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∗ Robotics and Advanced Manufacturing Programm CINVESTAV-Saltillo,
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Abstract: This paper proposes the control of a data driven model for an experimental robotic system.
The components of the robotic system are a redundant robot and a motion capture system considered
them as a Multi-Inputs and Mulit-Outputs system. The Pseudo Jacobian Matrix computes the equivalent
model of the robotic system taking into account the input and output signals. Besides, we design the
adaptive gains for a proportional controller using an artificial neuro-fuzzy network for the robot’s end-
effector control. The experimental results validate the proposed control scheme for a regulation control.
We provided a Lyapunov analysis to guarantee convergence parameters of the controller.
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1. INTRODUCTION

Currently the tendency to use the Data Driven Control
(DDC) has captured the attention in fields as robotics, mechan-
ical systems, and electronics devices due to the possibility to
design controllers from system on-line information. The DDC
allows to construct an equivalent model of the plant considering
the system as a black box with a set of input and output signals.
This approach reduces the parameters to obtain the system
model, and as well omits the dependency of the classical mod-
elling methods. An equivalent model based on data depends
on the measured information from the input and output signals
and through an estimation method relates the information to
approximate the model.

Recently, the interest to work with equivalent model for
robotic systems has increased using different estimation meth-
ods. A typical challenge to the estimation methods is the multi
degrees of freedom of the robots, considering them as a Multi-
Inputs and Multi-Outputs (MIMO) system. Some related works
with equivalent model are reviewed as follow. The model for
soft robots are complex to obtain by traditional methods, Li
et al. (2018) introduced an equivalent model for a continuum
robot, where the Jacobian matrix is estimated using a strong
tracking Kalman filter algorithm through the input and output
measured signals of the system. Chen et al. (2018) proposed
a Jacobian matrix adaptation where the model of robots ma-
nipulators is considered unknown: the solution of this method
transforms the robot modelling in an external, explicit and
measurable structure of the input and output information of
the system. Hou and Jin (2011) simulated the equivalent model
for a 2 dof manipulator robot, this estimated model is based
on the concept the Pseudo Jacobian Matrix (PJM), and the
robot is a class of MIMO no-linear system. A controller with
adaptive gains using artificial neural network has been proposed
by Chiang and Chen (2017) to control a pneumatic robot. Also,
Facundo et al. (2018) proposed a controller with adaptive gains
based on a neuro-fuzzy network to control a cartesian robot.

? CONACyT support acknowledgment.

The proposal of this work is to test in an experimental
setup the estimated model by PJM algorithm to control a
robotic system. In addition, we are proposing a proportional
control with adaptive gains using a novel neuro-fuzzy network.
The neuro-fuzzy network only requires the updating of one
parameter in order to minimize the control error. Moreover,
the stability analysis gurantees the convergence of the control
parameters. The experimental robotic system is composed by
an omnidirectional mobile-manipulator and a Motion Capture
System (MOCAPS). The robot is from the academic platform
KUKA youBot, and it has 3 dof in the omnidirectional mobile
platform, and 5 dof in the robotic arm. This is a redundant
robot considered as a MIMO system. The MOCAPS allows to
locate objects in the scope space by markers attached above the
robot and the objects, by this information it can be established
a position error between the robot and the object.

The structure of this paper is: section 2 describes the equiv-
alent model approach, section 3 describes the proposed robot
control law, section 4 presents the experimental results, and
section 5 gives the conclusions of this work.

2. EQUIVALENT MODEL

The position of the robot end-effector is defined in terms
of the joint positions χ(t) = f(q(t)) in continuous time. The
velocity of the end-efector is χ̇(t) = ∂χ(t)

∂q(t) q̇(t), where ∂χ(t)
∂q(t) is

the Jacobian matrix, and q̇(t) is the velocity of the joints. For
this paper we are working on discrete time domain, then the
equation of the end-effector velocity is approximated by

χ(k + 1)− χ(k)

Ts
= J∗A(k)

q(k)− q(k − 1)

Ts
, (1)

where Ts is the sampling time. Generally speaking, for a
first order kinematic control the Jacobian matrix represents
the model of the robot. The real robotic Jacobian matrix is
not fully known because of in the modelling methods exist
uncertainties of the system. The classical modelling methods
are based on the robot class and its physical characteristics,
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especially the robot model deals with parametric uncertainties
and nonlinearities. Then, the modelling is unable to obtain the
complete mathematical form of the robot, and by consequence
the real Jacobian. The next expression represents the classical
modelling approach:

