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Abstract: Strategic initiatives in pharmaceutical companies and drug research have incorpo-
rated the pharmacokinetics (PK) and pharmacodynamics (PD) modeling, known as the PK/PD
framework. Herein, we use an inverse optimal impulsive approach to devise PK/PD-based
treatment policies for infectious diseases such as HIV and influenza. The optimal PK/PD-
based HIV therapy maintains the viral load under detection levels for a thirty-year period when
the treatment initiates 2 or 4 years post-infection. We also explore the implications of late
HIV treatment initiation. On the other hand, the optimal PK/PD-based influenza treatment
reduces ca. 30% the amount of drug compared to the treatment recommended by the Food
and Drug Administration while reaching the same efficacy levels (98%). The PK/PD framework
mastermind new schemes for tailoring treatments in infectious diseases.
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1. INTRODUCTION

Infectious diseases are a great threat to humanity. HIV-
related illnesses and deaths, for instance, have resulted in
more than 32 million fatalities. At the global level, in 2018
the number of HIV-related mortal cases reached 770 000
[WHO (2019-Online)]. Also worldwide, outbreaks caused
by influenza A viruses (IAV) have annually revealed high
morbidity and mortality. The IAV threat results in about
500,000 deaths and up to 5 million severe cases [WHO
(2018-Online)]. Three phases can be identified during HIV
infection response, an initial acute infection followed by a
long asymptomatic period and, finally, a vast increment of
viral load with the simultaneous downfall of healthy CD4+
T cell [Hernandez-Vargas and Middleton (2013)]. For HIV,
the combined antiretroviral treatment (cART) leads the
virus to undetectable levels and guard against the harm of
other infections [HIV-CC (2010)]. The current Food and
Drug Administration (FDA) approved IAV treatment uses
fixed doses of neuraminidase inhibitors (NI) twice a day.

Drug development and design demand the understanding
of mechanisms of drug delivery and response. The pharma-
cologic disciplines, pharmacokinetics (PK) and pharmaco-
dynamics (PD), coupled as the PK/PD approach, benefit
from diverse preclinical and clinical data using mathemat-
ical frameworks, leading to guide decision-making through
modeling and simulation [Yu et al. (2019)]. The PK/PD
framework also boost the researchers understanding of
drug behavior and effectiveness at individual and demo-
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graphic levels [Gabrielsson and Weiner (2017)]. Drug op-
timization is supported by PK/PD models at all devel-
opment stages, allowing pharmaceutical companies to im-
prove efficacy and productivity [Van der Graaf and Benson
(2011)]. Importantly, for the case of HIV and influenza
therapies, PK/PD drug parameters are available.

Based on mathematical models of biological systems, re-
cent theoretical impulsive control approaches have been
integrated to design treatment schedules for diabetes
[González et al. (2017)] and infectious diseases such as HIV
[Zurakowski and Teel (2006); Rivadeneira et al. (2017)]
and IAV [Hernandez-Mejia et al. (2019)]. The impulsive
control scheme deals with systems in which at least one
state can be impulsively changed at certain control in-
stants [Yang (2001)]. Besides, the effort of the impulsive
state modification can be governed by optimal control
techniques ensuring stability under an optimality criterion
[Hernandez-Mejia et al. (2019)]. In this sense, the inverse
optimal control framework sets a control law and then an
optimal criterion is derived [Haddad et al. (2006)].

