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Abstract: The paper is devoted to reachable sets of linear time-varying continuous systems
under uncertain initial states and disturbances with a bounded uncertainty measure. The
uncertainty measure is the sum of a quadratic form of the initial state and the integral over the
finite-time interval from a quadratic form of the disturbance. It is shown that the reachable set
of the system under this assumption is an evolving ellipsoid with a matrix being a solution to
the linear matrix differential equation. This result is used to synthesize the optimal observer
providing the minimal ellipsoidal set as the estimate of the system state, as well as optimal
controllers steering the system state into a final target ellipsoidal set or keeping the entire system
trajectory in a prescribed ellipsoidal tube under all admissible initial states and disturbances.
The relationship between the optimal ellipsoidal observer and the Kalman filter are established.
Numerical modeling with the Mathieu equation for parametric vibrations of a linear oscillator
illustrates the results.
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1. INTRODUCTION

We consider problems of estimation, filtering and control
in dynamic systems under uncertainty, which arise when
the initial state of the system is not known exactly and the
system dynamics and output measurements are corrupted
by disturbances. In such situations, there exist two basic
approaches, stochastic and deterministic. The first one is
to model the initial state as a random vector and the state
and measurement disturbances as additive stochastic pro-
cesses and minimize the expectation of a cost functional.
The second approach considers uncertainties as unknown
except for the fact that they belong to prescribed, bounded
sets. The optimal solution is the one that achieves the
best performance under the worst possible uncertainties.
The central concept that emerges in the latter approach
is that of the reachable set, which is the set of states to
which the system can be steered under all possible initial
states and disturbances. Characterization of the reachable
set under uncertainties allows to synthesize systems with
the reachable sets included at a given moment or during a
given time interval in the desired target set or tube with
optimal characteristics.

The problem of finding or evaluating reachable sets has
been actively studied since the late 60s of the last century
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and still continues to attract the attention of specialists
in the field of control theory and its applications. See
Schweppe (1968); Bertsekas and Rhodes (1971); Kurzhan-
ski and Valyi (1997); Chernousko and Ovseevich (2004)
for more details. By virtue of the linearity of the system,
the state at a given moment is the sum of two vectors, the
state of the undisturbed system with an uncertain initial
state and the state of the disturbed system with zero initial
state. If the set of the initial states is chosen ellipsoidal and
the reachable set of the disturbed system is approximated
by an ellipsoid, then the problem arises of describing the
geometric sum of two ellipsoids, which is a convex set, but
not an ellipsoid. Moreover, in problems of recurrent esti-
mation, the need arises to find the smallest ellipsoid that
includes the intersection of two ellipsoids. To describe such
sets, Schweppe (1968); Boyd et al. (1994); Kurzhanski and
Valyi (1997); Chernousko and Ovseevich (2004); Kurzhan-
skiy and Varaiya (2011); Wang et al. (2019) have derived
upper and lower ellipsoidal approximations for reachable
sets. All this led to the development of the technique of
operating with ellipsoids. Despite significant progress in
this direction, associated with the use of linear matrix
inequalities and related software, the problem remains
open due to the fact that the methods based on ellipsoidal
approximations of reachable sets are difficult to apply for
the synthesis of optimal control systems with the exception
of very simple cases.
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A recent paper Balandin et al. (2019) introduced the
concept of a maximum output deviation for a linear time-
varying system over a finite-time interval under uncertain
initial states and disturbances, which was called the gen-
eralized H2 norm with transients. Essentially, this is the
induced norm of the operator generated by the system
and mapping the pair, consisting of an initial state vector
and a vector-function of the disturbance, to the output.
The squared “size” of the pair is measured by the sum
of the quadratic form of the initial state and the integral
of the quadratic form of the disturbance, while the “size”
of the output is measured by the maximum of the peak
value of its Euclidean norm over a finite-time interval. Such
an operator is also used in Balandin et al. (2019); Amato
et al. (2019) in characterizing the finite-time boundedness
of linear time-varying systems. For a linear time-invariant
system on an infinite time interval under zero initial con-
ditions, a similar characteristic was introduced by Wilson
(1989) and called the generalized H2 norm of the system.