JA(k) = J∗A(k)− εa(k), (2)
where JA(k) is the Jacobian matrix coming from a classical
modelling method, J∗A(k) is the real Jacobian matrix, and εa(k)
is the uncertainties in the model. On the other hand, the equiv-
alent model coming from estimation methods are based on the
input/output measurements information of the system, where
the estimation algorithm intends to approximate the system by
the on-line signals. The data driven estimation can not construct
the complete system model, therefore there is an unknown
information in the equivalent model. The representation of the
estimation approach is

ĴA(k) = J∗A(k)− εb(k), (3)

where ĴA(k) is the Jacobian matrix coming from an estimation
method, and εb(k) is the unknown information in the estima-
tion. The position of robot’s end-effector is in function of the
joints’ positions. We set as m the robot’s end-effector χ(k+ 1)
dof, and n the robot’s joints q(k) dof. The robotic Jacobian ma-
trix is the direct relationship between the end-effector velocities
(outputs) and the joints velocities (inputs), for this reason is to
possible to apply data driven estimation method. Hou and Jin
(2011) presented the Pseudo Jacobian Matrix (PJM) algorithm
to compute an equivalent model. The PJM algorithm estimates
the Jacobian matrix in one-step with low computational load
and with on-line measured signals. The only expression to
compute the model is the next:

ĴA(k) = ĴA(k−1)+
η
[
ν(k + 1)− ĴA(k)ω(k)

]
ωT (k)

µ+ ‖ ω(k) ‖2
, (4)

where µ > 0 is a weight parameter and η ∈ D(0, 2] is
a step parameter, ν(k + 1) are the measured outputs signal
as end-effector velocities, and ω(k) are the joint’s velocity
considered as inputs. The Jacobian matrix is approxmiated by
the relationship of the input/output signals as:

ĴA(k) =
ν(k + 1)

ω(k)
. (5)

The next assumptions are established for this data driven
estimation proposal:

Assumption 1: The output is observable, i.e ν(k + 1) =

ĴA(k)ω(k) ∀k > 0. From the measured output signals is
possible to know the equivalent model of the system.

Assumption 2: The system is Lipschitz. A positive constant
L must define the direct relationship between system input-
output ‖ ν(k + 1) ‖≤ L ‖ ω(k) ‖. This assumption imposes a
bound for the change of the system output by the change of the
system input.

Assumption 3: ĴA(k) and ω(k) exist ∀ k. To guarantee the
control and estimation error converge to zero.

3. CONTROL LAW

The purpose of this control configuration is to work with an
equivalent model for a position control in the task space of the
robot. The inputs/outputs signals feed the estimation method to

approximate the equivalent model. Due to the redundancy of the
robot is computed a weighted pseudo inverse of the Jacobian
matrix to generate the robot motion control. A neuro-fuzzy
network is proposed to adapt the gains of a proportional control.
The position error is defined as

e(k + 1) = χ(k + 1)− χd(k + 1), (6)
where χ(k + 1) is the current position of the end-effector and
χd(k + 1) is the desired position. The position of the robot’s
end-effector is

χ(k + 1) =χ(k) + J̄A(k)ω(k), (7)

where J̄A(k) = J∗A(k)Ts is an unknown function which
includes the real Jacobian matrix and the sampling time. Then,
from the equation (3) the real Jacobian is J∗A(k) = ĴA(k) +
εb(k), and the equation (7) becomes as

χ(k + 1) =χ(k) + TsĴA(k)ω(k) + Tsεb(k)ω(k), (8)
substituting the current position equation (7) in the control error
equation (6) we obtain

e(k+ 1) = χ(k) + TsĴA(k)ω(k) + Tsεb(k)ω(k)−χd(k+ 1),
(9)

the pseudo inverse Jacobian matrix Ĵ+
A (k) is

Ĵ+
A (k) = ĴTA (k)

[
ĴA(k)ĴTA (k) + ξbI

]−1
, (10)

where Ĵ+
A (k) is build with estimation information of the PJM

and ξb = 0.1. Now it is possible to calculate the control signals

ω(k) = −Ĵ+
A (k)u(k), (11)

where u(k) is the controller, and the updated joints’ positions
are

q(k + 1) = q(k) + ω(k)Ts, (12)
the signal in the equation (12) allows end-effector update to
reach the desired position.

Now it is important to emphasize the differences between
the classical model and data driven model.

i The classical model needs all the posible pysical param-
eters of the robot. In contrast, the data driven model only
requires input and output signals.

ii The data driven model proposes values in the initial Ja-
cobina matrix to include the criteria related to: the full
rank of the Jacobian matrix and the holonomic constraint.

