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Abstract: This paper presents a two-phase hybrid prognostics approach; in the first phase,
the model’s parameters are estimated using available training data in the least squares sense
using the Levenberg-Marquardt algorithm. The second phase consists of using a particle filter
to update the knowledge acquired so far and to predict future states of the system using in the
Bayesian sense. The approach is used for an accelerated ball bearing data set, the PRONOSTIA
platform, where a general fractional polynomial model is proposed as degradation model. The
results of the Remaining Useful Life estimation are compared with another work in the literature,
indicating its suitability and competitiveness for prognostics in this data set.

Keywords: Prognostics and health management, remaining useful life, particle filter, hybrid
prognostics, accelerated ball bearings.

ACRONYMS

CBM Condition-based Maintenance
CDF Cumulative Distribution Function
FT Fault Threshold
GD Gradient Descent
GN Gauss-Newton
HI Health Index
LM Levenberg-Marquardt
MAPE Mean Absolute Percentage Error
PDF Probability Density Function
PF Particle Filter
PHM Prognostics and Health Management
RA Relative Accuracy
RMSE Root Mean Squared Error
RUL Remaining Useful Life

1. INTRODUCTION

In the last few decades, industry has been struggling to
guarantee high reliability and safety for critical systems.
These systems need maintenance due to their deterioration
or aging to prevent unexpected failures and increase the
reliability of such systems (Ma et al., 2019).
? This work was supported in part by the Brazilian agencies CNPq,
FAPEMIG, FAPEAM, in part by the PROPG-CAPES/FAPEAM
Scholarship Program, and in part by the 111 Project (No. B16014).

Maintenance policies are constantly evolving to become
more and more cheap and reliable. The earliest policy con-
sisted in unplanned actions in which the faulty component
would be replaced after a breakdown. As industrial system
becomes more complex, waiting for a breakdown could
potentially increase the costs of maintenance, leading to
the creation of preventive policies; a periodic time inter-
val for maintenance would be set regardless the asset’s
health status. This kind of policy would also represent
a major expense of industries since components would
be replaced without necessity. To handle these situations,
more efficient policies, such as Condition-based Mainte-
nance (CBM), need to be developed (Jardine et al., 2006).
In the context of CBM, Prognostics and Health Manage-
ment (PHM) enables the use of real monitoring data to
create relevant health indicators and trends (Jouin et al.,
2016). These indicators and trends aid in the system life-
cycle support by reducing and eliminating inspections
through incipient fault detection and prediction of im-
pending faults (Chen et al., 2012). According to Lei et al.
(2018), one major task in CBM is health prognostics which
consists in predicting the Remaining Useful Life (RUL) of
machinery. Prognostics is composed of four processes: data
acquisition, Health Index (HI) construction, health stage
division and RUL prediction.
The RUL prediction problem has been tackled by different
authors using different tools. One way to distinguish
between these methods is given in Liao and Kottig (2014),
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where three categories are presented, namely, experience-
based, data-driven and physics-based models. Experience-
based approaches usually take into account the historical
data and knowledge from experts to create degradation
models (Xu et al., 2014). Nevertheless, in practice, most
degradation phenomena are nonlinear, stochastic and non-
stationary, thus, it can be difficult to reuse models created
from experience data (Tobon-Mejia et al., 2012).
Physics model-based approaches rely on mathematical
models derived from physics of component to assess its
current and future health condition (Cubillo et al., 2016).
A widely used model is the Paris-Erdogan model for
crack propagation, since the physical model of bearing
degeneration is too complex (Liu et al., 2018). For state
propagation, a particle filter with a modified crack growth
model, based on Paris model, is used to predict the RUL
of bearings in Liu et al. (2018). For the same compo-
nent, Li et al. (2015) proposed an improved exponential
model based on Paris law for RUL prediction. However,
their restrict application is the main drawback of these
approaches, since it is difficult to model the physics of
damage in complex systems (Lei et al., 2018).
Data driven approaches includes, but are not limited
to, statistical and artificial intelligence models. Statistical
models generally predict RUL by fitting available observa-
tions into empirical models to be presented as a Probabil-
ity Density Function (PDF) conditioned on these available
observations (Si et al., 2011). In addition, artificial intelli-
gence approaches are able to deal with complex systems by
modeling degradation patterns disregarding any physical
models of the assessed system (Peng et al., 2010).
Statistical models such as stochastic processes are also
used for RUL prediction. A Wiener process is used in
(Li et al., 2019) to predict the RUL of a turbofan engine
considering variability between units. In prognostics, it
is common to use monotonic degradation indices; thus,
a Gamma process would be a better choice (Tsui et al.,
2015). In (Le Son et al., 2016) a non-homogenic Gamma
process is used to model degradation and RUL prediction.
However, a single empirical model may not be enough
when degradation path includes different fault modes. To
address this, an Interacting Multiple Model associated
with Takagi-Sugeno fuzzy systems is proposed in Cosme
et al. (2019). For a similar reason, an interacting diagnostic
hybrid bond graph associated with a particle filter is used
for RUL prediction of electrical circuits in (Yu et al., 2015).
In this work, a two-phase hybrid prognostics approach
is presented and applied to a real prognostics data set;
it consists in training and updating a general fractional
polynomial model through the Bayesian framework of
Particle Filter (PF). In summary, the main contributions
of this work are listed as follows:
• to define a new generic fractional polynomial model to