The maximum output deviation was characterized by Ba-
landin and Kogan (2019); Balandin et al. (2019) in terms
of solutions to both the linear matrix differential equation
and inequalities, and the optimal control minimizing the
maximal output deviation was synthesized. These results
led the authors to the idea that when the sum of the
quadratic form of the initial state and the integral of
the quadratic form of the disturbance is bounded above
by a specified value, the state of the system belongs to
an ellipsoid with a matrix satisfying the above-mentioned
linear differential equation. Confirmation of this assump-
tion was found, at least partially, in Kurzhanski and Valyi
(1997), where the dynamic programming method showed
that, under a similar constraint, the reachable set is the
ellipsoid with a matrix being the solution of the Riccati
differential equation. Based on this result, an optimal
observer was synthesized in Kurzhanski and Valyi (1997),
providing an ellipsoidal estimate of the system state. How-
ever, these results were obtained under rather burdensome
assumptions of non-degeneracy of the quadratic forms of
the initial state and disturbances, which means that the
initial state must belong to a non-degenerate ellipsoid,
and disturbances must be present in the equation for each
state component and in the measurement of each output
component.

In this paper, these results are developed in several di-
rections for linear time-varying continuous systems. The
novel contribution of this paper is as follows. First, it is
shown that in the case of degenerate quadratic forms in
the uncertainty measure and, in particular, in the extreme
cases when there are no disturbances or when the initial
state is zero, the reachable sets of the system are also
ellipsoids. The need to study reachable sets in the case
of a degenerate quadratic form of the initial state arises,
for example, in the control problems of mechanical systems
with shock effects, when some state variables are known
while others experience instantaneous uncertain changes.
Consideration of this question has required a different
approach to substantiate the result, which led to the linear
matrix differential equation describing the dynamics of the
ellipsoidal reachable sets, instead of the Riccati differential
equation. It is also established that the value of the semi-
axis of the ellipsoidal reachable set really coincides with

the generalized H2 norm with transients. Secondly, the
equations of the optimal ellipsoidal observer and estimator
are obtained, which provides the estimate of the state
or the vector of unknown parameters in the form of the
ellipsoid of minimum size, including the degenerate case,
when disturbances in the system and measurements may
be absent in some equations. The relationships between
the optimal ellipsoidal observer and the Kalman filter is
revealed, which creates a bridge between the deterministic
and stochastic approaches to linear filtering. Third, it is
shown how to synthesize a bounded control under which
the state of the system falls into the final target ellipsoidal
set or the entire trajectory of the system is retained in
a specified ellipsoidal tube. All the results are illustrated
by the numerical examples with a linear non-stationary
oscillator described by the Mathieu equation.

2. ELLIPSOIDAL REACHABLE SETS

Consider a dynamic system described by the linear non-
stationary differential equation

ẋ = A(t)x+B(t)v, x(t0) = x0, t ∈ [t0, tf ], (1)

where x ∈ Rnx is the state, v ∈ Rnv is the disturbance
input. Denote

|a|2Q = aTQ−1a, ‖b‖2M [t0,t]
=

t∫
t0

bT(σ)M−1(σ)b(σ) dσ

for non-degenerate matrices Q and M(σ). The Euclidean
norm (corresponding to Q = I) and the L2-norm are
denoted by |a| and ‖b‖[t0,t].
Assume that initial state x(t0) and disturbance v = v(σ),
σ ∈ [t0, t] belong to a set of pairs of admissible initial states
and disturbances defined as follows

S(t, τ ;R,G) = {(x, v(σ)) : x = R1/2w1,

v(σ) = G1/2(σ)w2(σ), |w1|2 + ‖w2‖2[τ,t] ≤ 1} (2)

for a given (nx × nx)-matrix RT = R ≥ 0 and a given
(nv × nv)-matrix function GT(σ) = G(σ) ≥ 0, σ ∈ [τ, t],
τ ≥ t0. If R > 0 and G(σ) > 0, σ ∈ [τ, t], let us pick w1

and w2(σ) out first and second equalities in (2) and insert
them in the third inequality, which result in the constraint

|x(τ)|2R + ‖v‖2G [τ,t] ≤ 1. (3)

Thus, the definition (2) extends the constraint (3) to the
case of the degenerate matrices R and/or G(σ).