3.1 Neuro-fuzzy network

The controller is a proportional control with adaptive gains,
a neuro-fuzzy network is used for the gains adaptation. The
neuro-fuzzy network consists of the Fuzzy Rules Emulated Net-
work (FREN) structure; their main characteristics are the on-
line adaptation and the reasoning ability, proposed by Treesa-
tayapun and Uatrongjit (2005). The architecture of the proposed
artificial neuro-fuzzy network can be seen in the Fig. 1.

FREN is composed by four layers:

Layer 1: The error measurement e(k) is the input of this
layer which is sent to each node in the next layer directly.

Layer 2: This is called input membership function layer.
Each node in this layer contains a membership function cor-
responding to one linguistic variable. The output at the ith node
of this layer is calculated by f(k) as
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Fig. 1. Artificial Neural Network architecture.

f(k) = µi(e(k)), (13)
where µi denotes the membership function at the ith node
(i = 1, 2, ..., N ). The five linguistic variables are designed
according to the physical characteristics of the robot axes. That
means for x and y axes the robot can reach whichever position
on the plane by the omnidirectional mobile platform. By the
case of z axis the robotic arm can achieve positions until 0.7m
high.

Fig. 2 shows the membership function for x and y axes, and
Fig. 3 shows the five membership functions for z axis. Where
the linguistic variables are: PL is positive large, PS is positive
small, ZE is zero, NS is negative small, and NL is negative
large. The IF-THEN rules can be established by the relationship
between the position error and the adaptive gain

(1) IF e(k) is Positive Large (PL), THEN O(k) is Positive
Large (PL),

(2) IF e(k) is Positive Small (PS), THEN O(k) is Positive
Small (PS),

(3) IF e(k) is Zero (ZE), THEN O(k) is Zero (ZE),
(4) IF e(k) is Negative Large (NL), THEN O(k) is Negative

Large (NL),
(5) IF e(k) is Negative Small (NS), THEN O(k) is Negative

Small (NS).

where O(k) is the output of FREN.
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Fig. 2. The 5 membership functions designed in terms of ex(k)
and ey(k).

Layer 3: This layer may be considered as a defuzzification
step. It is called the linear consequence (LC) layer, where the
parameters βi remain constant with the values in Table 1:

Layer 4: This is the output of the artificial neural network
and is calculated as

O(k) =

N∑
i=1

βi · µi(e(k)), (14)
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Fig. 3. The 5 membership functions designed in terms of ez(k).

Table 1. Value of βi parameters.

Parameters γx(k) and γy(k) γz(k)

βPL 1.5 1.1
βNL 0.7 0.8
βZE 0.5 0.7
βNS 0.7 0.6
βNL 1.5 0.5

where N represents the number of linguistic variables. The
output of FREN O(k) contains a positive values according to
the membership functions taking values among 0 and 1, and βi
parameters in Table 1. Finally, the controller is

u(k) = O(k)αe(k), (15)
where γ(k) = O(k)α, then the control can be rewritten as

u(k) = γ(k)e(k), (16)
where α is a positive diagonal matrix with constant values and
the O(k) is the time-varying control gains coming from FREN
structure.

3.2 Stability analysis

The Lyapunov function in terms of the position error is

V (k + 1) =
1

2
e(k + 1)eT (k + 1), (17)

the change in the Lyapunov function is
∆V (k + 1) = V (k + 1)− V (k), (18)

organizing the equation (18) in terms of ∆e(k + 1) we obtain
the next expression:

∆V (k + 1) = ∆e(k + 1)

[
e(k) +

1

2
∆e(k + 1)

]T
, (19)

and from the position error in the equation (9) and χd(k +
1) = χd(k) + ∆χd(k + 1) the error equation becomes

e(k + 1) =χ(k)− χd(k) + TsĴA(k)ω(k)

+ Tsεb(k)ω(k)−∆χd(k + 1), (20)
and the ∆e(k + 1) is:

∆e(k + 1) = TsĴA(k)ω(k) + Tsεb(k)ω(k), (21)

In this paper the presented experiment is for regulation
control, the end-effector reaches a fixed position in the space.
Assuming this condition the change in the desired posi-
tion ∆χd(k + 1) = 0 and the control signal is ω(k) =

−Ĵ†A(k)O(k)αe(k).
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(a) The end-effector home po-
sition.

(b) The desired position in the
x, y and z directions for regu-
lation control (static object).