Herein, we integrate a control-based framework accounting
for inverse optimal impulsive control strategies to design
treatment schedules based on the viral dynamics and
the drug’s PK/PD phases. We envisage PK/PD-based
treatments for both, cART and oseltamivir, in HIV and
IAV infectious diseases. While for cART treatment we hy-
pothesize a scheme under unified PK/PD parameters, the
oseltamivir treatment integrates its nominal values. The
PK/PD-based control treatment is tested with different
treatment initiation time in HIV, fixed time in IAV, and
a maximum intake drug amount in each treatment.
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2. INVERSE OPTIMAL IMPULSIVE CONTROL

Notation. < is the set of real numbers, <n×m is the set
of n ×m real matrices and <n is the set of n × 1 column
vectors. ℵ = Z+ ∪ {0} is the set of non-negative integers
and S ⊂ ℵ is the resetting set for control instants action.
The set of n×n positive-definite matrices is Pn, the matrix

transpose is (·)T , the diagonal matrix given by diag(·) and

the matrix inverse is (·)−1.

The impulsively controlled system has the form

ẋ(t) = f(x(t)), x0 = x(0), t 6= τj , (1)

∆x(t) = f(x(τj)) + g(x(τj)) sat(u(τj)), t = τj , (2)

sat(u(τj)) = min
(
u(τj), umax(τj)

)
, (3)

where τj ∈ S are the impulsive control instants. x(τj) ∈
<n is the state at τj , x(t) ∈ <n is the state of the
system in t 6= τj . The input u(τj) ∈ <m, and functions
f : <n → <n, g : <n → <n×m. ∆x(t) stands for the
impulsive state modification at the control instant τj .
The impulsive changes modify the initial condition for the
following integration step with an instantaneous jump as
follows

x(τ+j ) = ∆x(t)
∣∣
t=τj

+ x(τ−j ), (4)

ẋ(t) = f(x(τ+j )), t = τj , (5)

where x(τ+j ) is the newly generated initial condition due

to the impulsive change and x(τ−j ) is the state before
the impulsive jump. For the state modification with the
impulsive law in (2), from the optimal control theory
[Haddad et al. (2006); Hernandez-Mejia et al. (2018)], we
follow to minimize the cost functional

Q(x(τj)) =

∞∑
τj∈S

(
l(x(τj)) + u(τj)

TRu(τj)
)
, (6)

where Q : <n → <+, l : <n → <+ weights the state vector
x(τj) and is positive semidefinite. Besides, R : <n → Pm

weights the control effort.

Consider the impulsively controlled system (2) and, for
simpler notation, x(τ+j ) standing for the state change in
the impulsive instant, we use the following optimal control
law [Hernandez-Mejia et al. (2018); Sanchez and Ornelas-
Tellez (2017)]

u(τj)
∗ = −1

2
R−1g(x(τj))

T
∂Q∗(x(τ+j ))

∂(x(τ+j )),
(7)

which is inverse optimal if satisfies the following; 1) it
achieves exponential stability of the equilibrium point
x(τj) = 0 for system (2) (globally) with the optimal
value function Q∗(x(0)) = Q(x(0)), 2) it satisfies the cost
functional (6), accounting for l(x(τj)) := −Q and

Q := u(τj)
∗TRu(τj)

∗ +Q(x(τ+j ))−Q(x(τj)) 6 0. (8)

Next, it follows that a function Q(x(τj)) can be designed
to satisfy (7)-(8). In this direction, we consider Q(x(τj))
in the following form [Sanchez and Ornelas-Tellez (2017)]

Q(x(τj)) =
1

2
x(τj)

TPjx(τj), Pj = PTj > 0, (9)

which is used in the optimal control law (7) selecting a
proper matrix Pj ∈ Pn. The inverse optimal impulsive
control law is obtained applying (9) to (7) and optimizes
the cost functional (6). Control law (7) is then modified to
integrate the inverse approach as follows

u(τj)
∗ =−1

2
R−1g(x(τj))

T
∂Q∗(x(τ+j ))

∂(x(τ+j ))
,

=−1

2
R−1g(x(τj))

T
∂
(

1
2x(τ+j )TPjx(τ+j )

)
∂(x(τ+j ))

,

=−1

2
R−1g(x(τj))

TPj

(
x(τj) + f(x(τj))

)
−1

2
R−1g(x(τj))

TPjg(x(τj))u(τj)
∗. (10)

