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Abstract: An iterative learning (IL) approach to disturbance prediction for economic model
predictive control (EMPC) is proposed and applied to an integrated solar thermal system
(ISTS). The disturbance in the system, which is the user hot water demand, is predicted
iteratively by taking advantage of the repetitive nature of hot water consumption and utilized
by EMPC for improved ISTS control performance. Various user load scenarios are developed
for simulations based on historical data, and the performance of the proposed control method is
compared against an idealistic EMPC scheme with perfect load information along with existing
EMPC methods and a baseline proportional-integral controller. It is demonstrated that the
proposed IL approach to EMPC achieves electrical costs within 0.5% of the idealistic case while
outperforming all other methods in both energy savings and output temperature management.
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1. INTRODUCTION

A majority of the world relies on fossil fuels to meet
energy demands. These resources are harmful to the envi-
ronment and do not replenish themselves, causing energy
prices to rise as they become more scarce (Mohtasham,
2015). One abundantly available renewable alternative is
the sun, which provides the earth with more energy in
one hour than humans consume annually (Crabtree and
Lewis, 2007). When it comes to solar energy, solar thermal
systems are the most efficient option and are typically used
for heating applications as opposed to electricity produc-
tion. While heating is not the only energy requirement for
humans, it represents a crucial area of need. This need
is particularly strong in northern countries, where hot
water accounts for approximately 25% of domestic energy
consumption (Aguilar, White and Ryan, 2005).

Most solar thermal systems feature an auxiliary heat
source to ensure hot water demands can be met. The
combination of this external source with a solar ther-
mal collector is called an integrated solar thermal system
(ISTS). When it comes to controlling an ISTS, it is im-
portant to maximize efficiency by using the auxiliary heat
source intelligently. Past research into this application has
found model predictive control (MPC) to be the most
effective control algorithm as it can be optimized while
accounting for case specific factors such as input con-
straints. Godina et al. highlighted the benefits of MPC by
comparing its performance with on/off and proportional-
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integral-derivative (PID) controllers for domestic energy
management (Godina et al., 2018). Weeratunge et al. then
provided more insight by using MPC to reduce the opera-
tional costs of a solar assisted heat pump system compared
to conventional methods (Weeratunge et al., 2018).

An issue with the majority of research to date into MPC
for solar thermal and general energy saving applications,
however, is the lack of consideration for the impact of dif-
ferent user load scenarios. Most works assume a constant
daily hot water demand profile for simplicity (Edwards,
Beausoleil-Morrison and Laperrière, 2015), whereas in re-
ality user load can vary drastically, both day-to-day within
a household and between different households (Armstrong
et al., 2009). This is an area of concern as MPC algorithms
tend to behave poorly when system output predictions are
inaccurate, which would be the case with any model that
assumes a single load trajectory (Ma et al., 2012).

In the past, multiple tactics have been used to predict
future disturbance, such as integrated moving average
models (Box et al., 2015) and artificial neural networks
(Fuentes, Arce and Salom, 2018). The problems with
these methods for this ISTS application are that they
fail to account for cyclic day-to-day patterns and cannot
learn on the go from a specific household. While different
households use different amounts of hot water and this
usage can vary day-to-day, these individual households
tend to follow repetitive load profile patterns for a given
day of the week (Energy Saving Trust, 2008, George,
Pearre and Swan, 2015). With this property in mind, a
more effective approach for the ISTS application is to
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Fig. 1. Integrated solar thermal system configuration

utilize iterative learning (IL) techniques to take advantage
of the repetitive nature of domestic hot water usage.

IL is based on the idea that the performance of a system
completing a repetitive task can be improved by learning
from past iterations of the task (Bristow, Tharayil and
Alleyne, 2006). To date some attempts to combine IL with
MPC have been undertaken in literature. These efforts
have mainly focused on using IL to update the terminal
constraints in the MPC algorithm (Rosolia and Borrelli,
2018), or to improve controller performance in batch
processes by iteratively updating the model parameters
or state estimation (Lee et al., 2004, Lu, Chen and Xie,
2018). In contrast, the idea presented in this paper is to use
the IL framework to predict future disturbances, allowing
for more efficient control.

The paper is organized as follows. In Section 2 the control
problem is formulated, including a description of the ISTS
to be considered. Section 3 then focuses on breaking
down the proposed IL algorithm and its incorporation into
economic MPC. Finally, simulation results are presented
and discussed in Section 4.