Fig. 4. The experimental scenario for reaching an object.

Therefore we can define Ak = TsĴA(k)Ĵ†A(k)O(k)αe(k)

and Bk = Tsεb(k)Ĵ†A(k)O(k)αe(k). Substituting the change
in the error ∆e(k + 1) in the change in the Lyapunov function
∆V (k + 1) is obtained the next equation

∆V (k + 1) = [−Ak −Bk]

[
e(k)− 1

2
[Ak +Bk]

]T
, (22)

according to Dietrich et al. (2015) the generalized pseudo
inverse matrix Ĵ†A(k) of a full row rank matrix J∗A(k) ∈
Rm×n and ĴA(k) ∈ Rm×n with m < n satisfy the next
criterion J∗A(k)Ĵ†A(k) ≈ I and ĴA(k)Ĵ†A(k) ≈ I . In that
sense we can define that P ∗k = J∗A(k)Ĵ†A(k), and P̂k =

ĴA(k)Ĵ†A(k) are positive definite matrices. Then, to probe the
stability conditions the change in the Lyapunov function is

∆V (k + 1) = −TsP ∗kO(k)αe(k)eT (k)

[
I − 1

2
TsP

∗
kO(k)α

]T
(23)

to fullfil the stability condition ∆V (k + 1) < 0, it is necessary
to satisfy the next condition

α <
2

Ts
[OMax(k)]

−1
, (24)

the values in the α matrix are bounded according to the maxi-
mum values in the output of ANN OMax(k).

4. RESULTS

The KUKA youBot is an academic platform with 3 dof for
omnidirectional mobile platform and 5 dof for robotic arm i.e
n = 8, see (http://www.youbot-store.com). The experiment is
based on regulation control related with a static object. Fig.
4 shows the experimental scenario at the lab, where the robot
starts from the home position, and it finishes to the object posi-
tion χd(k+1), 20cm above the object to avoid collision among
the end-effector and the object. The experimental setup is sup-
ported by a central computer which receives and sends informa-
tion to the robot computer by means of Robotic Operating Sys-
tem (ROS, indigo version). Twelve cameras (MOCAPS) around
the lab allow to know the robot position and object position on-
line with with a resolution of 120 fps (https://optitrack.com).
The central computer establishes communication with the
robot-computer to send the control signals ω(k) to the robot
actuators. As the robot moves, the cameras update the bodies
position to close the feedback control and reduce to zero the
position error. Mainly, the robot receives the control error e(k)
and the approximated end-effector velocities ν(k + 1) (output-
signals) to compute the control signals ω(k) (input-signals).
The initial values of the estimated Jacobian matrix are selected
close to the mathematical model values. The weight parameter
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(a) End-effector position in the x, y and z directions
during regulation control.

0 5 10 15 20 25 30

Time [sec]

-2

-1.5

-1

-0.5

0

0.5

1

P
o

s
it
io

n
 e

rr
o
r 

[m
]

Control error

e
x

e
y

e
z

convergence at 25 seconds

(b) Control position error in x, y and z.

Fig. 5. Experimental results of end-effector position and control
error for regulation control.

µ = 1, and the step parameter η = 0.1, the initialization of the
joint velocity vector is ω(0) = [0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2]T

for the prismatic joints ωpris(0) = 0.1ms , and for the revolute
joints ωrev(0) = 0.2 rads . The values in the diagonal matrix
α are determined according to the stability condition in the
equation (24) as follow: 0 < αx < 2.17, 0 < αy < 1.85, and
0 < αz < 1.74. The condition for the experimental setting are
summarizing in the Table 2. The associated video can be found
at https://www.youtube.com/watch?v=A4nsbtJ-eaM&t=150s.

Table 2. Parameters setting for robot control in the
experimental setup.

Parameters Values Remark
η 0.1 PJM algorithm (4)
µ 1 PJM algorithm (4)
αx 0.5 stability condition (24)
αy 0.5 stability condition (24)
αz 1.5 stability condition (24)

In Fig. 5(a) is clearly observed that the convergence of
the end-effector reaches the desired position above the static
object at 25 seconds. The time of experiment convergence
was designed to tune the gains under the limits of the robot
actuators. Fig. 5(b) depicts the convergence of the control errors
in the 3 axes, the proposed controller remedies the convergence
of the control error successfully.

