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Reinaldo Martinez Palhares ∗∗∗∗

∗Federal University of Amazonas, Department of Electricity, Manaus,
Brazil (email: iurybessa@ufam.edu.br)

∗∗Federal University of Minas Gerais, Graduate Program in Electrical
Engineering, Brazil (email: murilo.camargosf@gmail.com)

∗∗∗ Supervision, Safety and Automatic Control Research Center
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Abstract: This paper addresses the problem of dissipativity-based fault tolerant control (FTC)
based on fault hiding approach. In particular, a static reconfiguration block (RB) is used for
reconfiguration of faulty systems. Such block performs a loop transformation by inserting series,
feedback, and feedforward gains to a system including plant, sensor or actuator faults. The
proposed approach consists in recovering dissipativity and passivity conditions of a previously
dissipative system, ensuring that the reconfigured system has the same supply function of
the nominal system. Numerical examples illustrate how such approach can be used to recover
the asymptotic stability by fault hiding even for nonlinear systems. Furthermore, LMI-based
conditions for designing the proposed RB are provided for stability recovery for linear systems.
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1. INTRODUCTION

The dissipativity and passivity theory (Bao and Lee, 2007)
provides powerful tools for dynamic systems analysis based
on the intuitive energy balance concept, and eases the
investigation of the input-output stability problem (Kot-
tenstette et al., 2014; Khalil, 2000) as well as the analysis
of interconnected systems. For this reason, the dissipativ-
ity/passivity framework is used to design control systems
for several classes of systems, e.g., switched systems (Wu
et al., 2013) and networked systems (Hirche et al., 2009),
but there are few results for fault tolerant control (FTC).

FTC techniques are grouped into the active and passive
techniques. Passive FTC (PFTC) considers the fault as un-
certainty and designs controllers for achieving the control
goals even with the fault occurrence. Active FTC (AFTC)
modifies the controller or the control loop after a fault
detection in order to mitigate the fault effects. In (Yang
et al., 2008), the concept of global dissipativity and passiv-
ity is proposed to quantify the fault tolerance of dynamical
systems and decide if it is necessary to design an FTC
law for each fault mode. Dissipativity theory is also used
to obtain PFTC systems in some recent works (Sakthivel
et al., 2017; Selvaraj et al., 2017).

? This work was supported in part by the Brazilian agencies CNPq,
FAPEMIG, FAPEAM, in part by the PROPG-CAPES/FAPEAM
Scholarship Program, and in part by the 111 Project (No. B16014).

Among the AFTC techniques, the fault hiding is exten-
sively employed for systems with sensor and actuator
faults. Fault hiding consists in inserting a reconfiguration
block (RB) between the faulty plant and the controller to
correct the sensor measurements sent to the controller and
translate the control signals provided by the controller that
does not receive the information about fault occurrence.
Fault hiding does not require controller redesign, i.e., it
allows using the same controller designed for the nominal
(fault-free) system during the fault occurrence. The RBs
can be virtual sensors, used for sensor faults, or virtual
actuators, used for actuator faults. Most of fault hiding
applications are concerned with linear systems (Steffen,
2005), but there are also applications for nonlinear systems
represented by linear parameter varying (Rotondo et al.,
2018), Hammerstein-Wiener (Richter, 2011), and Takagi-
Sugeno fuzzy models (Bessa et al., 2020).

In this work, a static RB is used to mitigate the fault
effects and ensure the stability of the reconfigured system
by means of passivity and dissipativity recovery for faulty
(linear or nonlinear) systems. Compared with the previ-
ously published fault hiding approaches in the literature,
the proposed dissipativity-based approach and static RB
are able to mitigate both sensor and actuator faults simul-
taneously by means of the same RB and to ensure the re-
covering of exactly the same dissipativity properties as the
healthy scenario, implying the recovering of stability and
robustness properties. Furthermore, it is able to handle
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even nonlinear systems without polytopic representations
unlike the previous nonlinear approaches (Bessa et al.,
2020; Rotondo et al., 2018; Richter, 2011). In summary,
the main contributions of this work are:

• to define the passivity and (Q,S,R)-dissipativity re-
covery by fault hiding;

• to establish the relation between passivity and
(Q,S,R)-dissipativity recovery by fault hiding and the
asymptotic stability recovery for nonlinear systems;

• to provide conditions for stability recovery after sen-
sor, actuator, and plant faults.