The sum of the quadratic form of the initial state and
the integral of the quadratic form of the disturbance
can intuitively be interpreted as the uncertainty measure
squared, and the constraint (3) itself can be “explained”
as follows. The system state at the moment t depends
linearly on the initial state and disturbance and their
“growth” results in the corresponding “growth” of the
current system state. Therefore, in order to characterize
the behavior of the system under uncertain initial states
and disturbances, it is reasonable to normalize the current
value of the Euclidean norm of the state by the value equal
to the specified sum or constrain the specified sum by one,
which is the same for linear systems.
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The weighting matrices R and G(σ) reflect relative im-
portance of the uncertainty in initial states over the un-
certainty in disturbances. From (2) it follows that the set
of initial states coincides with the ellipsoid E(R) = {x =
R1/2w |w| ≤ 1}. For R > 0 we arrive at the standard
form E(R) = {x : |x|2R ≤ 1}. If R ≥ 0, than E(R) is a
degenerate ellipsoid with affine dimension equal to rank of
the matrix R (see, for example, Boyd and Vandenberghe
(2004)). We denote by ϕ(t; τ, x, v) the solution of the equa-
tion (1) at the moment t with initial state ϕ(τ) = x under
appropriate function v = v(σ), σ ∈ [τ, t]. The problem is
to describe the set of all system states at the moment t
under all admissible initial states and disturbances from
set S(t, t0;R,G).

Definition. Reachable set of the system (1) at the moment
t ≥ τ under all admissible pairs of initial states xτ ∈ E(R)
at the moment τ and disturbances v(σ), σ ∈ [τ, t] from set
S(t, τ ;R,G) is the set of all states ϕ(t; τ, xτ , v) denoted by

D(t, τ, E(R)) = {x : ϕ(t; τ, xτ , v) = x

∀ (xτ , v) ∈ S(t, τ ;R,G)}. (4)

Theorem 1. The reachable set of the system (1) at the
moment t ≥ t0 under all pairs of initial states and
disturbances from set S(t, t0;R,G), t ∈ [t0, tf ] with R ≥ 0
and G(σ) ≥ 0, σ ∈ [t0, t] is the ellipsoid

D(t, t0, E(R)) = E(P (t)) (5)

with matrix P (t) ≥ 0 being the solution to the linear
matrix differential equation

Ṗ = A(t)P + PAT(t) +B(t)G(t)BT(t) (6)

under initial condition P (t0) = R.

Proof: Equation (6) has the solution

P (t) = Φ(t, t0)P (t0)ΦT(t, t0)+
t∫

t0

Φ(t, τ)B(τ)G(τ)BT(τ)ΦT(t, τ)dτ,
(7)

where Φ(t, τ) is the solution to the equation

dΦ(t, τ)

dt
= A(t)Φ(t, τ), Φ(τ, τ) = I.

At first, we consider the non-degenerate case when R > 0
andG(σ) > 0, σ ∈ [t0, tf ]. Since Φ(t, τ) is a non-degenerate
matrix, we get P (t) > 0, t ∈ [t0, tf ]. Consider a positive
definite quadratic form V (t, x) = xTP−1(t)x with the
matrix P (t) satisfying equation (6). Compute its derivative
with respect to the system (1) taking into account that

d(P−1)/dt = −P−1(Ṗ )P−1:

V̇ = vTG−1v − (v − v∗)TG−1(v − v∗), (8)

where v∗(t) = G(t)BT(t)P−1(t)x(t), and x(t) is a solution
to the equation

ẋ = [A(t) +B(t)G(t)BT(t)P−1(t)]x. (9)

Integrating (8) over [t0, t] results in

|x(t)|2P (t) = |x(t0)|2R + ‖v‖2G [t0,t]
− ‖v − v∗‖2G [t0,t]

. (10)

Since R > 0 and G(t) > 0, the condition (x0, v(σ)) ∈
S(t, t0;R,G) is equivalent to inequality (3) at τ = 0.
Therefore, xT(t)P−1(t)x(t) ≤ 1, i.e. x(t) ∈ E(P (t)).