estimate degradation indices given data is available;
• to incorporate new measurements for updating the

proposed model by using a PF with initial conditions
optimized by means of the Levenberg-Marquardt al-
gorithm, enabling the l-steps ahead prediction of the
degradation index;

• to apply the proposed approach for prognostics in
a real data set of accelerated rolling bearings called
PRONOSTIA 1 .

The remainder of this paper is organized as follows.
Section 3 illustrates the PF framework for Bayesian state
estimation. Section 2 introduces the proposed model for
state prediction and shows how the RUL is predicted using
the PF. In Section 4, the PRONOSTIA data set is detailed
and the prognostics results using the proposed model are
compared with another model’s results. Finally, Section 5
concludes the present work.

2. DEGRADATION MODEL

To deal with nonlinear HIs, allowing their propagation
several steps ahead, the following generic fractional poly-
nomial model is proposed

x̂k(θ) = θ1 + θ2k
θ3 + θ4x

θ5
k−1. (1)

Since the used HI provides high trendability, i.e., it has
a strong correlation with the time index, adding the time
step k into the degradation model (1) is reasonable.
Considering that the degradation model at a given time
step k is given by a nonlinear function of nψ past states
with known parameters

x̂k = g(xk−1, . . . , xk−nψ ;θ), (2)
where θ ∈ Rnθ is the estimated parameter vector from a
data set X ∈ Rnd and g : Rnψ 7→ R. The parameter vector
is estimated by minimizing the sum of weighted squares of
the residuals generated by the candidate fit function (2),
as shown below

χ2 (θ) =
nd∑

k=nψ+1

[
xk − g(xk−1, . . . , xk−nψ ;θ))

σk

]2

=
nd∑

k=nψ+1

[
xk − x̂k
σk

]2

= (X − X̂)>W (X − X̂) = R>WR, (3)
where σk is the measurement error for measurement xk
and R is the vector of residuals. Typically, the weighting
matrix W is diagonal with wkk = 1/(σk)2 (Gavin, 2019).
Since (2) is nonlinear in the parameters θ, (3) must be
minimized iteratively, with the goal of finding a perturba-
tion h to the parameters θ that reduces the error.
The Levenberg-Marquardt algorithm is chosen as opti-
mization algorithm because it combines the features of the
Gauss-Newton (GN) and Gradient Descent (GD) methods
while avoiding their most serious limitations (Marquardt,
1963). The parameter increments (hlm) are computed
adaptively by weighting between GN and GD updates
through the solution of[

(J>WJ) + ξ I
]
hlm = J>WR, (4)

where J = ∂x̂/∂θ is the Jacobian matrix, ξ is a damping
parameter to balance between GN and GD updates. The
damping parameter starts large, favoring the GD incre-
ments; as the solution improves, ξ decreases, leading the

1 Provided for the PHM IEEE 2012 Prognostic Data Challenge.
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solution to a local minimum through GN. Furthermore, ξ
increases whenever there is a worse approximation, that is

χ2(θ + hlm) > χ2(θ). (5)

In order to use the PF for state estimation in the new unit,
the initial distributions of the tracked parameters must be
provided. Once the initial set of parameters θ is estimated
through Levenberg-Marquardt, its covariance matrix can
be used as their initial distribution as

cov[θ̂] = (J>J)−1R>R

nd − nθ + 1 . (6)