2. PROBLEM FORMULATION

In this section the ISTS to be considered in this paper is
introduced, the ISTS control problem is defined, and the
state space model for the ISTS is explained.

2.1 ISTS Description

The ISTS in question features a solar thermal collector
(STC), a thermal storage tank (TST), and an auxiliary
heat pump (HP) set up in a parallel fashion as seen in
Fig. 1. The system has three loops, each containing a pump
to circulate the fluid inside. In the STC loop the working
fluid is glycol, while in the other loops it is water. A heat
exchanger is used to transfer heat from the STC loop to the
TST loop. The HP loop then supplies further heat to the
TST as needed, with the HP containing a variable speed
compressor which allows it to be controlled. Finally, the
user hot water demand is taken from the top of the TST
and replaced by relatively cold tap water at the bottom.

The system is subjected to two main disturbances: solar
radiation and user load. Solar radiation is both the main
energy source and a disturbance in the system. The total
solar radiation flux at a given time of day determines the
amount of energy available for collection. User load on the

other hand is the central disturbance in the system and
this paper’s main topic of investigation. Many studies have
determined that domestic hot water consumption varies
over the course of a day, from day to day, from season to
season, and is unique for each household (Knight et al.,
2007, Edwards, Beausoleil-Morrison and Laperrière, 2015,
George, Pearre and Swan, 2015). Despite these variations,
there is still a repetitive nature to user load within each
household which is exploited in this paper.

2.2 Problem Defnition

The control objectives for the ISTS are as follows:

(O1) Maintain the top layer temperature in the TST within
a desired temperature range by regulating the com-
pressor speed ratio of the HP.

(O2) Minimize HP operating costs while completing (O1).

The main challenge in achieving these objectives is the
varying nature of hot water demand. The ideal controller
must be able to efficiently perform the control task for
multiple households, each featuring a unique load pattern
that changes over time.

2.3 State Space Modelling

The ISTS control method, proposed in Section 3, utilizes
the following discrete-time nonlinear state space model:

Tk+1 = f(Tk, uk, wk). (1)

Here T ∈ Rn is the state vector consisting of the fluid
temperatures at n different locations in the ISTS, u is
the control input which is the HP compressor speed ratio,
and w is the disturbance vector containing the solar
radiation (s) [ Wm2 ] and user hot water demand (ṁ) [kgs ].
Note that the output (y) of the model is the temperature
at the top layer of the TST. This model was derived using
the first law of thermodynamics as well as work completed
in (Drück, 2006) and (Rostam, Nagamune and Grebenyuk,
2019).

3. CONTROLLER DESIGN

In order to achieve the control objectives given in
Section 2.2, a control structure for the ISTS is proposed in
Section 3.1, followed by an explanation of the IL method
for load prediction in Section 3.2 and the resulting eco-
nomic MPC formulation in Section 3.3.

3.1 Control Framework

In typical IL control, the error in a system’s output relative
to a reference trajectory is used to adjust the input for
the next iteration (Bristow, Tharayil and Alleyne, 2006).
In contrast, this paper uses load information from past
iterations along with the error in past predictions to make
load predictions for the next iteration. The block diagram
for the control framework can be seen in Fig. 2. In this
framework, previous load information is fed into the IL
portion of the controller, which outputs an updated load
trajectory prediction after each iteration for use in the
MPC system model.
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Fig. 2. Control framework of proposed method

Inside the IL portion of Fig. 2, the actual load over
the course of an iteration is both stored in memory and
compared to the latest initial prediction. The resulting
difference between the initial prediction and the actual
load at each time is also stored. At the end of each
iteration, the information saved in memory is sent to
the load prediction algorithm, which makes an initial
prediction for the load trajectory of the next iteration.
This initial prediction is then multiplied by a vector α,
leading to the final load prediction, which serves as the
updated load trajectory for the MPC. Similar to the initial
load prediction, α is also determined after each iteration
based on past information. Lastly, the initial prediction is
fed back for comparison with the actual load of the next
iteration and the IL process repeats. The specifics of this
process are detailed further in Section 3.2.

3.2 Iterative Learning

In order to define a load trajectory prediction algorithm,
some notation is first introduced:

W (i)
g :=

[
ṁ1, ṁ2, . . . , ṁkf

](i)
g
. (2)

Here W
(i)
g contains kf discrete load values that represent

the load trajectory for iteration i of group g. Each iteration
represents one day, and days that are likely to have similar
hot water demand profiles are grouped together. The
specific grouping of days used in this paper is detailed
in Section 4.1.