The remaining of this paper is organized as follows: Sec-
tion 2 discusses general aspects about dissipativity, and
states the problem of stability and dissipativity recovery
by fault hiding. Sections 3 and 4 describe the main con-
tributions of this work, i.e., new conditions for asymptotic
stabilization of faulty systems by means of passivity and
dissipativity recovery with RBs. Section 5 presents an
application example. Finally, Section 6 draws the main
conclusions.

Notation. For a matrix M , M � (≺) 0 means that M is
a positive (negative) definite matrix; M> is its transpose;
the identity matrix of dimension n is denoted by In and
the null matrix of order n × m by 0n×m; He {M} denotes
He {M} = M + M>; in a symmetric block matrix, ’?’ is
the term deduced by symmetry. The notation (Σ1, . . . , Σn)

denotes the system obtained through the interconnection
of the subsystems Σ1, Σ2, ..., and Σn.

2. PRELIMINARIES

2.1 Dissipativity and Stability

Dissipativity is a useful concept for dynamic system anal-
ysis that allows to investigate their stability by means of
the energy balance, i.e., the difference between the stored
and supplied energy. A system is said to be dissipative if
its stored energy, represented by the temporal derivative of
a positive semidefinite continuously differentiable storage
function, is always less than or equal to the supplied
energy, represented by a supply rate function.

Different supply functions can be used for dissipativity
analysis. An important case is the (Q,S,R)-dissipativity
that assumes the following supply rate function

S (u(t), y(t)) = y(t)>Qy(t) + 2u(t)>Sy(t) + u(t)>Ru(t), (1)

where u(t) and y(t) are the input and output signals of the
system and Q = Q>, S, and R = R> are the parameters of
the supply rate function.

The (Q,S,R)-dissipativity eases the asymptotic stability
analysis, since that a (Q,S,R)-dissipative system is asymp-
totically stable if Q ≺ 0 (Hill and Moylan, 1976).

Passivity is a special case of dissipativity, i.e., a system is
said to be passive if it is dissipative w.r.t. the supply rate
S(u(t), y(t)) = u(t)>y(t) and it is said strictly passive if it is
dissipative with respect to the supply rate S (u(t), y(t)) =

u(t)>y(t) + ψ (x(t)) for some positive definite function ψ.

Dissipativity theory provides an effective tool for analysis
of interconnected systems. Lemma 1 summarizes some

results on dissipativity and stability of a feedback inter-
connection between two systems (Khalil, 2000).

Lemma 1. Consider two systems interconnected by feed-
back, Σa : (ya, xa) = Ωa(xa(0), ua) and Σb : (yb, xb) =

Ωb(xb(0), ub), such that (Σa, Σb) : (ȳ(t), x̄(t)) = Ω̄ (x̄(0), w(t)),

where x̄ =
[
xa(t)> xb(t)>

]>
, w̄ =

[
wa(t)> wb(t)>

]>
, ȳ =[

ya(t)> yb(t)>
]>

, ua(t) = wa(t)−yb(t), and ub(t) = wb(t)+ya(t).

• If Σa is strictly passive and Ωa is a passive memoryless
function, then the origin of (Σa, Σb) is asymptotically
stable with wa(t) = wb(t) = 0.

• If Σa and Σb are strictly passive, then the origin of
(Σa, Σb) is asymptotically stable with wa(t) = wb(t) = 0.

• If Σa and Σb are (Qa,Sa,Ra)- and (Qb,Sb,Rb)-dissipative,
respectively, then (Σa, Σb) is (Q̄,S̄,R̄)-dissipative with

Q̄ =

[
Qa +Rb Sb − S>a
S>b − Sa Qb +Ra

]
, S̄ =

[
Sa

1
2

He {Rb}
− 1

2
He {Ra} Sb

]
,

R̄ =

[
Ra 0

0 Rb

]
.

Furthermore, for wa(t) = wb(t) = 0, if Q̄ ≺ 0 then
(Σa, Σb) is asymptotically stable.

For the sake of simplicity the time indication is omitted of
the signals used in the remaining of this paper, e.g., x(t)

will be simply represented by x.

2.2 Problem statement

Consider the system ΣP subject to faults whose faulty
model is ΣPf

and is interconnected with a controller ΣC .
The fault hiding approach consists in inserting an RB ΣR

between the faulty plant and the controller, as depicted in
Fig. 1, to recover the nominal performance or stability.