3. NONLINEAR BAYESIAN STATE ESTIMATION

An important part of prognostics is the identification
of model’s parameters that affects its behavior. In cases
where this model is linear with Gaussian noise, Kalman
Filters yields the exact PDF of the parameters. However,
nonlinear models with non-Gaussian noise requires an-
other approach, such as the PF, that uses samples to con-
struct the posterior distribution of the model’s parameters
(An et al., 2013).
Considering a system described by the following state
space model:

xk = fk(xk−1,ωk), (7)
zk = hk(xk,νk), (8)

where xk ∈ Rnx is the system’s state at time index k,
zk ∈ Rnz is the system’s measurement at time index k,
fk : Rnx × Rnω 7→ Rnx is the state transition function,
hk : Rnx × Rnν 7→ Rnz is the measurement function,
ωk ∈ Rnω is an independent identically distributed (i.i.d.)
state noise vector of a known distribution, and νk ∈ Rnν is
an i.i.d. measurement noise vector of a known distribution.
The Bayesian technique aims at estimating the system’s
state xk, given the set of available measurements z1:k
through the steps of prediction and update. The prior
information is assumed to be known and p(x0|z0) ≡
p(x0). In the prediction step, the objective is to find the
prior PDF of the state p(xk|z1:k−1), using the Chapman-
Kolmogorov equation, in the following way:

p(xk|z1:k−1) =
∫
p(xk|xk−1) p(xk−1|z1:k−1) dxk−1, (9)

where p(xk|xk−1) is defined as (7). At time instant k,
a new measurement zk is done; then, the second step
updates the prior distribution using via Bayes’ rule:

p(xk|z1:k) = p(xk|z1:k−1) p(zk|xk)
p(zk|z1:k−1)

= p(xk|z1:k−1) p(zk|xk)∫
p(xk|z1:k−1) p(zk|xk) dxk

. (10)

To compute the normalizing constant in (10), the evalua-
tion of complex high-dimensional integrals is required (Zio
and Peloni, 2011). The PF overcomes it by representing the
required posterior distribution as a set of Ns random sam-
ples associated with weights {xi0:k, w

i
k}
Ns
i=1 through Monte

Carlo simulations. As Ns →∞, the true posterior density
is estimated by (Arulampalam et al., 2009):

p(xk|z1:k) ≈
Ns∑
i=1

wik δ(xk − xik). (11)

The particles’ weights can degenerate over time, i.e., all
but one particle will have negligible weights. One approach
to overcome this problem is to re-sample the weights. The
strategy adopted in this paper is the inverse Cumulative
Distribution Function (CDF) method, in which the CDF
of the likelihood function p(zk|xk) and the particles are
randomly chosen according to a uniform distribution. This
CDF will have Ns values and the particle is chosen as
inf{i | 1 ≤ i ≤ Ns,CDFi ≥ ui}, where ui ∼ U(0, 1). This
procedure is repeated Ns times to generate the set of re-
sampled particles.

3.1 RUL computation procedure

The l-step posterior distribution, using the state transition
function (7), is computed by

p(xk+l|z1:k) =
∫
· · ·
∫ k+l∏

j=k+1
p(xj |xj−1) p(xk|z1:k)

k+l−1∏
j=k

dxj . (12)

These integrals are difficult to be evaluated and require
significant computational effort. However, in a PF, (12)
can be approximated iteratively by using the law of total
probabilities

p̂(xk+n|x̂1:k+n−1) ≈
Ns∑
i=1

wik+n−1 p̂(xk+n|x̂ik+n−1). (13)

A simple approach to compute (13) consists of not updat-
ing the particles’ weights, i.e., wik+n = wik+n−1 for n > 0.
This approach considers that the error generated by not
adjusting the weights at each time step is negligible (Or-
chard and Vachtsevanos, 2009); the state value estimate
associated with each particle is propagated as

x̂ik+p = E
[
fk(x̂ik+p−1,ωk+p)

]
, (14)

where E[·] denotes the expected value. The output of
the PF for prognostics is the RUL distribution, which is
computed by taking the point where each particle crosses
the Fault Threshold (FT), computed as

p̂(RUL ≤ p|z1:k) = p̂(xk+p ≥ η|z1:k), (15)
where η is the FT. In this framework, the RUL is a random
variable whose distribution is approximated by particles
evolved through the successive application of the model
update equation (7) for each particle.
Using the proposed fractional model (1), the state transi-
tion function and the measurement function are defined,
respectively, as

fk(xk−1) = θ1 + θ2k
θ3 + θ4x

θ5
k−1, (16)

hk(xk, ωk) = xk + ωk, (17)
where the state transition noise νk is omitted because this
uncertainty is modeled by the covariance matrix of the
parameters θ. Assuming a Gaussian distribution for ωk,
the likelihood of the measurement can be expressed as

