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Abstract: This paper focuses on multi-agent systems with uncertain disturbances, in which
only the bounding functions on the disturbances and the bounds on the initial state of each
agent are known. By designing a neighborhood interval observer for this kind of multi-agent
system, the estimation of the sum of the relative state of each agent associated with itself and
its neighbors is firstly realized. Then, on the basis of these estimated information, local control
algorithm is designed to drive the system to achieve bounded consensus.
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1. INTRODUCTION

The wave of research on multi-agent systems has been in-
spired by some pioneering publications, such as (Jadbabaie
et al. (2003); Olfati-Saber and Murray (2004); Olfati-Saber
(2006)), since the beginning of this century. During these
two decades, investigations on multi-agent systems emerge
from different perspectives (Shi et al. (2004); Lin et al.
(2003); Liu et al. (2008); Yu et al. (2011, 2009); Su et al.
(2011); Li et al. (2015); Liu et al. (2015); Wang et al.
(2017)). Consensus which aims at guiding all agents in the
system to reach an agreement is a fundamental coordina-
tion behavior of multi-agent systems. In (Olfati-Saber and
Murray (2004); Yu et al. (2011); Li et al. (2010); Su et al.
(2011); Li et al. (2015); Wang et al. (2017)), the consensus
can be achieved on the basis of the state information.
⋆ This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant Nos. 61803209, 61991412,
61973123, 61773255 and 61873326, in part by the Natural Science
Foundation of Jiangsu Province under Grant No. BK20180752,
in part by the University Science Research Project of Jiangsu
Province under Grant Nos. 18KJB120006 and 18KJB510033, in
part by the Scientific Foundation of Nanjing University of Posts
and Telecommunications (NUPTSF) under Grant No. NY218121,
in part by the Shanghai Natural Science Foundation under Grant
No. 18ZR1409700.

Notice that in some practical application, it needs huge
economic loss or it is difficult or even impossible to obtain
the state information. In this case, some observer based
consensus results turn out by using the output information
(Li et al. (2010); Zhang et al. (2011); Su et al. (2014);
Zhang et al. (2016); Li et al. (2017, 2018)). In (Zhang
et al. (2016)), the authors studied consensus tracking of
nonlinear multi-agent systems with disturbances bounded
by a constant by using the output feedback technique.
Li et al. investigated the robust consensus of multi-agent
systems with additive perturbations upper bounded by
an H∞ level constant in (Li et al. (2018)). However, the
disturbances considered in (Zhang et al. (2016)) and (Li
et al. (2018)) are some special kinds of disturbances, there
are many disturbances in the real engineering cannot be
bounded by a constant or by an H∞ level constant.
In this paper, we take the multi-agent systems with the
more common disturbances into consideration, where the
disturbances are bounded by two functions named the
upper bounded function and the lower bounded one,
respectively. These two bounding functions may not be
bounded by a constant as in (Zhang et al. (2016)) or may
not meet the H∞ assumption as in (Li et al. (2018)). What
is more, due to the existence of this kind of disturbances,
the initial state of each agent is also unknown but only the
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bounds can be obtained. But, could we estimate the state
of each agent? How can we design a control algorithm on
the basis of the bound information mentioned above to
drive the system to achieve cooperative control? In (Wang
et al. (2019)), the author devoted themselves to solving
these problems by using the interval observer technique.
As stated in (Wang et al. (2019)), the interval observer
technique used in multi-agent systems can be dated from
the uncertain single agent system (Hadj-Sadok and Gouzé
(1998); Mazenc and Bernard (2011)). An interval observer
should be a framer at first. A framer of a multi-agent
system contains two dynamic system in the form of the
Luenberger observer, which can describe the bounds on
the real-time state of each agent. Notice that the framer
design involves only the bound information of the unknown
disturbances. Then, a distributed control algorithm can be
designed on the basis of the information of the framer. If
the control algorithm in the framer can drive the uncertain
multi-agent system to achieve coordination behavior, then
the framer is an interval observer for the multi-agent
system.
This paper can be seen as an improvement of (Wang et al.
(2019)). In (Wang et al. (2019)), a framer were firstly
designed for each agent to estimate the bounds on the
absolute state of itself. We name this kind of framer the
local framer by following the way of naming in (Zhang
et al. (2011)). Then, control algorithm was constructed
for each agent based on the sum of relative information
associated with the estimated information obtained by the
framer of each agent and its neighbors. We call this kind
of control algorithm the neighborhood controllers. What
is more, we name the interval observer in (Wang et al.
(2019)) the local interval observer. In this paper, we design
interval observer for each agent from the perspective of the
sum of the relative states associated with each agent and
all its neighbors. We first design a neighborhood framer
for each agent by using the sum of relative information
of each agent and its neighbors, then we construct a local
control algorithm. The interval observer designed in this
paper is called the neighborhood interval observer. In line
with the neighborhood interval observer, we solve the
bounded consensus of multi-agent systems with uncertain
disturbances with the help of cooperativity theory and
Lyapunov stability theory. Beyond, the time-varying co-
ordinate transformation is used to get rid of the Metzler
dependence on the observer gain matrix. In comparison
with the local interval observer based results in (Wang
et al. (2019)), the superiorities of the neighborhood in-
terval observer based bounded consensus are mainly in
two-fold. First, the acquirement of the relative information
is easily to implemented than the absolute information.
Second, the neighborhood interval observer based cooper-
ative behavior processes more robust to the local interval
observer based one. It will show that consensus can be
achieved if each agent is with the same disturbance for
the neighborhood interval observer based results, while
only the bounded consensus can be reached even though
each agent is with the same disturbance according to the
local interval observer based results given in (Wang et al.
(2019)).
The rest of the this paper is organized as follows. Section
2 states the problem which will be settled, while Section 3