The following iterative algorithm for initial load trajectory
prediction is then proposed:

Ŵ (i+1)
g =

1∑D
d=1 ρd

D∑
d=1

ρdW
(i+1−d)
g , (3)

where Ŵ designates the prediction of W . In this algorithm
the initial load trajectory prediction for iteration i + 1
of group g is taken as a weighted average of the load
trajectories for the past D iterations of group g, with ρd
being a weighting factor used to put more emphasis on
recent information. As seen in Fig. 2, this initial prediction
is compared with the actual load after each iteration and
the resulting error is considered in the final load trajectory
prediction algorithm:

Ŵ
(i+1)

g =
[

ˆ̇m1, ˆ̇m2, . . . , ˆ̇mkf

]
= α(i+1) � Ŵ (i+1)

g , (4)

where

α(i) := 1 +
1

Dα

Dα∑
d=1

E(i−d) � Ŵ (i−d). (5)

Fig. 3. Demonstration of IL prediction algorithm

Here � and � denote elementwise multiplication and
division, respectively, E(i) := W (i) − Ŵ (i) is a vector
of the error in the initial hot water demand prediction
for iteration i, 1 is a vector of ones, and Dα is the
number of past iterations to consider. As a whole, α(i) is
a vector representing the average percentage error in the
load prediction at each time over the past Dα iterations
regardless of group. It is used to account for trends in
the load data that lead to consistent errors in initial load
predictions and as such the group g of a given iteration is
not considered in (5) since load trends tend to exist across
all days (George, Pearre and Swan, 2015).

The functionality of the proposed algorithm is depicted
in Fig. 3. In this figure, an arbitrary load trajectory
that varies steadily over time is used for demonstration
purposes. All days are considered to be in the same group
and values of D = 1 and Dα = 1 are implemented in
(3) and (5). During the first iteration, previous load data
is stored in memory and used to make load predictions
for iteration i = 2. At this point, the initial and final load
predictions are identical as there is not yet any information
available on the prediction error of past iterations. After
the second iteration, the error in the initial prediction can
then be calculated and used to adjust the final prediction
for iteration i = 3. Since a steadily varying load trajectory
is used, this final prediction matches the actual load
trajectory for iteration i = 3 perfectly while the initial
prediction once again lags behind the trend.

3.3 Economic MPC

The economic model predictive controller for the ISTS is
defined as

min
{uk+j|k ∈ U}Np

j=1
,

{(
¯
γj , γ̄j)}

Np
j=1

Np∑
j=1

J(Tk+j|k, uk+j|k,
¯
γj , γ̄j , k)

s.t.

{
Tk+j+1|k = f(Tk+j|k, uk+j|k, ŵk+j|k)

¯
T −

¯
γj ≤ yk+j|k ≤ T̄ + γ̄j

. (6)
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Here Np is the prediction horizon,
¯
T and T̄ respectively

represent the lower and upper boundaries of the desired
temperature range, and the notation vk+j|k indicates the
value of vector v at time k + j when calculated at time k.

In particular ŵk+j|k =

[
sk+j
ˆ̇mk+j

]
indicates the disturbance

prediction at time k for time k + j. The solar radiation
portion of this prediction is simply obtained from the
average solar radiation profile presented in Section 4.1,
while the load trajectory portion is provided by the IL
prediction algorithm in (4). Further, the control input
for the system is constrained to U := [0, 1] due to
compressor speed limitations, with zero relating to the HP
being turned off and one relating to the HP functioning
at full heating capacity. Lastly, to maintain the output
temperature within the desired range while allowing slight
variations to avoid an infeasible optimization problem, soft
constraints are applied with the slack variables γ̄j and

¯
γj .

The cost function J consists of two terms,

J(T, u,
¯
γ, γ̄, k) , JEC(T, u, k) + JCV(

¯
γ, γ̄). (7)

The first term represents the economic cost of operating
the HP and corresponds to (O2) while the second term
corresponds to (O1) by penalizing temperature constraint
violations in the top layer of the TST. The second term is
detailed further as

JCV (
¯
γ, γ̄) ,

¯
η
¯
γ2 + η̄γ̄2, (8)

where
¯
η and η̄ can be tuned to increase or decrease the

controller’s emphasis on preventing constraint violations.

Note that in the context of this paper (6) is solved using
sequential quadratic programming.

