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Abstract:
Commonly used models of genetic circuits assume a well-mixed ensemble of species. However,
experimental data suggests that appreciable spatial heterogeneity exists in bacteria cells. There
exists no unified modeling framework to capture this spatial phenomena. To this end, we
model spatial heterogeneity inside bacterial cells and propose a simple framework that accounts
for spatial information. In this document, we start with a generic spatial-temporal partial
differential equitation (PDE) model. Then, we exploit time scale separation between diffusion
and the reaction dynamics to derive a reduced model consisting solely of ordinary differential
equations (ODEs). This result is then applied to study an enzymatic-like reaction. It is shown
that spatial heterogeneity modifies the binding strength between two species that reversibly
bind to each other. We show that the modified binding rate for certain cases can be larger or
smaller than that of a well-mixed model. Therefore, this work takes a step forward towards
creating a general and simple framework to model spatial heterogeneity in bacterial cells and
thus improving the predictive power of current models that are used to design genetic circuits
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1. INTRODUCTION

Deterministic models of gene networks typically assume a
well-mixed ensemble of species inside the cell (Del Vecchio
and Murray (2017)). However, it is well known that spa-
tial heterogeneity is prevalent inside the cell (Wingreen
and Huang (2015); Weng and Xiao (2014)). Depending
on the origin of replication, plasmids tend to localize
within bacterial cells (Wang et al. (2016)). Furthermore,
chromosome genes are distributed in the cell according to
the chromosomes complex spatial structure. In bacterial
cells, any species freely diffusing through the chromosome
(e.g., mRNA, ribosome, and protease) experiences what
are known as excluded volume effects, which is the ten-
dency for the species to be ejected from the nucleoid due
to the space occupied by the dense DNA mesh (Castellana
et al. (2016)). These excluded volume effects for ribosomes
and RNAP in bacteria have been observed experimentally
(Bakshi et al. (2012)).

Despite the strong evidence against a well-mixed model,
no standard modeling framework exists for genetic circuits
that captures the spatial-temporal organization inside the
cell. Furthermore, current approaches that rely solely
on numerical simulations of partial differential equations
(PDEs) may be impractical for genetic circuit design.

In this abstract, we present a model reduction strategy
starting from a system of coupled PDEs and ODEs to
a reduced system of ODEs via timescale separation be-
tween diffusion and the reaction dynamics. By applying
this result to an enzymatic-like reaction, we demonstrate
that the reduced model accounts for spatial heterogene-
ity in the spaced averaged dynamics by multiplying the
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association rate constant of bimolecular interactions by
a correction factor that depends on spatial information.
Thus, this reduced model has similar computational cost
as current well-mixed models, yet it captures spatial ef-
fects. Specifically, we focus on capturing excluded vol-
ume effects and gene location information. We analyze
the correction factor in two different cases: when the en-
zyme and substrate both diffuse (mRNA-sRNA, protein-
protease- mRNA-ribosomes) and when the enzyme diffuses
and the substrate is fixed in space (transcription factor-
DNA,protein-membrane). This analysis provides insight
into how effectively species interact depending on their
size and the location where they are fixed.

2. RESULTS

Notation: Let z = [z1, . . . , zn]T ∈ Rn (where superscript T
denotes the transpose operation) and the j-th component
of z is denoted by zj . A vector of zeros is denoted as
0n = [0, . . . , 0]T ∈ Rn and we use A = diag(u) ∈ Rn×n to
refer to a square matrix with all zeros in the off-diagonals
and diagonal elements specified by the vector u ∈ Rn.
Rn+ denotes the positive orthant of Rn. Let Ω = (0, 1),

Ω = [0, 1], ∂Ω = {0, 1}.
The model used to capture intracellular species interacting
as they diffuse inside the cell is now introduced. As in
Castellana et al. (2016), we assume the cell to have a
cylindrical geometry, angular symmetry, and radial ho-
mogeneity such that the concentration of a species varies
only axially (the spatial x direction). Symmetry relative
to the mid-cell is assumed and hence only half of the
cell is considered; x ∈ [0, 1], where x = 0 is at the
mid-cell and x = 1 is at the cell poles. Furthermore,
we assume a constant cross-sectional area along the axial

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 16957



direction. Let v : Ω̄ → Rnd+ be a smooth vector-valued
function and V (x) = diag(v(x)). For the state vectors
zs(t, x) ∈ L2(Ω,Rns) and zd(t, x) ∈ L2(Ω,Rnd), consider
the following reaction diffusion system:

∂zs(t, x)

∂t
= fs(t, x,zs, zd), t > 0, x ∈ Ω̄, (1a)

∂zd(t, x)

∂t
=

1

ε
L(zd) + fd(t, x,zs, zd), t > 0, x ∈ Ω,

(1b)

V (x)
d

dx

[
V −1(x)zd(t, x)

]
= 0n t > 0, x ∈ ∂Ω (1c)

zs(0, x) = zs,0(x), x ∈ Ω, (1d)

zd(0, x) = zd,0(x), x ∈ Ω, (1e)

Li(zd) = Di
d

dx

[
(vi(x))2 d

dx

[zid(t, x)

vi(x)

]]
, (1f)

Di ∈ R+ , ε ∈ R+, fs : [0,∞)× Ω̄×Rns ×Rnd → Rns and
fd : [0,∞)× Ω̄× Rns × Rnd → Rnd are smooth nonlinear
functions, zis,0 : Ω̄ → R+, and zid,0 : Ω̄ → R+. In (1), zs
corresponds to spatial fixed species (e.g., DNA) and zd to
diffusing species (e.g., Ribosomes).

The expression for the flux dynamics (1f) was derived in
(Castellana et al. (2016)) and captures excluded volume
effects via vi(x), which is the fraction of volume available
for a species to diffuse within the chromosome mesh. DNA
localization can be modeled explicitly in fs.

Next, we define the candidate reduced order model that
will serve as an approximation to (1) in the limit of fast
diffusion (ε→ 0+).

Definition 1. (Reduced slow dynamics) Let the state
vectors ẑs(t, x) ∈ Rns and ẑd(t, x) ∈ Rnd satisfy

∂ẑs(t, x)

∂t
= fs(t, x, ẑs, ẑd), t > 0, x ∈ Ω̄, (2a)

∂ẑd(t, x)

∂t
= V̂ (x)

∫
Ω

fd(t, x, ẑs, ẑd), t > 0, x ∈ Ω̄, (2b)

ẑs(0, x) = zs,0(x), x ∈ Ω, (2c)

ẑd(0, x) = V̂ (x)

∫
Ω

zd,0(x). (2d)

where V̂ (x) = V (x)∫
Ω
V (x)

. From (2), the dynamics for the

fixed species are the same as (1a) , but for the diffusing
species, they take place in the null space of (1f) (span of
vi(x)) and thus

ẑd(t, x) = V̂ (x)ˆ̄zd(t) (3)

where ˆ̄zd(t) =
∫

Ω
ẑd(t, x). From (3) we see that ẑd(t, x)

mirrors V̂ (x) spatially.

The following result holds if the vector field [fs,fd]
points inwards at the boundaries of a closed convex subset
of Rnd+ns , which implies the set is positively invariant
(Weinberger (1975)), and if the reduced dynamics are
robust to an O(ε) disturbance. That is, solutions remain
O(ε) close when an O(ε) disturbance is present in the
dynamics. Main Result: Let zs and zd be given by (1)
and ẑs and ẑd be given by (2), in our work we show that
as ε→ 0+, there exists δ > 0 such that for all t ≥ 0:

zs(t, x) = ẑs(t, x) +O(e−
δ
ε t) +O(ε),

zd(t, x) = ẑd(t, x) +O(e−
δ
ε t) +O(ε).

3. APPLICATIONS

We consider an enzymatic-like reaction to apply our result
and highlight the role of spatial heterogeneity on bimolec-
ular dynamics. We model substrate S binding to enzyme
E to form product P. To account for spatial heterogeneity,
using the results in the previous section, one can consider
a standard ODE model derived from mass action kinetics
(Del Vecchio and Murray (2017)) corresponding to the
biochemical reactions given by:

E + S
aθ


d

c
κ−→ P + E + S, (4)

where c is the complex formed when E binds to S, a
is the association rate constant, d is the dissociation
rate constant, and κ is the catalytic rate of formation.
Spatial information is captured via parameter θ and it is
approximated using our theoretical results by θ∗. For a
well-mixed model θ = 1. We determine θ∗ for:
Case I: E and S both freely diffuse (e.g., mRNA (E) being
translated by ribosome (S))
Case II: E freely diffuses and S is spatially fixed at x = x∗

(e.g., RNAP (E) transcribing DNA (S))
For Case II, S spatially fixed at x = x∗ corresponds to its
production rate confined to a small region around x∗. A
graphical representation of θ∗ for Cases I-II is shown in
Figure 1 as species size and localization point x∗ vary.