From (10), it follows solving for u(τj)
∗

u(τj)
∗ +

1

2
R−1g(x(τj))

TPjg(x(τj))u(τj)
∗

= −1

2
R−1g(x(τj))

TPj
(
x(τj) + f(x(τj))

)
, (11)

multiplying (11) by R, it follows

(R+
1

2
g(x(τj))

TPjg(x(τj)))u(τj)
∗

= −1

2
g(x(τj))

TPj
(
x(τj) + f(x(τj))

)
. (12)

Finally, from (12), the inverse optimal impulsive control
law u(τj)

∗ can be expressed as

u(τj) =−1

2

(
R+ Pα(x(τj))

)−1
Pβ(x(τj)), (13)

Pα(x(τj)) =
1

2
g(x(τj))

TPjg(x(τj)),

Pβ(x(τj)) = g(x(τj))
TPj

(
x(τj) + f(x(τj))

)
.

Importantly, inverse matrix form in (13) is satisfied since
Pα(x(τj) is a symmetric and positive definite matrix
[Hernandez-Mejia et al. (2018); Sanchez and Ornelas-
Tellez (2017)].

The constraining input, sat(u(τj)), considers the maxi-
mum value umax(τj) in (3), this is incorporated in terms
of R in (13) as follows

2u(τj) =−
(
R+ Pα(x(τj))

)−1
Pβ(x(τj)),

2
(
R+ Pα(x(τj))

)
u(τj) =−Pβ(x(τj)),

2Ru(τj) =−Pβ(x(τj))

−2Pα(x(τj))u(τj). (14)

For a given umax, the value of R in (14) is given by

R=−1

2

[
Pβ(x(τj)) + 2Pα(x(τj))umax

umax

]
. (15)

Usually, the value of umax is a priori given as, for instance,
the maximum quantity of effort that the controller can
handle due to physical or design limitations.
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3. PK/PD-BASED TREATMENT FORMULATION

The PK/PD-based control framework allows conceiving a
control law whose structure incorporates the viral dynam-
ics (or any other affine system) and PK/PD effects. As
shown in Fig. 1, whenever t 6= τj (solid arrow) the viral
and PK/PD dynamics behave as at open loop, however,
when t = τj (dotted arrows), at least one of the states of
the PK/PD-system is impulsively modified following (4),
where the control effort is given by (13). In addition, using
dynamic values of R in (15), the value of umax considers
dose constraints as, for instance, the maximum quantity of
dose for a single intake. Finally, the drug intake frequency
is no other than the impulsive instants, in other words, τj
stands for the drug intake time (usually in hours).

PK/PD

Dynamics

Viral

Dynamics

Impulsive 

Control

Fig. 1. Scheme of the PK/PD-based impulsive con-
trol. Whenever t 6= τj , the viral and PK/PD dynam-
ics behave as at open-loop (solid arrow). The impul-
sive control modifies the PK/PD-state of the system
at t = τj , which changes from x(τ−j ) to x(τ+j ) (dotted

arrows), which corresponds with the drug dose.

Importantly, the PK/PD dynamics module in Fig. 1 is
integrated by the PK and PD phases, where the PK phase
is commonly constructed by at least one differential equa-
tion (compartment) describing the amount of available
drug and its elimination rate. However, the PK phase can
contain as many compartments as necessary to describe
the drug distribution in organs and drug decomposition.
The PD phase has a direct effect on the viral dynamics
by means of the drug efficacy which is usually given by
the EC50 value, which is the drug concentration level at
which provides the 50% of drug efficacy. On the other
hand, the viral dynamics module integrates diverse host
dynamics that are important for the study of the infection
and the treatment. In this framework, the PK/PD-based
control compute the quantity of drug accounting for the
drug compartments, drug efficacy, drug intake frequency,
and host-related dynamics.