L(zk|xi
k, θ

i
k, σ

i
k) =

1
√

2πσi
k

exp

(
−

1
2

(
zk − fk(xi

k−1)
σi

k

)2
)
. (18)
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4. APPLICATION AND RESULTS

To test the proposed model, data from the PRONOSTIA
platform are used. According to Nectoux et al. (2012),
there are two main reasons for using data-driven tech-
niques to tackle PRONOSTIA: the first one is that noth-
ing is known about the degradation nature and origin;
the other reason regards to the existence of a mismatch
between the experiments the theoretical framework such
as L10 life, ball pass frequency of inner ring, ball pass
frequency of outer ring, etc.

4.1 PRONOSTIA data set

The PRONOSTIA database consists of accelerated degra-
dation of ball bearings under different operating conditions
along their whole operational life (Nectoux et al., 2012).
The test bed, shown in Fig. 1, has three parts: (i) rotating
part, composed by an asynchronous motor that allows the
bearing to rotate through a system of gearing and different
couplings; (ii) degradation generation part, composed by
a pneumatic jack applying a radial force that reduces the
bearing’s life duration; (iii) measurements part to obtain
instantaneous measurements from the radial force applied
on the bearing, the rotation speed of the shaft handling the
bearing and the torque inflicted to the bearing. The train-
ing and test data sets under different operation conditions
are summarized in Table 1.

NI cDAQ cards Pressure regulator Cylinder Pressure Force sensor Accelerometers Bearing tested

AC Motor Speed sensor Speed reducer Torquemeter Coupling Platinum RTD

Fig. 1. Overview of PRONOSTIA test bed.

Table 1. PRONOSTIA training and test data
sets under different operation conditions.

Operating conditions Training sets Test sets
1800rpm / 4000N Be1−1 and Be1−2 Be1−3 to Be1−7
1650rpm / 4200N Be2−1 and Be2−2 Be2−3 to Be2−7
1500rpm / 5000N Be3−1 and Be3−2 Be3−3

4.2 Degradation model

The first step towards a data-driven approach in prognos-
tics is extracting candidate features for HI (or degradation
index) creation. In this paper, these features are obtained
from vibration sensors as described in Javed et al. (2015),
in which there are three sequential steps to build an index
that improves trendability and monotonicity:

(1) application of discrete wavelet transform followed be
the use of a mixture of trigonometric and statistics
functions for feature extraction;

(2) some smoothing technique is used for denoising;
(3) finally, cumulative sum is computed to build a mono-

tonic degradation process.
For the first item, using fourth order Daubechies at the
fourth level of decomposition along with the standard
deviation of the arctangent trigonometric function yielded
the best results in terms of trendability and monotonicity.
In the second item, an exponential moving average with
window size of 12 samples is used as smoothing technique.

4.3 Results

The initial distributions of the tracked parameters must be
provided; once the initial set of parameters θ is estimated
through Levenberg-Marquardt, its covariance matrix can
be used as their initial distribution as

θ0 ∼ N
(
θ̂, cov[θ̂]

)
. (19)

The measurement noise is modeled as
ωk ∼ N (0, σk), (20)

σ0 ∼ U(0.04, 0.06), (21)
where U is a uniform distribution. For each bearing operat-
ing condition shown in Table 1, a set of initial parameters
θ̂0 is obtained, as shown in Table 2.

Table 2. Initial parameters of PRONOSTIA
degradation model.

Condition θ̂1
0 θ̂2

0 θ̂3
0 θ̂4

0 θ̂5
0

1 0.0098 0.3807 -0.6165 0.9984 1.0004
2 -0.0654 0.3671 -0.4166 1.0134 0.9964
3 -0.0160 0.3576 -0.5100 1.0022 0.9995

Three accuracy metrics are used to evaluate the perfor-
mance of the proposed method at each time step k: Mean
Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE) and Relative Accuracy (RA). Such indica-
tors are computed as follows (Saxena et al., 2008)

MAPEk = 100
H

k+H∑
n=k+1

∣∣∣∣xn − x̂nxn

∣∣∣∣ , (22)

RMSEk =

√√√√ 1
H

k+H∑
n=k+1

(xn − x̂n)2, (23)