gives the main theoretical results of this paper. Section 4
concludes the whole paper.
Notation: Throughout the paper, ⊗ represents the Kro-
necker product. For x ∈ Rn×1, ∥x∥∞ = max

i=1,··· ,N
|xi|

denotes the infinite norm of x, while ∥x∥ is the 2-norm
of x. For any square matrix Q, det(Q) denotes the de-
terminant of Q, Q ≺ (≼)0 means that Q is a negative-
definite (semi-negative-definite) matrix, whereas Q ≻ (≽)0
means that Q is a positive-definite (semi-positive-definite)
matrix. sign(·) represents the signum function. for any two
matrices X and Y (or vectors) with the same dimension,
X ≥ (≤ or =) Y ≤ (≥ or =) should be understood
componentwise. For matrices A = (aij) and B = (bij) with
the same dimension, C = (cij) = max

{
A,B

}
denotes a

matrix with cij = max
{
aij , bij

}
. Moreover, for any matrix

or vector S = (Sij) ∈ Rn×m, S+ =
(
S+
ij

)
∈ Rn×m with

S+
ij = max{0, Sij} and S− = S+ − S.

2. PROBLEM STATEMENT

In this paper, we consider a networked systems including
N agents interplays on an undirected graph G = (V, E ,W ).
In the undirected graph G, V = {v1, v2, · · · , vN} and
E = {(vi, vj)| if there exists an edge between node vi and
node vj} denote the node set and edge set, respectively,
and W = (wij) ∈ RN×N with

wij =

{
1, if (vi, vj) ∈ E ;
0, otherwise.

is the adjacency matrix. The degree of the i−th agent is
di =

∑N
j=1 wij , then on the basis of the adjacency matrix

W , the Laplacian matrix of G is L = D −W , where D =
diag{d1, d2, · · · , dN}. We further denote the eigenvalues of
L in the non-decreasing order as 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .
For the connected graph G, we have λ2 > 0 (Godsil and
Royle (2013)).
On the undirected graph G defined previously, we consider
a general linear networked system, where every agent
moves in an n-dimensional Euclidean space and regulates
itself by following dynamics (1):{

ẋi = Axi +Bui + ωi, i = 1, 2, · · · , N,

yi = Cxi,
(1)

where xi ∈ Rn×1, ui ∈ Rm×1 and yi ∈ Rp×1 are the
state, the control input and the output of the i−th agent,
respectively, ωi ∈ Rn×1 is the unknown disturbance. A ∈
Rn×n, B ∈ Rn×m and C ∈ Rp×n are the system matrices,
which satisfy Assumptions 1.
Assumption 1. (A,B) is stabilizable and (C,A) is de-
tectable.