4. PK/PD-BASED HIV TREATMENT

4.1 HIV and drug dynamics

Recent clinical observations contemplate that the early
initiation of cART is central for the gradual and successful
contraction of the HIV reservoir (shrink), which must be
eventually depleted. These therapeutic strategies focus on
kicking (activate) the latent reservoir and reinforcing the
clearance (kill) of virus-infected cells, this scheme is known

as the “kick-kill” strategy [Hernandez-Vargas (2017)]. In
this sense, the time window for the effective performance
of a “shrink-kick-kill” strategy, while the early phase of the
infection shows limited reservoirs, is narrow but decisive,
see Fig. 2.

V
ir

a
l 
lo

a
d

Time

Fig. 2. Treatment strategies for HIV. cART drives
to a sterilizing or a functional cure by managing
a controlled viremia below the limit of detection
[Hernandez-Vargas (2017)].

The model herein employed considers the infected and
healthy (uninfected) active CD4+ T cells, given by Ti
and T , respectively. It also incorporates the infected and
uninfected macrophages, Mi and M , respectively, and the
HIV, V . The model writes as follows [Hernandez-Vargas
and Middleton (2013)]:

Ṫ (t) = s1 +
p1

V (t) + C1
T (t)V (t)

(
1− D(t)

D(t) + EC50

)
−δ1T (t)− k1T (t)V (t), (16)

Ṫi(t) = k1T (t)V (t)

(
1− D(t)

D(t) + EC50

)
− δ2Ti(t), (17)

Ṁ(t) = s2 +
p2

V (t) + C2
V (t)M(t)− δ3M(t)

−k2M(t)V (t), (18)

Ṁi(t) = k2M(t)V (t)− δ4Mi(t), (19)

V̇ (t) = k3Ti(t)

(
1− D(t)

D(t) + EC50

)
+ k4Mi(t)

−δ5V (t), (20)

Ḋ(t) =−δDD(t), t 6= τj , τj 6 t < τj+1 (21)

D(τ+j ) =UD(τj) +D(τ−j ), t = τj . (22)

The CD4+ T cells and macrophages growth rates are
p1 (0.01 day−1) and p2 (0.003 day−1), respectively, with
carrying capacities C1 (300 copies/mm3) and C2 (220
copies/mm3), respectively. Free virus infects CD4+ T cells
at rate k3 (4.57×10−5 mm3/day copies). CD4+ T cells
die at rate δ1 (0.01 day−1). The new cell source terms
are s1 (10 cells/mm3day) and s2 (0.15 cells/mm3day).
The clearance of infected CD4+ T cells is δ2 (0.4 day−1).
The free virus infects macrophages at rate k2 (4.33×10−8

mm3/day copies). Mi and M die at rate δ4 (1×10−3

day−1) and δ3 (1×10−3 day−1), respectively. Furthermore,
infected CD4+ T cells and macrophages produce virus
at rates k3 (38 copies/cell day) and k4 (35 copies/cell
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day), respectively. The clearance of virions (viral parti-
cles) is δ5 (2.4 day−1). δ5 (2.4 day−1) is the clearance of
viral particles. CD4+ T cells initiates as 1000 cells/mm3

and macrophages as 150 cells/mm3, the infected cells are
initiated zero and the initial viral load as 10 copies/ml
[Hernandez-Vargas and Middleton (2013)]. For drug ef-
fects, the PK phase is modeled by the constant decay
compartment (21) considering the drug amount available
(D) and the rate of drug elimination δD (1.5 days−1). The
PD phase considers the EC50 (42 mg) parameter. The
drug intake fixed time is given by τj , where j = 24 ×
1, 2, · · · , which guides the sequence of drug intakes, in
this case, each 24 h. The HIV system (16)-(21) does not
consider the mutation process of HIV and the action of
different drugs in the treatment, however, we investigate
the treatment tailoring using a unified efficacy framework
of HIV drugs and the adaptive scheme of drug dose under
PK/PD control-based tailoring.