ΣP

V̇o − So ≤ 0

ΣC

V̇c − Sc ≤ 0

yuc

ΣPf

V̇f − Sf ≤ 0

ΣC

V̇c − Sc ≤ 0

ypuc

ΣPf

V̇f − Sf ≤ 0

ΣR

ΣC

V̇c − Sc ≤ 0

yp

yruc

ur

V̇r − Sr ≤ 0

Nominal system Faulty system Reconfigured system

Fig. 1. Control reconfiguration by fault hiding.

In this paper, it is adopted the following RB ΣR proposed
in (Bessa et al., 2020)

ΣR :

{
yr = R1yp +R2up

ur = R3yp +R4up
(2)

allowing (ΣPf
, ΣR) to recover the dissipativity properties

and asymptotic stability of (ΣPf
, ΣR, ΣC).

The closed loop system (ΣP , ΣC) depicted in Fig. 2 is
modified by the RB ΣR described in (2) such that the
reconfigured closed loop is depicted in Fig. 3.

ΣP

ΣC

+

+

r

w

−

up yp

ycuc

Fig. 2. Nominal closed loop system (ΣP , ΣC).
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ΣPf

ΣC

+ R1R4+

R3

R2 +

+

−

r

w

up ur yp

yr

ycuc

(ΣPf
, ΣR)

Fig. 3. Equivalent reconfigured loop of (ΣPf
, ΣR, ΣC).

This paper addresses the problem of dissipativity recovery
by means of the RB described in (2), and the consequent
stability recovery. The following definitions 1 and 2 de-
scribe, respectively, the problems of stability and dissipa-
tivity recovery by fault hiding respectively.

Definition 1. Stability recovery by fault hiding
Let ΣP and ΣPf

be the nominal and the faulty models,
respectively, with dynamics described as follows:

ΣP :

{
ẋ = f(x, up)

yp = h(x, up)
(3)

ΣPf
:

{
ẋ = ff (x, ur)

yp = hf (x, ur)
(4)

both interconnected by feedback to controller ΣC . Assume
that the origin of (ΣP , ΣC) is asymptotically stable. ΣPf

is
stable by fault hiding if there exists an RB ΣR such that
the origin of (ΣPf

, ΣR, ΣC) is also asymptotically stable.

Definition 2. Dissipativity recovery by fault hiding
Let ΣP and ΣPf

be the nominal and the faulty models
with dynamics described, respectively, by (3) and (4).
Assume that ΣP is dissipative with respect to a supply
rate function S(t) with a positive semidefinite continuously
differentiable storage function V(x). ΣPf

is dissipative by
fault hiding if there exists an RB ΣR such that (ΣPf

, ΣR)

is also dissipative with respect to S(t).

Therefore, Sections 3 and 4 provide conditions for passivity
and (Q,S,R)-dissipativity recovery based on the obtaining
of storage and supply rate functions for the nominal case.
Afterward, it is designed an RB that is able to ensure that
the fault system is dissipative with respect to the same
storage and supply rate functions.

3. PASSIVITY RECOVERY BY FAULT HIDING

The following lemma provides sufficient conditions for
asymptotic stability of faulty systems by means of pas-
sivity recovery by fault hiding.

Lemma 2. Let ΣP and ΣPf
be the nominal and the faulty

models, respectively, with dynamics described as in (3)
and (4) interconnected, as depicted in Fig. 2, to a strictly
passive output feedback controller ΣC . Assume that ΣP

is strictly passive and that there exists a positive definite
continuously differentiable V(·) such that V̇ (x) < u>p yp. If
there exist R1, R2, R3, R4, such that the reconfigured plant
(ΣPf

, ΣR), as depicted in Fig. 3, is also strictly passive and
V̇ (x) < u>p yr for the same V(·), then ΣPf

is stable by fault
hiding with ΣR described in (2).