The objective of this paper is to investigate the coordi-
nated behavior of the uncertain networked multi-agent
system (1). However, due to the existence of the distur-
bance ωi, neither the precise state information nor the
initial state of each agent can be obtained, but the bounds
on them. Without the state information, we will solve the
coordination of system (1) by using the estimated informa-
tion. As done in the neighborhood observer based results
on multi-agent systems (Li et al. (2010, 2017, 2018)),
the sum of the relative outputs with respective to all its
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neighbors, that is
∑

j∈N(i)(yj − yi), is used. In order to
match this term, the observer will be designed to estimate
the state of

∑
j∈N(i)(xj − xi). For brevity, let

δi =
∑

j∈N(i)

gij (xi − xj) ,

then the neighborhood framer for the uncertain multi-
agent system (1) can be designed as:

δ̇i =Aδi −BK
∑

j∈N(i)

gij
[(
δi − δj

)
+
(
δi − δj

)]

+ F

Cδi −
∑

j∈N(i)

gij (yi − yj)

+Ωi,

δ̇i =Aδi −BK
∑

j∈N(i)

gij
[(
δi − δj

)
+
(
δi − δj

)]

+ F

Cδi −
∑

j∈N(i)

gij (yi − yj)

+Ωi,

(2)

where K ∈ Rn×m and F ∈ Rn×p are the user-defined
matrices named the control gain and the observer gain,
respectively, Ωi and Ωi are the upper bounding and lower
bounding of Ωi with

Ωi =
∑

j∈N(i)

gij (ωi − ωj) . (3)

That is,
Ωi ≤ Ωi ≤ Ωi.

Notice that the form of Ωi given in (3) is the due to the
neighborhood information interaction through the com-
munication topology described by the graph G. Further-
more, the bounded information on the initial states of
system (1) are given as

δi(0) ≤ δi(0) ≤ δi(0), (4)
which is also in the neighborhood pattern. In analogy to
the local controllers in (Li et al. (2010, 2017, 2018)), the
control input ui in (1) can be constructed as

ui = −K
(
δi + δi

)
. (5)

Then, the objective problem of this paper is to prove that
δi and δi in (2) with ui in (5) make up a neighborhood
interval observer of (1). That is to provide sufficient
conditions to make
(1) δi ≤ δi ≤ δi for i = 1, . . . , N in case of (4);
(2) the control algorithm (5) can drive (1) to reach

consensus if Ωi = Ωi = 0 (i = 1, . . . , N).

We say that δi and δi in (2) form a neighborhood framer
of (1) if only (1) is satisfied. For brevity, we use the pair(
δi, δi

)
to denote the two dynamical systems given in (2).

Additionally, we call ui in (5) the local controllers as in
Zhang et al. (2011).

3. MAIN RESULTS

This section is solve the problems mentioned above. Before
moving on, some preliminaries are proposed.
Definition 1. (Smith (1995)) A Metzler matrix is a real
square matrix with nonnegative off-diagonal entries.

Lemma 1. (Skelton et al. (1997)) Under Assumption 1, for
any Q ≻ 0, there exists a unique matrix P ≻ 0 which solves
the following algebraic Riccati equation (ARE):

ATP + PA− PBBTP +Q = 0.

Lemma 2. (Smith (1995); Luenberger (1979)) Given a
non-autonomous system described by ẋ(t) = Ax(t)+B(t),
where A is a Metzler matrix and B(t) ≥ 0. Then, x(t) ≥ 0
for ∀t > 0, provided that x(0) ≥ 0.