Fig. 6(a) shows the joint velocities as a control signal in
the 2 prismatic joints and Fig. 6(b) shows the joint velocities
as a control signal in the 5 revolute joints. It should be noted
for revolute joints the control signals are smooth and under the
bounded limits of the actuators ωrev(k) ± 06 radsec . By this form,
it is guaranteed a satisfactory performance of the robot by the
conditions selected in the stability analysis.
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(a) Performance of the control signal for prismatic
joints ω1(k) and ω2(k).
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(b) Performance of the control signal for revolute
joints: revolute joint of the mobile platform ω3(k)
and from ω4(k) to ω8(k) of the robotic arm.

Fig. 6. Control signals
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Fig. 7. Gains adaptation for γx(k),γy(k), and γz(k).

Fig. 7 depicts the adaptation of the gains γx(k), γy(k), and
γz(k). For the physical characteristics of the KUKA youBot
the end-effector can reach easily the position on the x-y plane
due to the omnidirectional platform, on the other hand by the
position in z axis represents a challange due to by the control of
the 5 dof in the robotic arm. For this reason we propose adaptive
gains for the proportional controller based on the ANN, the
membership function and the linear consequence parameters
are designed according the characteristics of the robot.

Now the differences between the two methods using a pro-
portional controller in simulations are illustrated. The classical
model is obtained by the Denavit-Hartenberg convention for the
KUKA youBot. The desired position is χd(k) = [1, 0, 0.55]

T

and the conditions of the simulations are in Table 3.

Fig.8(a) and 8(b) depict the position errors convergence, in
both methods the convergence time occurs at 20 seconds. In the
comparison of the prismatic joints signal, Fig.9(a) shows that

Table 3. Parameters setting for robot model and
control in simualtions.

Parameters Values Remark
η 0.1 PJM algorithm
µ 1 PJM algorithm
ξa 0.1 damping factor (model)
ξb 0.01 damping factor (estimation)
Kp 0.35 control gain
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(a) Control error e(k) using data driven model.
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(b) Control error e(k) using classical model.

Fig. 8. Comparison between the data driven model and the
classical model for the position error.

the maximum velocity in estimated method is 0.2970 m/s, while
in Fig.9(b) the maximum velocity in classical method is 0.2010
m/sec. Nevertheless, both methods maintain the prismatic joints
inside of the operation range. Fig.10(a) shows the revolute
joints signals of the data driven model. While Fig.10(b) shows
the revolute joints signals of the classical model, where the
initial Jacobian matrix is known. By the case of the data driven
model the maximum value of the angular velocity is 0.1236
rad/sec. Moreover, ω4(k), ω5(k) and ω6(k)are positive angular
velocities and ω7(k), ω8(k) are negative angular velocities, as
is seen in Fig.10(a). On the other hand, by the case of classical
model in Fig.10(b) the maximum value of the angular velocity
is 0.0813 rad/sec and the angular velocities ω4(k) to ω8(k) are
positive values. In both cases the revolute joint of the mobile
platform ω3(k) is zero. The damping factor is higher in the
classical model than the data driven model for the solution of
the pseudo inverse matrix. Also, the data driven model reduces
the number of instructions in the programing code.

5. CONCLUSIONS

We proposed a control for MIMO system in a robotic ap-
plication. Mainly, the kinematic model is expressed by the
estimation of the Jacobian matrix by PJM algorithm. The PJM
algorithm only requires input/output signals to obtain an on-
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(a) Prismatic joints ω1(k) and ω2(k) using data
driven model.
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Fig. 9. Comparison between the data driven model and the
classical model for the prsimatic joints.
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(a) Revolute joints ω3(k) to ω8(k) using data driven
model.
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Fig. 10. Comparison between the data driven model and the
classical model for the revolute jonits.

line approximated model. The proposed proportional controller
with adaptive gains is tuned by a novel neuro-fuzzy network.
The main characteristic of this neuro-fuzzy network is the adap-
tation of only one parameter to guarantee the control error con-
vergence. The DDC was tested in a experimental robotic sys-
tem, which is composed by a redundant robot and a MOCAPS.
It is important to emphasize that the MOCAPS can be replaced
by any set of sensors that continuously read the position of
the end-effector, for example an inertial measurement unit or
a 3D electromagnetic tracking system. The experimental result
validates the performance of data driven model and control.
Moreover, the Lyapunov stability condition for the control law
was determined. The equivalent model and the model error are
included in the stability analysis. The approach presented omits
the traditional modelling dependency based on robot structure,
robot class, and physical parameters. As a future plan we will
extend the work to cover the study of the estimated Jacobian
matrix initialization, the robot’s orientation control, the stability
analysis of the estimated model and the tracking control exper-
iment.
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