4. SIMULATION

In order to verify the functionality of the proposed IL
approach to load prediction, three separate simulations
were carried out in Matlab. The simulations compare the
following controllers:

(IL) proposed IL approach to economic MPC
(P) economic MPC with perfect load information
(A1) economic MPC that uses the average load profile to

make load predictions
(A2) same as (A1) but with a shorter prediction horizon
(PI) proportional-integral controller

(P) produces the unrealistically optimal result while (A1)
represents a method commonly used in previous literature
(Rostam, Nagamune and Grebenyuk, 2019). (A2), with a
shorter prediction horizon than (A1), was then included to
examine robustness against inaccurate output predictions,
since both (A1) and (A2) will have poor load information.
Finally, (PI) acts as a baseline controller.

The specific parameters used in the simulation are first
outlined in Section 4.1, followed by the simulation results
themselves in Section 4.2.

4.1 Simulation Settings

Temperature Range: The desired temperature range of
the top layer of the TST in the ISTS is between 60oC and
75oC, which are based on the building code for domestic
hot water in Canada.

Fig. 4. Hot water demand profiles for use in simulation

State Space Model: A lumped approximation is used for
the ISTS featuring seven states, with the state locations
denoted by the temperature sensors in Fig. 1.

User Load: Data from (George, Pearre and Swan, 2015)
was used to develop three load profiles, representative of
three separate households and displayed in Fig. 4. These
profiles are the most prevalent in the data, with the
primarily morning profile (A) being the most common,
followed by the primarily evening profile (B), and finally
the mixed profile (C). Note that the average load profile
across all featured households (D) is also shown in Fig. 4
and is used for prediction in (A1) and (A2).

In order to test the effectiveness of (IL), the developed
profiles should vary according to daily and seasonal trends.
The data demonstrates that different loads can be ex-
pected on different days, as depicted in Table 1. Fur-
ther, while load trajectory shapes remain similar within
individual households on Monday through Saturday, load
trajectories tend to shift on Sunday, with morning peaks
occurring 3 hours later. Additionally, daily domestic loads
shift with the seasons as more hot water is consumed
in colder months. Specifically, 2.8% more demand than
average is expected in the winter, while in the summer
demand falls by 9.6% (George, Pearre and Swan, 2015).

Table 1. Daily hot water consumption relative to average

Day M T W Th F Sa Su

Deviation (%) 0 0 -1.45 -2.9 -8.7 1.45 11.59

For a realistic representation of various households, differ-
ent consumption levels should also be represented. With
that in mind, as seen in Fig. 4, the primarily morning
profile is associated with hot water demand in the 80th
percentile at 220 kg/day, the primarily evening household
is assumed to use hot water in the 20th percentile at
93 kg/day, and the mixed profile household consumes in
the 50th percentile at 172 kg/day.

For the three simulations, four weeks’ worth of daily load
profiles were created for each of the three households.
These profiles vary in day-to-day consumption levels and
trajectories based on the trends explained above. They
also gradually go from mid-winter consumption levels at
the start of the four weeks to mid-summer levels at the
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Fig. 5. Solar radiation profile for Vancouver, Canada on
Jan 1st

end of the four weeks so as to demonstrate the proposed
IL method’s ability to track these changes.

Solar Radiation: The daily solar radiation profile used
in this paper is based on a mathematical model presented
in (Khatib and Elmenreich, 2016), and displayed in Fig. 5.
Note that a constant daily profile is used since varying
solar radiation is not the main focus of this paper.

Cost of Electricity: The operating cost of the HP at
a given time is a function of the cost of electricity at
that time. Canadian electrical time-of-use price periods are
adopted in the simulations and are depicted in Table 2.

Table 2. Time-of-use electrical price periods

Time of day (hours) 0-7 7-11 11-17 17-19 19-24

Cost (/c/kWh) 6.5 9.4 13.4 9.4 6.5

Controller Settings: The baseline PI controller uses the
following rule to set the control input

u(t) =

{
kpe(t) + ki

∫
e(t)dt, y ≤

¯
T

0, otherwise
, (9)

where
e(t) :=

¯
T − y(t). (10)

The coefficients kp and ki are tuning parameters that
specify the aggressiveness of the controller, and the input
is maintained between 0 and 1 using a saturation block.
For the simulations, kp and ki were tuned through trial
and error and are set to 150 and 0.001, respectively.