Let us show that, for any state x̄ ∈ E(P (t)), there exists
a state x̄0 ∈ E(R) and a disturbance v̄(σ), σ ∈ [t0, t]
from S(t, t0;R,G) such that ϕ(t; t0, x̄0, v̄) = x̄. Choose
v̄(σ) = v∗(σ), where x(σ) is the solution to the equation (9)
with the terminal condition x(t) = x̄. Evidently, the initial
state of this trajectory x̄0 = x(t0) is the state required. In
view of (10) we have

|x̄0|2R + ‖v∗‖2G [t0,t]
= x̄TP−1(t)x̄ ≤ 1.

Thus, x̄T0R
−1x̄0 ≤ 1, i.e. x̄0 ∈ E(R0).

Consider now the degenerate case when R ≥ 0 and G(t) ≥
0, t ∈ [t0, tf ]. Introduce matrices

Rε = R+ εI > 0, Gε(t) = G(t) + εI > 0.

Let Pε(t) > 0 be a solution to the equation (6) with
G(t) replaced by Gε(t) and initial condition P (t0) =
Rε. Then the non-degenerate ellipsoid E(Pε(t)) is the
reachable set under initial states and disturbances from
S(t, t0;Rε, Gε). Since solution P (t) of the equation (6)
depends continuously on initial conditions and parameters,
we get Pε(t) → P (t), t ∈ [t0, tf ] as ε → 0. Consequently,
the reachable set under initial states and disturbances from
S(t, t0;R,G) in the case of R ≥ 0 and G(t) ≥ 0 is the
ellipsoid E(P (t)) as well.

Corollary 1. The reachable set of the system (1) under
initial states and disturbances from S(t, t0;R,G) possesses
the evolutionary property

D(t, t0, E(R)) = D(t, τ,D(τ, t0, E(R)),

since D(τ, t0, E(R)) = E(P (τ)) and D(t, τ, E(P (τ))) =
D(t, t0, E(R)) for any τ ∈ [t0, t].

Remark 1. Equation (6) coincides with the equation for
the state covariance matrix of the system (1), when the
initial state and disturbance are zero mean independent
white noises with covariance matrices Ex(t0)xT(t0) = R
and Ev(t)vT(t) = G(t) (see, for example, Kwakernaak and
Sivan (1972)).

In particular case, when disturbances are absent and
the initial state belongs to ellipsoid E(R), R ≥ 0, i.e.
the set of admissible initial states and disturbances is
S(t, t0;R, 0), the reachable set is the ellipsoid E(P0(t))
with matrix P0(t) ≥ 0 being a solution to the equation
(6) for G(t) ≡ 0 with initial condition P0(t0) = R. In
another particular case, when the initial state is zero,
i.e. the set of admissible initial states and disturbances
is S(t, t0; 0, G), the reachable set is the ellipsoid E(Pv(t))
with matrix Pv(t) ≥ 0 being a solution to the equation (6)
with zero initial condition Pv(t0) = 0. Since the solution
of the nonhomogeneous equation is of the form

P (t) = P0(t) + Pv(t), (11)

then E(P0(t)) ⊆ E(P (t)) and E(Pv(t)) ⊆ E(P (t)).

Let z = Cz(t)x ∈ Rnz be an output of the sys-
tem (1). When a state x(t) belongs to the ellipsoid
E(P (t)), i.e. x(t) = P 1/2(t)w with |w| ≤ 1, then z(t) =
Cz(t)P

1/2(t)w. According to Theorem 1 a set of all such
vectors is the ellipsoid E(Cz(t)P (t)CT

z (t)) = {z : z =
(Cz(t)P (t)CT

z (t))1/2g, |g| ≤ 1}. Hence, the maximal value
of the output Euclidean norm coincides with the maximal
semi-axis of this ellipsoid, i.e.

max
(x(t0),v)∈S(t,t0;R,G)

|z(t)| = λ1/2max

(
Cz(t)P (t)CT

z (t)
)
. (12)
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For R > 0 and G(σ) > 0, the maximum of this value over
the given interval [t0, tf ]

sup
t∈[t0,tf ]

max
(x0,v)∈S(t,t0;R,G)

|z(t)| =

max
x(t0)6=0,v 6≡0

sup
t∈[t0,tf ]

|z(t)|(
|x(t0)|2R + ‖v‖2G [t0,t]

)1/2 =

sup
t∈[t0,tf ]

λ1/2max(Cz(t)P (t)CT
z (t))

(13)

coincides with the generalized H2 norm with transients
for the system (1), z = Cz(t)x, which was introduced in
Balandin and Kogan (2019); Balandin et al. (2019).