RAk = 1− |rk − r̂k|
rk

, (24)

where H is the prognostic horizon, rk is the true RUL
at k and r̂k is the expected value of the estimated RUL
distribution at k. These metrics are well stabilised in
the field of fault prognostics and allow a fair comparison
between different methods.
Since there are differences in the bearings’ lifetime for each
operation condition, different start times and threshold are
set for the prognostics task. For bearing conditions 1, 2
and 3, prognostics started at τ1 = 100, τ2 = τ3 = 20,
respectively; the FT is set to η1 = 20, η2 = 8 and
η3 = 10, respectively. This choice allows comparisons with
the IMMF (Cosme et al., 2019), for which the proposed
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method achieves competitive results. As shown in Table 3,
the RMSE and MAPE are lower for almost all bearing
conditions while the RA is greater; this means that the
proposed model achieves results for RUL prediction closer
to the ground truth. In IMMF, the nonlinear degradation
model is achieved by a convex combination of a fixed num-
ber of linear models obtained from data, assuming that
they approximate the true HI behavior. This assumption
reduces the model’s ability to explain observations outside
its knowledge domain which is a possible reason for the
better performance of the proposed model.

Table 3. RMSE, MAPE and RA computed at
τ1 = 100, τ2 = τ3 = 20 for operation conditions
1, 2 and 3 respectively, compared with IMMF
(Cosme et al., 2019), with best values in bold.

Bearing Proposed model IMMF
RMSE MAPE RA RMSE MAPE RA

1–3 0.43 2.88% 0.96 0.90 3.85% 0.97
1–4 1.73 8.63% 0.82 2.15 9.73% 0.91
1–5 0.32 1.60% 0.91 1.47 6.41% 0.85
1–6 0.77 5.45% 0.96 0.97 3.01% 0.94
1–7 0.35 2.69% 0.99 0.52 2.77% 0.97
2–3 0.72 10.20% 0.75 4.72 20.17% 0.84
2–4 0.10 1.74% 1.00 1.86 12.56% 0.91
2–5 1.59 21.32% 0.42 4.98 19.00% 0.53
2–6 0.31 4.65% 0.82 2.93 24.91% 0.75
2–7 0.11 1.87% 0.95 0.40 6.05% 0.85
3–3 0.41 6.37% 1.00 0.55 7.66% 0.96

The estimated RUL is defined as the mean value of all
particles, whose distributions are shown in Fig. 2 for
bearings 1–3, 2–3 and 3–3.

Fig. 2. RUL distribution approximated by a PF for bear-
ings 1–3, 2–3 and 3–3.

To evaluate the prognostics tasks through time, the α− λ
plot is used. The estimated RUL is compared with the true
RUL at each time step λ until the fault occurrence. The
desired result is that the predicted RUL fall within the
region defined by α (Saxena et al., 2010). The successive
computation of RUL for bearing condition 1–3 is depicted
are Fig. 3, where the accuracy cone is computed for
α = 0.2; for each time instant in Fig. 3, the prognostics
task is executed to estimate the RUL at that same instant.
Another way to evaluate the RUL estimate through time

is depicted in Fig. 4 where the ground truth is represented
in the x− y axis while the PDF shape estimated through
PF is shown in y − z axis for each time instant.

100 200 300 400 500 600 700 800 900 1000 1100

Time (sec x 10)

0

200

400
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800

1000

1200

1400
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Fig. 3. Accuracy cone for true and predicted RUL of
bearing condition 1–3. The southwest box shows the
α−λ plot zoomed for the last 500 seconds prediction.
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Fig. 4. RUL distribution computed at multiple time steps
for bearing 1–3; the blue dot represents the true RUL.

5. CONCLUSION

In this work, a general fractional polynomial model is
proposed to represent the degradation index introduced by
Javed et al. (2015) for an accelerated ball bearing platform
called PRONOSTIA. The nonlinear model’s parameters
are estimated in the least squares sense using Levenberg-
Marquardt algorithm with the platform’s provided train-
ing data. The prognostics is performed in the test units
where the system’s state and parameters are predicted and
updated in the Bayesian sense through a PF. The RUL
prediction results using the single fractional polynomial
model are compared with the multiple model approach
proposed by Cosme et al. (2019). The results indicate
that proposed model can be used for prognostics when
training data are available, and that it is competitive, in
comparison with another technique in the literature, in
terms of RMSE, MAPE and RA.
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