Proof. Since ΣP and ΣC are strictly passive, Lemma 1 en-
sures that the origin of feedback interconnection (ΣP , ΣC)

is asymptoticaly stable for w = 0 and r = 0, and, according

to the Lyapunov converse Theorem (Khalil, 2000), there
exist a smooth Lyapunov function V(x) and a continu-
ous positive definite function W1(x), such that ∂V

∂x
f(x, 0) ≤

W1(x). In addition, by assuming that W1(x) = u>p yp −ψ1(x),
for some positive definite ψ(x), it is possible to show that
ΣP is strictly passive with the storage function V(x). As-
sume that the same V(x) is taken as storage function for
(ΣPf

, ΣR). If there exists any ΣR, such that ∂V
∂x
ff (x, up) ≤

W2(x), then ΣPf
is dissipative by fault hiding with respect

to S = W2(x) = u>p yr − ψ2(x), according to Lemma 2, and
(ΣPf

, ΣR) is strictly passive. Finally, (ΣPf
, ΣR) and ΣC are

interconnected strictly passive as depicted in Fig. 3, and
Lemma 1 ensures that the unforced origin of (ΣPf

, ΣR, ΣC)

is asymptotically stable, therefore ΣPf
is stable by fault

hiding according to Definition 1. �

Example 1. (Adapted from (Khalil, 2000)) Let ΣP

and ΣPf
be, respectively, the nominal and faulty model for

the same system described as follows

ΣP :

{
aẋ = −x+ u

y = h(x)
, ΣPf

:

{
aẋ = −x+ f · u
y = h(x)

such that h(·) ∈ (0,∞) and 0 < f < 1. Consider that
the origin of (ΣP , ΣC) is asymptotically stable with the
strictly passive output feedback controller ΣC connected
as depicted in Fig. 2.

Considering V(x) =
∫ x

0
h(σ)dσ, it is possible to show that

V̇(x) < ucy, thus, ΣP is passive.

Using the same storage function V(x) =
∫ x

0
h(σ)dσ for the

configuration (ΣPf
, ΣR), it follows:

V̇(x)− ucyr = h(x)[−x+ f(R3h(x) +R4uc)]

−(R1h(x) +R2uc)uc < 0

Thus, if R1 = f · R4, R2 > 0, and R3 < 0, then V̇(x) < ucyr

implies that (ΣPf
, ΣR) is passive. Given that ΣC is strictly

passive, the origin of (ΣPf
, ΣR, ΣC) is stable, i.e.., ΣPf

is
asymptotically stable by fault hiding with ΣR such that
R1 = f ·R4, R2 > 0, and R3 < 0.

3.1 Passivity recovery for linear systems

The next theorem tackles the particular case of passivity
recovery for linear systems.

Theorem 1. Let ΣP and ΣPf
be the nominal and faulty

models, respectively, with dynamics described as follows

ΣP :

{
ẋ = Ax+Bup

yp = Cx
(5)

ΣPf
:

{
ẋ = Afx+Bfur

yr = Cfx
(6)

for the same plant interconnected to a strictly passive
output feedback controller ΣC , as depicted in Fig. 2.
Assume that there exists P = P> � 0, such that A>P +

PA ≺ 0 and B>P = C. The faulty system ΣPf
is stable by

fault hiding with ΣR described in (2) if there exist R1, R2,
R3, and R4 that satisfy, with the same P , the following
inequality:[

He
{
P
(
Af +BfR3C

)}
PBfR4 − C>f R

>
1

? −He {R2}

]
≺ 0. (7)

Proof. According to KYP lemma (Bao and Lee, 2007),
if there exists P = P> � 0, such that A>P + PA ≺ 0 and
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B>P = C, then ΣP is strictly passive. Given that ΣC is
also strictly passive, then Lemma 1 ensures that (ΣP , ΣC)

is asymptotically stable, since it is an interconnection of
strictly passive systems.

Lemma 2 indicates that the same storage function, with
the same matrix P , can be used to ensure the passivity of
the reconfigured plant (ΣP , ΣR). The reconfigured system
(ΣPf

, ΣR) is described as follows, with AR = Af + BfR3Cf ,
BR = BfR4, CR = R1Cf , and DR = R2:

(ΣPf
, ΣR) :

{
ẋ = ARx+BRuc

yr = CRx+DRuc
. (8)

Thus, according to KYP Lemma (Bao and Lee, 2007),
(ΣPf

, ΣR) is strictly passive if (7) is satisfied for some R1,
R2, R3, and R4. In this case, the closed-loop reconfigured
system (ΣPf

, ΣR, ΣC) is asymptotically stable according
to Lemma 1, since ΣC is also a strictly passive system.
Therefore, according to Lemma 2, ΣPf

is stable by fault
hiding with ΣR defined as (2). �

Remark 1. If ΣP is an SISO strictly passive system, ΣC is
a static output feedback controller such that uc = kyc and
k > 0, then the result of Theorem 1 is also valid, since it is
a passive memoryless function.