4.2 PK/PD-based HIV treatment

For the impulsive control law (13) in HIV treatment, we
consider matrix Pj(HIV ) = diag(1000) and umax = 1000
mg as the maximum drug dose per intake. We further use
the absolute value of the control law and matrix R to
produce only positive values of drug amounts. The state
vector form is x(t) = [T (t), Ti(t),M(t),Mi(t), V (t), D(t)]
and g(x(τj)) = [0, 0, 0, 0, 0, 1] to form matrices Pα(x(τj))
and Pβ(x(τj)) of control law (13).
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Fig. 3. Effects of PK/PD-based control treatment
in HIV viral load. A) case without treatment, B-
D) depict treatments initiated at 2, 4 and 6 ypi,
respectively. Zoom windows allow identifying the viral
impulsive elimination from the treatment initiation.
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Fig. 4. PK/PD-based treatment effects on CD4+ T
cells and infected macrophages. A) case without
treatment, B-D) depict treatments initiated at 2, 4
and 6 ypi, respectively.
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Fig. 5. Drug amount under PK/PD-based treat-
ment. A-B) Intake drug amount initiating at 2 and 4
ypi, respectively. C) Intake drug amount initiating at
6 ypi. Zoom windows allow identifying the impulsive
drug input from the treatment initiation.

Fig. 3 and Fig. 4 show the viral load behavior under the
impulsively controlled PK/PD-based treatment as well as
the CD4+ T cells and macrophages dynamics, respectively.
In both figures, panel A shows a case without treatment.
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While the virus continuously grows without treatment
(Fig. 3-A), a complete collapse of T cells counts can be
observed about 10 years post-infection (ypi) which coexist
with the extensive growth of infected macrophages (Fig.
4-A). Treatments that initiate 2 or 4 ypi (Fig. 3-B,C)
manage to maintain the virus under detectable levels for
the complete simulation time (30 years), which is related
to the elimination of infected macrophages (Fig. 4-B,C).
However, the treatment that initiates 6 ypi does not
succeed in maintaining the viral load without further grow
after 14 ypi (Fig. 3-D), which is mainly due to the high
level of infected macrophages when the treatment initiates
(Fig. 3-D), as well as the low number of CD4+ T cells at
this time point.

Regarding the drug amount and intake dynamics, Fig. 5
portraits the drug dynamics for treatment initiation at
2, 4 and 6 ypi. The inverse optimal controller sets the
amount of drug for each intake based on viral dynamics
and PK/PD behavior, note that while for the treatment
initiated 2 ypi the drug doses reach less than 60 mg, the
treatment initiating at 4 ypi reaches almost 80 mg, both
in the first years of treatment (Fig. 5-A,B). This shape is
mainly because of the low viral load in these cases. When
initiating the treatment at 6 ypi (Fig. 5-C), the control-
based amount of drug rapidly reaches more than 60 mg and
continues to try to eliminate the viral load through high
drug dose (almost 800 mg), however, the great number
of infected macrophages cooperate to produce higher viral
load, which leads to a point of no return in HIV infection.

5. PK/PD-BASED INFLUENZA TREATMENT

5.1 Influenza and drug dynamics

The antiviral action dynamics represent the drug’s impul-
sive change at every treatment intake (schedule), where
the change magnitude is given by the control policy. The
within-host model for influenza treatment considers the
virus (V ), the infected cells (I) and uninfected cells (U),
the model writes as follows [Hernandez-Mejia et al. (2019)]

V̇ (t) = p

(
1− OC(t)

OC(t) + EC50o

)
I(t)− cV (t), (23)

U̇(t) =−βU(t)V (t), (24)

İ(t) = βU(t)V (t)− δI(t), (25)

ȮP (t) = kaG(t)− kfOP (t), (26)

˙OC(t) = kfOP (t)− keOC(t), (27)

Ġ(t) =−kaG(t), t 6= τj , τj 6 t < τj+1 (28)

G(τ+j ) =UG(τj) +G(τ−j ), t = τj . (29)

Parameter values for equations (23)-(28) are β (0.19×10−2

ml/d·TCID50), δ (2.6 days−1), p (70×10−5 TCID50/d·ml)
and c (6 days−1). The initial conditions for the influenza
system were taken from [Handel et al. (2007)], these are
1× 10−5 TCID50/ml for the virus, the uninfected cells as
4× 108 cells and zero for infected cells.