By virtue of these lemmas, one has Proposition 1.
Proposition 1. Suppose that the observer gain F is chosen
to make A+FC Metzler, under the premise δi(0) ≤ δi(0) ≤
δi(0), the pair

(
δi, δi

)
form a neighborhood framer for

system (1) with ui given in (5), if Ωi ≤ Ωi ≤ Ωi holds
for t ≥ 0.

Proof. For system (1) with ui in (5), we have
δ̇i = Aδi −BK

∑
j∈N(i)

gij
[(
δi − δj

)
+
(
δi − δj

)]
+Ωi. (6)

Let ei = δi − δi and ei = δi − δi. It follows from (2) and
(6) that

ėi = (A+ FC)ei +Ωi − Ωi,

ėi = (A+ FC)ei +Ωi − Ωi.

Since δi(0) ≤ δi(0) ≤ δi(0), we have ei(0) ≥ 0 and ei(0) ≥
0. On the other hand, the pre-condition Ωi ≤ Ωi ≤ Ωi

implies that Ωi − Ωi ≥ 0 and Ωi − Ωi ≥ 0. By Lemma
2, we have ei ≥ 0 and ei ≥ 0 for all t ≥ 0 if A + FC
is Metzler, which shows that

(
δi, δi

)
is a neighborhood

framer for system (1) with ui given in (5).
This completes the proof.

Next, we will design the feedback gain matrix K and the
observer gain matrix F as

K = BTP1, (7)
and

F = −P−1
2 CT , (8)

where P1 ≻ 0 and P2 ≻ 0 are the solutions of the ARE
ATP1 + P1A− 2µP1BBTP1 + I = 0, µ ≤ λ2,

and the LMI
ATP2 + P2A− 2CTC ≺ 0,

respectively.
Motivated by Proposition 1, a naturally question turns
out for F given in (8). That is, how to ensure the Metzler
property of the Hurwitz matrix A+ FC?
In the following, we will introduce the time-varying coordi-
nate transformation to eliminate the Metzler requirement
on the Hurwitz matrix A+ FC.
Firstly, there exists an invertible matrix T such that A+
FC = TJT−1, where J = diag{J1, . . . , Js} is the Jordan
canonical form of A + FC. These s matrices Jk (k =
1, . . . , s) can be divided into two categories according to
whether the eigenvalues of A+ FC are real or imaginary.
Without loss generality, assume that the first r (r ≤ s)
matrices are associated with the r real eigenvalues with
multiplicity nk of A + FC, then the rest matrices are
associated with the complex eigenvalues with multiplicity
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mk of A + FC, and then it turns out n =
∑r

k=1 nk +
2
∑s

k=r+1 mk. For k = r + 1, . . . , s, denote

Jk =


Λk I2 0 · · · 0 0
0 Λk I2 · · · 0 0
...

...
... . . . ...

...
...

...
... . . . Λk I2

0 0 0 · · · 0 Λk

 ∈ R2mk×2mk , (9)

where

Λk =

(
−αk βk

−βk −αk

)
∈ R2×2,

with αk > 0 and βk > 0.
Then, for system ė = (A + FC)e, according to the
statement in (Wang et al. (2019)), there would exist a
time-varying coordinate transformation ζ = S(t)e, such
that ζ̇ = Mζ, where

S(t) = diag {Iq,Γr+1(t), . . . ,Γs(t)}T,

M = diag
{
J1, . . . , Jr,Mr+1, . . . ,Ms

}
∈ Rn×n,

(10)

with q =
∑r

k=1 nk, and for all k = r + 1, . . . , s,

Γk(t) = diag

φk, . . . , φk︸ ︷︷ ︸
mk

 ∈ R2mk×2mk ,

φk =

(
cos(βkt) − sin(βkt)
sin(βkt) cos(βkt)

)
,

Mk =


−αkI2 I2 0 · · · 0 0

0 −αkI2 I2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · −αkI2 I2
0 0 0 · · · 0 −αkI2


∈ R2mk×2mk .