Example 2. Let ΣP be a heat exchange system model (Bao
and Lee, 2007), controlled by a static output feedback
controller ΣC : uc = yr, and described as in (5) with

A =

[
−690.87 279.17

69.254 −375.29

]
, B =

[
411.7 0

0 306.03

]
, C =

[
1 0

0 1

]
.

According to KYP lemma, ΣP is strictly passive for the
storage function V(x) = xTPx with

P =

[
0.0008 0.0003

0.0003 0.0017

]
. (9)

Consider that an actuator fault occurs such that Σ1
Pf

is

described as in (6) with

A1
f = A, B1

f =

[
0 0

0 275.4270

]
, C1

f = C.

The following RB Σ1
R is obtained based on Theorem 1 by

solving the LMI (7) using (9) and the LMILAB

R1
1 =

[
0.7179 0.3951

0.1019 1.3910

]
, R1

2 =

[
0.9715 0

0 0.9715

]
,

R1
3 =

[
0 0

−0.1327 −0.8374

]
, R1

4 =

[
1.9431 −1.0235

1.0235 2.1976

]
.

Consider now that a plant fault occurs such that Σ2
Pf

is

described as in (6) with

A2
f =

[
−461.7000 50.0000

69.2540 −375.2900

]
, B2

f = B, C2
f = C.

In this case, an RB Σ2
R is obtained based on Theorem 1

by means of LMILAB. The computed gains of Σ2
R are

described as follows:

R2
1 =

[
41.8884 −7.0504

17.3065 57.8189

]
, R2

2 =

[
38.3822 0

0 38.3822

]
,

R2
3 =

[
−127.0821 45.0768

24.1794 −86.7559

]
, R2

4 =

[
87.1790 34.6017

−32.6280 85.8490

]
.

Consider a third scenario with sensor fault occurrence such
that Σ3

Pf
is described as in (6) with

A3
f = A, B3

f = B, C3
f =

[
1 0

0 0

]
.

In this case, according to Theorem 1, an RB Σ3
R is obtained

with the following gains

R3
1 =

[
1.0669 −0.0476

0.0476 1.8886

]
, R3

2 =

[
0.9443 0

0 0.9443

]
,

R3
3 =

[
−1.5051 0

0.4646 0

]
, R3

4 =

[
2.0816 −0.2607

−0.0764 1.2709

]
.

Finally, suppose that the three faults above described
occurs simultaneously, i.e., Σ4

Pf
is described as (6) with

A4
f = A2

f , B4
f = B1

f , C4
f = C3

f .

In this case, according to Theorem 1, an RB Σ4
R is obtained

by means of LMILAB with the following gains

R4
1 =

[
0.4968 −0.0986

0.0986 1.4511

]
, R4

2 =

[
0.7255 0

0 0.7255

]
,

R3
3 =

[
0 0

−0.0560 0

]
, R3

4 =

[
1.4511 −0.1907

0.1907 0.9579

]
.

4. DISSIPATIVITY RECOVERY BY FAULT HIDING

The next lemma provides conditions for asymptotically
stabilization with RBs after a fault occurrence by means
of dissipativity recovery by fault hiding.

Lemma 3. Let ΣP and ΣPf
be nominal and faulty models,

respectively, with dynamics described by (3) and (4) for
the same plant interconnected, as depicted in Fig. 2, to an
output feedback controller ΣC . Assume that ΣP and ΣC are
respectively (Q,S,R)-dissipative with the storage function
V(·) and (Qc,Sc,Rc)-dissipative such that the following
inequality is satisfied[

Q+Rc Sc − S>

S>c − S Qc +R

]
≺ 0. (10)

If there exist R1, R2, R3, R4, such that (ΣPf
, ΣR) is also

(Q,S,R)-dissipative with the same storage function V(·),
then ΣPf

is stable by fault hiding with ΣR described in (2).

