. Performance-
wise, we compare the four cases on three metrics:

1. Root-Mean-Square Error (RMSE)

ē = T̄shop,r − T̄shop (31)

where ā denotes mean value.

2. Energy consumption

Etot =

∫ t=8 d

t=0 d

P̂tot dt (32)

3. Simulation time as a measure of complexity; this is
time taken for the entire simulation to run, for each case
considered. Measured on the same hardware.

Note that we only consider RMSE and energy consump-
tion for the times when the fan coils are ON.

These results are presented in Table 3. Comparing RMSE
values, the MPC is best and H-23h worst; but the
difference is 0.004 K – and, as such, a fair conclusion is that
the comfort performance is almost identical. Comparing
energy consumption, the MPC is again best with H-
23h second; the MPC amounting to a 44 % reduction
compared to the nominal case, where H-23h reduces
energy consumption by 29 %. As such, the MPC wins
on performance. However, comparing simulation time the
MPC falls short of the other methods. Here, the proposed
hierarchical controllers are 17 times faster – and this is
when only considering N = 2 shops.

Table 3. Performance metrics

Metric Nominal H-1h H-23h MPC

RMSE 0.481 K 0.480 K 0.483 K 0.479 K
Etot 918 kW h 754 kW h 649 kW h 520 kW h
tsim 2 s 20 s 20 s 340 s

5. CONCLUSIONS

We have proposed a low-complexity hierarchical control
approach to fan-coil-based HVAC systems, exemplified
by the case study of a Danish shopping center. The
hierarchical controller is designed to avoid the dependence
on a dynamical model, while still introducing the necessary
coordination for energy efficient operation, by balancing
production and demand using only steady-state model
information and an empirically-based model for power
consumption.

Through simulation studies the proposed hierarchical con-
troller was compared to MPC; using the same cost function
but having the benefits of accurate model dynamics, as no
model-mismatch is considered. Using MPC would amount
to a 44 % reduction in energy consumption compared to
a simulation with historical inputs (no advanced control).
Using the hierarchical controller and relying only on mea-
surements from the last hour of operation, the reduction
was only 18 %; a significant reduction but not comparable
to the MPC. However, exploiting the periodic behavior of
the HVAC system and allowing the system to use yester-
days data to predict consumption for the next hour, the
reduction was increased to 29 % – recovering 66 % of the
MPC performance.

This is a promising reduction in energy consumption when
considering that the hierarchical controller does not rely
on model dynamics. Without the dependence on model
dynamics and with the demonstrated lower computational
overhead, it is concluded that this low-complexity method
has the potential to provide both less initial costs, less
operator training overhead and thus higher reusability.
This is key for energy savings, when considering the
deployment among multiple buildings.
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