Further, the result formulated in Theorem 1 can be gen-
eralized to the case when the initial state ellipsoid is not
centered at the origin and its center is in a given point
x∗. Indeed, let the initial state and disturbance (x0, v(σ))
satisfy the constraint

x0 = x∗ +R1/2w1, v(σ) = G1/2(σ)w2(σ),

|w1|2 +

t∫
t0

|w2(σ)|2 dσ ≤ 1,

and, in the case of non-degenerated matrices R and G(σ),
the constraint

|x0 − x∗|2R + ‖v‖2G [t0,t]
≤ 1.

It means that the initial state belongs to the ellipsoid
E(R, x∗) centered at x∗ with matrix R. Due to linearity
of the system its solution is presented as a sum of two
terms

ϕ(t; t0, x0, v) = ϕ(t; t0, x0 − x∗, v) + ϕ∗(t),

ϕ∗(t) = ϕ(t; t0, x∗, 0),

where the first term is the solution of the system with
initial state x0−x∗ and disturbance v(σ), while the second
term is the solution of the system without disturbances
with initial state x∗. It follows then from Theorem 1 that
the reachable set at the moment t is the ellipsoid with
matrix P (t) centered at the point ϕ∗(t), i.e.

D(t, t0, E(R, x∗)) = E(P (t), ϕ∗(t)).

3. OPTIMAL ELLIPSOIDAL FILTERING

Consider a filtering problem for the linear system

ẋ(t) = A(t)x(t) +B(t)v(t),

y(t) = C(t)x(t) +D(t)v(t),
(14)

where the initial state x(t0) and disturbance v(σ) are
unobserved, and y(σ), σ ∈ [t0, t] is the measured output.
Assume that the admissible initial states and disturbances
are presented in the form

x(t0)− x∗ = R1/2w1, v(σ) = G1/2(σ)w2(σ),

|w1|2 + ‖w2‖2[t0,t] ≤ 1, t ∈ [t0, tf ]
(15)

with given matrix RT = R ≥ 0 and matrix function
GT(σ) = G(σ) ≥ 0, σ ∈ [t0, t]. Let an observer be given
by the equation

˙̂x(t) = A(t)x̂(t) + L(t)[y(t)− C(t)x̂(t)], x̂(t0) = x∗, (16)

where x̂(t) is the estimate of the state x(t) and L(t) is the
observer gain matrix to be determined. Denote estimation
error e(t) = x(t)− x̂(t) that satisfies the equation

ė(t) = Ac(t)e(t) +Bc(t)v(t), e(t0) = x(t0)− x∗, (17)

where Ac(t) = A(t) − L(t)C(t), Bc(t) = B(t) − L(t)D(t).
According to Theorem 1 the reachable set of the system
(17) at the moment t is the ellipsoid E(P (t)) with the
matrix P (t) being the solution to the equation

Ṗ = Ac(t)P + PAT
c (t) +Bc(t)G(t)BT

c (t) (18)

with initial condition P (t0) = R. This means that the
state x(t) of the system (14) belongs to the ellipsoid
E(P (t), x̂(t)) with the center x̂(t) determined by the ob-
server equation (16). It is reasonable to call this set an
ellipsoidal estimate of the state x(t). The observer with
the gain matrix L∗(t) providing, for example, the minimal
trace of the matrix P (t) is called optimal ellipsoidal one.

As noted in Remark 1, equation (18) is the same equa-
tion that describes dynamics of the covariance matrix
Ee(t)eT(t) when the initial state and disturbance are mod-
eled as independent white noise processes with covariance
matrices Ex(t0)xT(t0) = R and Ev(t)vT(t) = G(t), re-
spectively. Since the trace of matrix P (t) of the ellipsoidal
estimate coincides with the variation of the estimation
error in the stochastic case, the equation of the optimal
observer coincides with the equation of the Kalman filter
for the system (14) under the above-mentioned covari-
ances. Note that additive stochastic state and measure-
ment disturbances ξ1(t) = B(t)v(t) and ξ2(t) = D(t)v(t)
in the system (14) are correlated with each other and have
covariances

Eξ(t)ξT(t) =

(
B(t)G(t)BT(t) B(t)G(t)DT(t)

∗ D(t)G(t)DT(t)

)
, (19)

where ξ(t) = col
(
ξ1(t), ξ2(t)

)
. Taking into account the

standard requirement within the framework of the Kalman
filtering that the covariance matrix of measurement distur-
bances is to be non-degenerate (see, for example, Kwaker-
naak and Sivan (1972)), we arrive at the following state-
ment.