For Case I, when E (size re) and S (size rs) are sufficiently
large, then θ∗ > 1 and thus always greater than that of the
well-mixed model (θ∗ = 1) and this discrepancy increases
with their size. The upper bound for θ∗ is 1/∆x (where
∆x is the distance between the end of the chromosome and
the cell poles ). Notice that if re/r

∗ � 1 and rs/r
∗ � 1

(or vice versa), then θ∗ ≈ 1 and thus a well-mixed model
is appropriate despite severe intracellular heterogeneity.

For Case II, when re/r
∗ � 1, then θ∗ ≈ 1. When

re/r
∗ � 1, then θ∗ < 1 (even zero) when the fixed species

is localized near mid-cell (x∗ ≈ 0) and θ∗ < 1 (upper
bounded by θ∗ is 1/∆x ) when the fixed species is localized
near the cell-poles (x∗ ≈ 1). There is a region near quarter-
cell (x ≈ 0.5) where θ∗ ≈ 1 for all values of re.

When (4) corresponds to an mRNA (E) binding to a
ribosome (S)(Case I), we can conclude that the rate of
translation predicted by a model that includes spatial
heterogeneity is higher than that of a well-mixed model.
This is because both the mRNA and the ribosome are
excluded out of the chromosome onto the cell poles and
thus are more likely to bind in this confined region.

When (4) corresponds to RNAP (E) binding to a DNA
(S) (Case II), we conclude that the rate of transcription
predicted by a model that includes spatial heterogeneity
depends on the location of the DNA. If the DNA is in
the cell-poles (mid-cell), then transcription higher (lower)
than that of a well-mixed model. Intuitively, as RNAP is
ejected from the chromosome via excluded volume effects,
it is more likely to bind to pole localized genes than those
near the dense chromosome.

4. CONCLUSION

In this extended abstract we performed model reduction of
a general diffusion-reaction system that includes freely dif-
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Fig. 1. θ∗ as species size and localization varies. (A)
Case I: θ∗ ≥ 1 and increases with the size of E and
S (upper bounded by 1/∆x). If E or S is sufficiently
small, then θ∗ ≈ 1. (B) Case II: For sufficiently small
E, then θ∗ ≈ 1. When E is sufficiently large, then if
x∗ ≈ 0, it implies that θ∗ < 1 (may even be zero) and
if x∗ ≈ 1, it implies that θ∗ > 1 (upper bounded by
1/∆x). Here, ∆x is the distance between the end of
the chromosome and the cell poles.

fusing and stationary species within the cell via time scale
separation between the diffusion and reaction dynamics.
The reduced model consists of a set of pointwise ODEs
with no spatial differential terms. By applying our result
to an enzymatic-like reaction, we showed that the space
averaged dynamics corresponding to the reduced model
incorporates spatial heterogeneity by modifying the associ-
ation rate constant between the enzyme and the substrate.
In the case where both the enzyme and substrate diffuse
freely, the effective binding is greater than that of a well-
mixed model and increased with the size of both species. In
the case where the enzyme freely diffused but the substrate
is fixed at some spatial location, then the effective binding
is greater (smaller) than that of a well-mixed model when
the substrate is localized near the cell poles (mid-cell) and
this discrepancy increased with the size of the enzyme. We
also showed that a well-mixed model may be appropriate
despite severe intracellular heterogeneity.

The reactions in (4) can easily be extended to the case
where n enzymes compete for a common substrate. The

interaction between each enzyme and the substrate will get
their own modification factor. This could be used to model
n mRNA competing for ribosomes or n transcription
factors binding to a single gene. We applied our results of
Case I, to model freely diffusing mRNA’s being translated
by freely diffusing ribosomes, but we can easily consider
co-transcriptional translation (this falls under Case II).

In future work we will address the case when part of the
reaction dynamics are of the same timescale as diffusion
(e.g., fast binding and unbinding). Preliminary work sug-
gest that all results provided here apply in the case of
fast binding and unbinding. Future models should capture
crowding (Tabaka et al. (2014)), although (1f) accounts
for crowding (via the diffusion coefficient, see Castellana
et al. (2016)), but it may be modeled more explicitly in
the diffusion operator. Finally, we only assumed spatial
heterogeneity in a single dimension (axially), but in future
work to capture more spatially complex processes in the
cell (e.g., processes that occur near the cell membrane),
we would like to account spatial variations in the radial
and angular directions.
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