(11)

The form of Mk(k = r+1, . . . , s) shows that M is a Metzler
matrix. Hereafter, t in the time-varying matrix S(t) will
be omitted for simplicity. What is more, let Υ = S−1. As
demonstrated in (Wang et al. (2019)), it turns that

Ṡ = MS − S(A+ FC),

and

Υ̇ = −ΥM + (A+ FC)S−1.

What is more, there hold ∥S∥ ≤ ∥T∥ and ∥Υ∥ ≤ ∥T∥.
With the help of this time-varying coordinate transforma-
tion, for K and F given in (7) and (8), respectively, the
interval observer can be designed according to Algorithm
1.

Algorithm 1 The neighborhood interval observer con-
struction for system (1).
step 1): Define two dynamical networked systems:

˙
ξi =Mξi − SBKΥ

∑
j∈N(i)

gij

[(
ξi − ξj

)
+

(
ξ
i
− ξ

j

)]
− SFCΥξi + S+Ωi − S−Ωi,

ξ̇
i
=Mξ

i
− SBKΥ

∑
j∈N(i)

gij

[(
ξi − ξj

)
+

(
ξ
i
− ξ

j

)]
− SFCΥξi + S+Ωi − S−Ωi,

(12)

where {
ξi(0) = S+δi(0)− S−δi(0),

ξ
i
(0) = S+δi(0)− S−δi(0).

(13)

step 2): On the basis of
(
ξi, ξi

)
in step 1), define two dynamical

systems: {
δi = Υ+ξi −Υ−ξ

i
,

δi = Υ+ξ
i
−Υ−ξi.

(14)

step 3): For
(
δi, δi

)
obtained in step 2), ui is designed as:

ui = −K
(
δi + δi

)
. (15)

Theorem 3. Consider a networked system consisting of N
interplays on a connected graph G, where each agent is
steered by (1). Under the premise δi(0) ≤ δi(0) ≤ δi(0),
for K and F given in (7) and (8), respectively,

(
δi, δi

)
in

(14) form a neighborhood interval observer for system (1)
with control algorithm (15), if Ωi ≤ Ωi ≤ Ωi holds for
t ≥ 0.

Proof. The proof includes two parts. The first part de-
votes to the explanation that

(
δi, δi

)
is a neighborhood

framer for system (1) with control algorithm (14), that is
establishment of the relation δi ≤ δi ≤ δi, while the second
one switches to the cooperative behavior of the system.
Let ξi = Sδi, then it follows from (6) that

ξ̇i =Sδ̇i + Ṡδi

=Mξi − SBKΥ
∑

j∈N(i)

gij

[(
ξi − ξj

)
+

(
ξ
i
− ξ

j

)]
− SFCΥξi + SΩi.

(16)
Denote Ei = ξi − ξi and Ei = ξi − ξ

i
, by (12) and (16),

one has
Ėi = MEi + S+Ωi − S−Ωi − SΩi,

Ėi = MEi + SΩi − S+Ωi + S−Ωi,
(17)

with
Ei(0) = ξi(0)− Sδi(0)

= S+δi(0)− S−δi(0)−
(
S+ − S−) δi(0)

= S+
(
δi(0)− δi(0)

)
+ S− (δi(0)− δi(0)) ,

Ei(0) = Sδi(0)− ξ
i
(0)

=
(
S+ − S−) δi(0)− (

S+δi(0)− S−δi(0)
)

= S+ (δi(0)− δi(0)) + S− (
δi(0)− δi(0)

)
.