Theorem 2. If det[D(σ)G(σ)DT(σ)] 6= 0, σ ∈ [t0, t], the
optimal ellipsoidal observer is determined by the equation
(16) with the gain matrix

L(c)(t) = [D(t)G(t)BT(t)+C(t)P∗(t)]
T[D(t)G(t)DT(t)]−1,

where P∗(t) ≥ 0 is the solution to the equation (18) for
L(t) = L(c)(t) and P∗(t0) = R.

Remark 2. Optimal ellipsoidal estimate of an output
z(t) = Cz(t)x(t) ∈ Rnz is the ellipsoid E(Pz ∗(t), ẑ(t)),
where Pz ∗(t) = Cz(t)P∗(t)C

T
z (t), ẑ(t) = Cz(t)x̂(t) and

x̂(t) is the state estimate determined by the optimal ellip-
soidal observer (16).

Remark 3. The correspondence established between the
optimal ellipsoidal observer and the Kalman filter creates
a bridge between the deterministic and stochastic ap-
proaches to linear filtering. Moreover, this relation reveals
the following important property of the Kalman filter. Let
x̂(t) be the state estimate of the system (14) obtained by
the Kalman filter under given covariances Kx(t0) = R and
Kv(t) ≡ G(t) and P∗(t) be the covariance of the estimation

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7373



−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x1

x2

Fig. 1. Dynamics of the optimal ellipsoidal and generalized
H∞-optimal estimates for the Mathieu equation

error. Then one may assert that system state x(t) belongs
to the ellipsoid E(P∗(t), x̂(t)) for any deterministic initial
states and disturbances of the form (15).

In order to illustrate the statement of Theorem 2, we con-
sider the famous Mathieu equation describing parametric
vibrations of the linear oscillator. Rewrite this equation in
the form

ẋ1 = x2
ẋ2 = −ω2

0(1 + ε sinωt)x1 + v,
(20)

where ω0, ω and ε are given parameters, v = v(t) is
the external disturbance. It is known (see, for example,
Neimark (2003)) that there exists a phenomenon of the
so called parametric resonance under certain values of the
parameters. Let the measured output be

y = x1 + x2 + v.

The system has the following parameters: ω0 = π/6,
ω = 2π, ε = 0.1, R = 10.5I, and G(σ) ≡ 1. Fig. 1
shows the system trajectory x(t), denoted by the black
line, with initial state x1(0) = 0.5, x2(0) = 0 under
disturbance v(t) = 0.05 sinπt as well as the trajectory
x̂(t), denoted by the blue color, corresponding to the
optimal ellipsoidal estimate and the appropriate ellipsoids
E(P∗(t), x̂(t)) at moments of time t1 = 2, t2 = 4,
t3 = 6. For comparison, the trajectory corresponding
to the generalized H∞-optimal estimate given in Nagpal
and Khargonekar (1991) and the appropriate ellipsoids,
denoted by the red color, are also presented in Fig. 1.
This experiment demonstrates that “sizes” of the ellipsoids
decrease significantly in time and that the red ellipsoids are
larger than the blue ones.

4. OPTIMAL ELLIPSOIDAL CONTROL

In the previous sections, it was established that the state
of a linear system under an uncertain initial state and
a disturbance with the uncertainty measure being less
or equal to unit belongs at each moment of time to an
evolving ellipsoid. Now, we will show how to synthesize

a bounded control in the form of non-stationary state-
feedback u = Θ(t)x ensuring that, despite the presence of
uncertainties: (i) the final output of the closed-loop system
will lie in a prescribed target ellipsoidal set; or (ii) the
entire output trajectory will lie inside a target ellipsoidal
tube. Such a control law will be called ellipsoidal control.