For both (IL) and (P) the prediction horizon is set as
Np = 12 hours, which gives them enough time to adjust
to upcoming disturbances. Similarly (A1) uses Np = 12
hours, while (A2) uses Np = 2 hours. Further, all economic
MPC controllers use

¯
η = η̄ = 100. Additionally, since hot

water demand profiles vary every day, as seen in Table 1,
days are divided into seven groupings, with a group g for
each day of the week.

Lastly, the averaging parameters for the IL portion of
(IL) are chosen as D = 1 and Dα = 7 and the IL
method utilizes the designed PI controller for the first week
of operation. After a week, enough load information is
stored for predictions to be made and the MPC technique
is reinstated. This load information is provided by a
flowmeter at 1 minute intervals.

4.2 Simulation Results

Complete results of the simulations are summarized in
Table 3, where the important performance metrics to con-

(a) Top layer temperature of the TST

(b) Compressor speed ratio inside HP

Fig. 6. Performance of various controllers on the Tuesday
of the second week of simulations for load profile (B)

sider are cost, average constraint violation (ACV), and av-
erage daily maximum constraint violation (AMCV). Out-
put temperature and control input plots for the Tuesday
of the second week of simulations for load profile (B) are
then displayed in Fig. 6(a) and Fig. 6(b) respectively.

Examining Table 3, it is clear that (IL) performed nearly
as well as (P), while outperforming the other control
strategies in every category. It is also interesting to note
that (A2) outperformed (A1) in all cases, indicating that
a shorter prediction horizon may be beneficial in the
presence of prediction error. More work is needed to draw
any meanigful conclusions from this observation though.

By inspecting Fig. 6, it is apparent that (IL) was able
to manage the ISTS output temperature quite effectively
while limiting cost. Looking specifically at Fig. 6(a), the
need for accurate load prediction is revealed. In this plot,
(A1) and (A2) drastically overheat the system between
hours 5 and 15 in anticipation of a larger load than there
is. Since (IL) is able to predict the load trajectories with
greater accuracy, it avoids this problem. Now observing
Fig. 6(b), it becomes clear why (IL) outperforms (PI). In
the first 7 hours, (IL) heats the system more than required
so as to take advantage of off-peak energy pricing. This
then allows (IL) to reduce energy usage between hours 7
and 15 compared to (PI), when energy is more expensive.
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Table 3. Performance results of examined controllers

Load Profile (A)

Controller P IL A1 A2 PI

Avg daily cost ($) 4.54 4.56 4.62 4.58 4.65
Deviation (%) - 0.44 1.76 0.88 2.42

ACV (oC) 0.07 0.09 0.13 0.09 0.11
Deviation (%) - 28.57 85.71 28.57 57.14

AMCV (oC) 0.92 1.02 1.27 1.19 1.31
Deviation (%) - 10.87 38.04 29.35 42.39

Load Profile (B)

Controller P IL A1 A2 PI

Avg daily cost ($) 3.50 3.51 3.66 3.55 3.55
Deviation (%) - 0.29 4.57 1.43 1.43

ACV (oC) 0.02 0.02 0.04 0.03 0.03
Deviation (%) - 0.00 100.00 50.00 50.00

AMCV (oC) 0.50 0.50 0.59 0.57 0.57
Deviation (%) - 0.00 18.00 14.00 14.00

Load Profile (C)

Controller P IL A1 A2 PI

Avg daily cost ($) 4.30 4.31 4.42 4.33 4.38
Deviation (%) - 0.23 2.79 0.70 1.86

ACV (oC) 0.00 0.00 0.01 0.01 0.00
Deviation (%) - 0.00 ∞ ∞ 0.00

AMCV (oC) 0.01 0.01 0.09 0.08 0.01
Deviation (%) - 0.00 800.00 700.00 0.00

5. CONCLUSION

A new iterative learning approach was proposed for dis-
turbance prediction in economic model predictive control
and applied to a domestic integrated solar thermal sys-
tem. Simulations were developed based on real world hot
water demand data, and the performance of the proposed
method relative to existing control options demonstrated
its effectiveness. In future research, the robustness of the
proposed method will be examined by testing it with real
life domestic hot water consumption data from individual
households. The notion of adjusting the MPC prediction
horizon relative to variance in the collected load data will
also be investigated since shorter prediction horizons tend
to lead to more robust controllers in the presence of predic-
tion error, as evidenced in this paper. Further, increasingly
intelligent iterative load prediction algorithms involving
machine learning techniques for pattern recognition will
be examined.
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