Since S+ ≥ 0, S− ≥ 0 together with δi(0) − δi(0) ≥ 0
and δi(0) − δi(0) ≥ 0, Ei(0) ≥ 0 and Ei(0) ≥ 0. On the
other hand, M is Metzler. By Lemma 2, we have Ei ≥ 0
for t ≥ 0 and Ei ≥ 0 for t ≥ 0, which further implies that
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ξ
i
≤ ξi ≤ ξi, t ≥ 0. (18)

For (18), we have Υ+ξ
i
≤ Υ+ξi ≤ Υ+ξi for all t ≥ 0

and Υ−ξ
i
≤ Υ−ξi ≤ Υ−ξi for all t ≥ 0. So, it turns that

Υ+ξ
i
−Υ−ξi ≤ Υ+ξi −Υ−ξi ≤ Υ+ξi −Υ−ξ

i
for all t ≥ 0.

That is, δi ≤ δi ≤ δi for all t ≥ 0. Therefore,
(
δi, δi

)
in (14) is a neighborhood interval observer for system (1)
with control algorithm (15).
Next, we devote ourselves to the cooperative behavior of
system (1) with control algorithm (15).
For system (1) with control algorithm (15), we have
δ̇ =(I ⊗A) δ −

(
L⊗BBTP1

) (
δ + δ

)
+Ω

=(I ⊗A) δ −
(
L⊗BBTP1Υ

) (
ξ + ξ

)
+Ω

=
(
I ⊗A− 2L⊗BBTP1

)
δ −

(
L⊗BBTP1

)
(I ⊗Υ)E

+
(
L⊗BBTP1

)
(I ⊗Υ)E +Ω.

(19)
Construct a Lyapunov function candidate as

V = V1 + V2 + V3,

V1 = δT (I ⊗ P1) δ,

V2 =
(
λmax(P1BBTP1)N∥T∥2 + 1

)
E

T
(I ⊗Q)E,

V3 =
(
λmax(P1BBTP1)N∥T∥2 + 1

)
ET (I ⊗Q)E,

(20)

where Q ≻ 0 is the unique solution of the Lyapunov
equation MTQ+QM + I = 0. We denote Θ = P1BBTP1

for simplicity.
Taking the derivative of V1 according to (19) yields
V̇1 =δT

[
I ⊗

(
ATP1 + P1A

)
− 4L⊗Θ

]
δ

−
[
(I ⊗Υ)E

]T
(L⊗Θ) δ − δT (L⊗Θ)

[
(I ⊗Υ)E

]
+ [(I ⊗Υ)E]

T
(L⊗Θ) δ + δT (L⊗Θ) [(I ⊗Υ)E]

+ ΩT (I ⊗ P1) δ + δT (I ⊗ P1)Ω

≤− 1

2
δT δ + 2ΩT

(
I ⊗ P 2

1

)
Ω

+ E
T (

L⊗ΥTΘΥ
)
E + ET

(
L⊗ΥTΘΥ

)
E

≤− 1

2
δT δ + 2λ2

max(P1)Ω
TΩ

+ λmax(Θ)N∥T∥2
(
E

T
E + ETE

)
,

(21)
while V̇2 and V̇3 according to (17) are as follows:

V̇2 =
(
λmax(Θ)N∥T∥2 + 1

) [
−E

T
E

+Ω
T (

I ⊗ (S+)TQ
)
E + E

T (
I ⊗QS+

)
Ω

− ΩT
(
I ⊗ (S−)TQ

)
E − E

T (
I ⊗QS−)Ω

−ΩT
(
I ⊗ STQ

)
E − E

T
(I ⊗QS)Ω

]
,

(22)

and
V̇3 =

(
λmax(Θ)N∥T∥2 + 1

) [
−ETE

+Ω
T (

I ⊗ (S−)TQ
)
E + ET

(
I ⊗QS−)Ω

− ΩT
(
I ⊗ (S+)TQ

)
E − ET

(
I ⊗QS+

)
Ω

+ΩT
(
I ⊗ STQ

)
E + ET (I ⊗QS)Ω

]
.