Proof. Assuming that ΣP is (Q,S,R)-dissipative, ΣC is
(Qc,Sc,Rc)-dissipative and (10) is satisfied. Then, the un-
forced origin of (ΣP , ΣC) is asymptotically stable according
to Lemma 1, and according to the Lyapunov converse
Theorem (Khalil, 2000), there exists a smooth Lyapunov
function V(x) such that ∂V

∂x
f(x, 0) < 0. Assume that the

same V(x) is taken as storage function for (ΣPf
, ΣR). If

there exists any ΣR, such that (ΣPf
, ΣR) is also (Q,S,R)-

dissipative, then (10) is still satisfied and therefore ΣPf
is

stable by fault hiding according to Definition 1. �

Example 3. Consider the nonlinear system with the
following nominal (ΣP ) and fault (ΣPf

) models:

ΣP :

{
ẋ = −4x3 − 4upx

yp = x2
, ΣPf

:

{
ẋ = 2x3 − 4urx

yp = x2
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interconnected as depicted in Fig. 2 to an output feedback
controller described as follows

ΣC :

{
ẋc = −xc + yr

uc = 1
2
xc

(11)

Adopting V(x) = 1
2
x2 as the storage function, ΣP is (Q,S,R)-

dissipative, i.e., V̇(x) ≤ S(yp, up) for the supply function
S(yp, up) defined in (1), if the following inequality is satis-
fied for some Q, S, and R

V̇(x)− S(yp, up) = −(Q+ 4)x4 − (2S + 4)upx
2 −Ru2p ≤ 0 (12)

Notice that (12) is satisfied with Q = −4, S = −2, and
R = 0. Similarly, adopting Vc(xc) = 1

2
x2c, ΣC is (Qc,Sc,Rc)-

dissipative if

V̇c(xc)− S(uc, yr) = −
(
Qc

4
+ 1

)
x2c − (Sc − 1) yrxc −Rcy

2
r ≤ 0

is satisfied for some Qc, Sc, and Rc, implying that Qc = −4,
Sc = 1, and Rc = 0. Note that Q, S, R, Qc, Sc, and Rc

satisfy (10), then the nominal system is asymptotically
stable. According to Lemma 3, ΣPf

is stable by fault
hiding if (ΣPf

, ΣR), as depicted in Fig. 3, is also (Q,S,R)-
dissipative. The model of (ΣPf

, ΣR) is described as follows

(ΣPf
, ΣR) :

{
ẋ = (2− 4R3)x3 − 4R4upx

yr = R1x2 +R2up
(13)

(ΣPf
, ΣR) is (Q,S,R)-dissipative with the same storage and

supply functions used for ΣP if there exist R1, R2, R3, and
R4 that satisfy V̇(x)− S(yp, up) ≤ 0, or equivalently

−
(
4R3 − 4R2

1 − 2
)
x4 − (4R4 − 8R1R2 − 4)upx

2

+
(
4R2 + 4R2

2

)
u2p ≤ 0 (14)

Therefore, any ΣR satisfying (14) recovers the asymptotic
stability of ΣPf

, e.g., R1 = 1
4
, R2 = − 1

2
, R3 = 3

2
, and R4 = 3

4
.

Remark 2. It is worth noticing that one of the main advan-
tages of the dissipativity- and passivity-based fault hiding
approaches proposed in this work is their applicability for
any nonlinear system since their storage and supply rate
functions are known, as illustrated in Example 3. Indeed,
such requirement is also the main drawback of the pro-
posed approaches, because obtaining such functions is still
a challenging task for nonlinear systems, although there
are some recent developments on data-driven estimation of
dissipative properties (Romer et al., 2019; Lei et al., 2016;
Tang and Daoutidis, 2019) that can effectively enable the
use of the proposed approach for any nonlinear system.

Theorem 2. Let ΣP and ΣPf
be the nominal and faulty

models, respectively, with dynamics described in (3)
and (6) interconnected (as depicted in Fig. 2) to an output
feedback (Qc,Sc,Rc)-dissipative controller ΣC . Assume that
there exist P = P> � 0, Q = Q> ≺ 0, S, and R = R> that
satisfy the inequalities (10) and[

He {PA} − C>QC PB − C>S>

? −R

]
� 0. (15)

For given P , Q, S and R satisfying (15), if there exist R1,
R2, R3, and R4 that satisfyQ−1 R1Cf R2

? He {PAR} PBfR4 − C>f R
>
1 S
>

? ? −R

 ≺ 0 (16)

with AR = Af +BfR3Cf , then ΣPf
is stable by fault hiding

with ΣR described in (2).

Proof. According to (Kottenstette et al., 2014), ΣP is
(Q,S,R)-dissipative with the storage function V(x) = x>Px

if and only if there exist P = P> � 0, Q = Q> ≺ 0, S, and R =

R> that satisfy (15). According to Lemma 1, assuming that
ΣC is (Qc,Sc,Rc)-dissipative, the unforced origin of nominal
closed-loop system (ΣP , ΣC), interconnected as depicted in
Fig. 2, is asymptotically stable if (10) is satisfied.