The PK oseltamivir model is given by a three-compartment
model representing the oseltamivir phosphate (OP ), the
active metabolic compound form oseltamivir carboxylate

(OC), and the depot compartment (G) of dose adminis-
tered before the adsorption in the blood at rate ka [Davies
(2010)]. The initial values of the drug’s depot compart-
ment, as well asOP (0) andOC(0), are zero (mg), changing
only when the dose takes place. The parameter values of
the drug are ka (24.24 days−1), kf (16.41 days−1) and
ke (3.26 days−1). ka is considered to be reduced with a
decay rate of 7.31 after a dose intake [Canini et al. (2014);
Wattanagoon et al. (2009)]. On the other hand, the value
of the oseltamivir PD phase, EC50o, ranges between 0.0008
to > 35 µM, where 1µM = 0.284 µg/mL [La Roche Ltd
(2019-Online)]. Based on oseltamivir treatment data, we
consider 0.028 µM, comparable to ca. 0.4 mg [Hernandez-
Mejia et al. (2019)].

5.2 PK/PD-based influenza treatment

We compare the control-based treatment with the current
FDA recommended treatment with doses of 75 mg of
oseltamivir at τj , with j = 12×1, 2, · · · , standing for a drug
intake each 12 h for 7 days. The control-based treatment
considers umax = 75 mg and the same impulsive instants
τj . For the control law (13), the matrix Pj(IAV ) is as follows

Pj(IAV ) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0.00039
0 0 0 0 0.00039 1

 .
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Fig. 6. Influenza viral load. The current FDA treatment
scheme with fixed-dose in solid line. PK/PD-based
treatment in dashed line and viral load without treat-
ment in dash-dotted line.

In addition, we select the order of the state vector as
follows x(t) = [G(t), CO(t), OP (t), U(t), I(t), V (t)] and
g(x(τj)) = [0, 0, 0, 0, 0, 1] to form matrices Pα(x(τj)) and
Pβ(x(τj)) of control law (13). We also use the absolute
value of the control law and matrix R for positive values
of drug amounts. Influenza treatment following FDA and
control-based schemes manage to eliminate the viral load
after 3 days post-infection (dpi) initiating treatment one
dpi, shown in Fig. 6. Importantly, while both schemes
equally eliminate the viral load, the PK/PD control-
based treatment administered 30% less total drug (630
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Fig. 7. Drug dynamics of fixed- and controlled-dose.
A) Dynamics of oseltamivir depot compartment G.
B) Dynamics of OC compartment. The control-based
dose is considerably reduced as the viral load goes
down (Fig. 6).

mg) than the FDA scheme (900 mg). Note that PK/PD-
based treatment in Fig. 7 greatly decreases the drug
input amounts after 5 dpi. We use the treatment efficacy
indicator (Ef ) considering the area under the viral curve
(V C) without treatment, and the area under the viral
curve with treatment (V Ct), that is Ef = 100(1− V Ct

V C )%.
Both case treatments reach more than 98% of efficacy.

6. CONCLUSION

We tailor treatment policies for infectious diseases such
as HIV and IAV integrating an inverse optimal impulsive
control scheme. The controller considers PK/PD and viral
dynamics for successful viral mitigation. Further advances
in state estimation approaches using neural networks and
polynomial models may add to the advantages of exper-
imental outcomes, adding solutions to limitations in the
clinical practice.
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