(23)

Once Ω = Ω = 0, Ω = 0, then by (21), (22) and (23), we
have

V̇ ≤ −1

2
δT δ − E

T
E − ETE,

which further implies that limt→∞ δi = 0, that is,
limt→∞ (xi − xj) = 0 for all i, j = 1, . . . , N . Thus,

(
δi, δi

)
in (14) is a neighborhood interval observer for system (1)
with control algorithm (15).
This completes the proof.

Back to the proof of Theorem 4, if Ω ̸= 0 and Ω ̸= 0, then
for V in (20), we have

V̇ ≤− 1

2
δT δ − 1

2
E

T
E − 1

2
ETE + 2λ2

max(P1)Ω
TΩ

+
12∥T∥2

(
λmax(Θ)N∥T∥2 + 1

)2
λ2
max(Q)

ε

×
(
Ω

T
Ω+ ΩTΩ+ ΩTΩ

)
.

(24)

Let ω∗ = max
{
∥Ω∥ ,

∥∥Ω∥∥}. Since Ω ≤ Ω ≤ Ω, then it
follows from (24) that

V̇ ≤− 1

2
δT δ − 1

2
E

T
E − 1

2
ETE +Ω∗

≤− 1

2λmax(P1)
V1 −

1

2 (λmax(Θ)N∥T∥2 + 1)λmax(Q)
V2

− 1

2 (λmax(Θ)N∥T∥2 + 1)λmax(Q)
V3

≤− ς

2
V +Ω∗,

(25)
with

ς =min

{
1

λmax(P1)
,

1

λmax(Θ)N∥T∥2 + 1λmax(Q)

}
,

Ω∗ =36∥T∥2
(
λmax(Θ)N∥T∥2 + 1

)2
λ2
max(Q) (ω∗)

2

+ 2λ2
max(P1) (ω

∗)
2
,

which implies the bounded consensus of system (1).
Theorem 4. Consider a networked system consisting of N
interplays on a connected graph G, where each agent is
steered by (1) with control algorithm (15). Suppose that
δi(0) ≤ δi(0) ≤ δi(0), then system (1) can achieve bounded
consensus if Ωi ≤ Ωi ≤ Ωi holds for t ≥ 0.

Proof. By (25), one has V will not decrease until V ≥
2Ω∗

ς , which further implies that ∥δ∥ ≤
√

2Ω∗

ςλmin(P1)
. Thus,

the bounded consensus can be achieved.
This completes the proof.
Remark 5. We name the interval observer for the net-
worked systems with uncertain disturbances in (Wang
et al. (2019)) as the local interval observer, where each ob-
server is used to estimate the bound on the absolute output
information of each agent. Differently, in this paper, each
observer estimates the bound on the sum of relative infor-
mation associated with each agent and its all neighbors,
which is called the neighborhood interval observer accord-
ing to the way of naming in (Zhang et al. (2011)). What
is more, in comparison with the local interval observer
in (Wang et al. (2019)), one of the superiorities of the
neighborhood interval observer is that the acquirement of
the relative information is easily than that of the absolute
information. On the other hand, as shown the definition
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of Ωi in (3), once ωi = ωj for all i, j = 1, . . . , N , that is,
system (1) turns to{

ẋi = Axi +Bui + ω, i = 1, 2, · · · , N,

yi = Cxi,
(26)

then Ωi = 0. In this case, if Ωi = Ωi = 0, then system
(26) can achieve consensus in line with the above analysis.
This finding further implies that the neighborhood interval
observer processes more robust than the local one.

4. CONCLUSIONS

In this paper, the concepts of the local interval observer
and the neighborhood interval observer for the multi-agent
systems are introduced. The main efforts are devoted to
the construction of the neighborhood interval observer for
multi-agent systems with disturbances. It firstly shows
that the Metzler premise on the matrix A + FC is a
fundamental requirement for the interval observer con-
struction. It also shows that there exists a time-varying co-
ordinate transformation to eliminate the Metzler require-
ment on A + FC in the neighborhood interval observer
construction. So, we can construct a neighborhood interval
observer for any stabilizable and detectable multi-agent
systems according to the algorithm provided in this paper.
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