According to (Kottenstette et al., 2014), the reconfigured
system (ΣP , ΣR), interconnected as depicted in Fig. 3 and
described as (8), is (Q,S,R)-dissipative if and only if the
following inequality is satisfied[

He {PAR} − C>RQCR PBR − C>RS
> − C>RQDR

? −R−He
{
D>S

}
−D>RQDR

]
� 0.

(17)

According to Schur complement lemma, if (16) is satisfied,
given that Q ≺ 0, then the following inequality is also
satisfied, considering L ,

[
R1Cf R2

]
:[

A>RP + PAR PBfR4 − C>f R
>
1 S
>

? −R−He
{
D>S

} ]
− L>QL ≺ 0

that is equivalent to (17), i.e., (16) is sufficient to (ΣPf
, ΣR)

be (Q,S,R)-dissipative. Finally, if (10) and (16) are satis-
fied, then the unforced origin of (ΣPf

, ΣR, ΣC) is asymp-
totically stable by fault hiding, and ΣPf

is stable by fault
hiding with ΣR described in (2). �

5. APPLICATION EXAMPLES

Consider the aircraft yaw control described in (Lunze
and Richter, 2008), where the simplified and linearized
model as (5) is considered for the yaw angle ψ with

x =
[
xR xT ψ̇

]>
, u =

[
uR uT

]>
,

A =

[
−1 0 0

0 −1 0

0.27 0.13 −10−3

]
, B =

[
1 0

0 1

0 0

]
, C =

[
0

0

1

]>
where xR and xT are the states of the approximated first
order dynamics of rudder and turbine actuation systems
respectively, and uR and uT are, respectively, the rudder
deflection angle and the differential thrust.

The yaw dynamics is controlled by an output feedback
controller ΣC interconnected as depicted in Fig. 2

ΣC :


ẋc = −0.05xc + 0.05yr

up =

[
200

0

]
xc

Consider that such system is subject to an actuator fault,
such that its matrix Bf is described as follows Bf =

Bdiag {0, 1}. Two RBs are designed for this fault scenario:
Σp

R is designed for passivity recovery based on Theorem 1;
and Σd

R is designed for dissipativity recovery based on
Theorem 2. The obtained gains are the following

Rp
1 =

[
0.6202 −0.0556

0.0556 2.2842

]
, Rp

2 =

[
1.4630 0.4650

−0.3470 1.5252

]
,

Rp
3 =

[
0 0

−0.4187 0

]
, Rp

4 =

[
2.2842 −0.1227

0.1227 0.8143

]
,
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Fig. 4. Aircraft yaw control results.

Rd
1 =

[
0.5003 0

0 5.7735× 108

]
, Rd

2 =

[
0.4477 0.0049

0 0

]
,

Rd
3 =

[
0 0

−1.0675 0

]
, Rd

4 =

[
0 0

−0.0494 −0.0028

]
.

The results of the actuator fault simulation comparing the
reconfigured systems with Σp

R, Σd
R, and without RB are

depicted in Fig. 4 with initial condition
[
−1.25 1 0.15

]>
,

and with the fault occurring at t = 50 s. An impulse
disturbance is inserted at the output at t = 65s.

Fig. 4a depicts the output signals indicating that the
aircraft yaw becomes unstable without reconfiguration,
but both, Σp

R and Σd
R, recovers the stability after the

fault occurrence. Figs. 4b and 4c depict the control efforts
during the simulation of the rudder actuator uR and
differential thrust uT , respectively. Since the controller ΣC

initially does not use the differential thrust, when the fault
occurs the uR tends to increase and becomes unstable
when there is no RB. However, Figs. 4b and 4c indicate
that the RBs perform a control reallocation using the
other actuator to compensate for the fault and recover
the aircraft stability.

6. CONCLUSION

This paper presents novel fault hiding conditions based
on dissipativity theory. For this purpose, a static RB is
used by combining feedback, feedforward and series gains
to mitigate the fault effects. Such block can be used for
either actuator, sensor or plant faults, even for nonlinear
systems. The proposed approach consists in recovering the
supply function and consequently the passivity or dissipa-
tivity, after a fault occurrence. LMI-based conditions are
provided for stability recovery for linear systems by means
of passivity recovery and dissipativity recovery using fault
hiding. Numerical and application examples illustrate the
versatility and effectiveness of the proposed approaches.
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