Consider the closed-loop system of the form

ẋ(t) = [A(t) +Bu(t)Θ(t)]x(t) +B(t)v(t),

z(t) = [Cz(t) +D(t)Θ(t)]x(t), x(t0) = x0,
(21)

where z(t) is the controlled output, t ∈ [t0, tf ]. Assume
that the admissible initial state and disturbance are in
the set S(t, t0;R,G), control input should be inside the
ellipsoid E(Qu(t)) with Qu(t) > 0, and the target set is the
ellipsoid Ez(Q(t)) = {z : zTQ−1(t)z ≤ 1} with Q(t) > 0.

The following lemma gives conditions of boundedness for
the control input. The proof of this lemma is omitted.

Lemma 1. Given Θ(t), u(t) = Θ(t)x(t) ∈ E(Qu(t)) with
Qu(t) > 0 for all x(t) ∈ E(P (t)) with P (t) ≥ 0 if and only
if the linear matrix inequality(

P (t) ∗
Θ(t)P (t) Qu(t)

)
≥ 0. (22)

is feasible with respect to P (t).

According to Theorem 1 the state of the closed-loop
continuous-time system (21) is inside the ellipsoid E(P (t))
with the matrix P (t) satisfying the equation

Ṗ = A(t)P + PAT(t) +Bu(t)Z(t) + ZT(t)BT
u (t)+

B(t)G(t)BT(t), P (t0) = R.
(23)

where Z(t) = Θ(t)P (t). Then the controlled output of
the closed-loop system belongs to the ellipsoid Ez(Qz(t)),
where

Qz(t) = [C(t) +D(t)Θ(t)]P (t)[C(t) +D(t)Θ(t)]T,

and, therefore, belongs to the target set provided that
Ez(Qz(t)) ⊆ E(Q(t)), i.e. Qz(t) ≤ Q(t). Substituting Qz(t)
into the latter inequality, using Schur lemma and Lemma
1, we arrive at the following statement.

Theorem 3. The control law u = Θ(t)x with Θ(t) =
Z(t)P−1(t) satisfies constraint u(t) ∈ E(Qu(t)), Qu(t) >
0, ∀ t ∈ [t0, tf ] and ensures z(tf ) ∈ Ez(Q(tf )) in case
(i)

(
z(t) ∈ Ez(Q(t)), ∀ t ∈ [t0, tf ] in case (ii)

)
for all

admissible initial states and disturbances from the set
S(t, t0;R,G), if there exist matrix functions P (t) > 0 and
Z(t) satisfying differential equation (23), inequalities (22),
Qz(tf ) ≤ Q(tf ) in case (i)

(
Qz(t) ≤ Q(t), ∀ t ∈ [t0, tf ] in

case (ii)
)
.

The above equation and inequalities can be solved by dis-
cretizing the time interval [t0, tf ] into equally spaced time
instances tk, k = 0, . . . , N . The discretized problem thus
can be expressed as the following semi-definite program
for k = 0, . . . , N

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7374



Y (k + 1)− Y (k)− h
(
A(k)Y (k) + Y (k)AT(k)

)
−

h
(
Bu(k)Z(k) + ZT(k)BTu (k)

)
−

hB(k)G(k)BT(k) = 0, Y (0) = R, k 6= N,(
Y (k) ∗
Z(k) Qu(k)

)
> 0, Y (k) > 0,

(24)

case (i) :

(
Y (N) ∗

C(N)Y (N) +D(N)Z(N) Q(N)

)
≥ 0,

case (ii) :

(
Y (k) ∗

C(k)Y (k) +D(k)Z(k) Q(k)

)
≥ 0

with respect to Y (k), Z(k), where the argument k implies
that the matrix concerned is evaluated at t = tk. The gain
matrix is computed as follows Θ(k) = Z(k)Y −1(k).

This numerical procedure allows to compute the ellipsoidal
controls for specified matrices Qu(t) and Q(t). The ellip-
soidal control law will be optimal in case (i) if matrix Q(tf )
of the target ellipsoidal set has the minimal trace. In this
case, matrix Q(N) becomes an additional variable and
the problem min trQ(N) subject to constraints (24), (i)
is solved. In case (ii), when the target ellipsoidal tube is
described by inequality zTQ−1(t)z ≤ r2 with a prescribed
Q(t) > 0, the ellipsoidal control law will be optimal under
minimal possible value of r. In this case, Q(k), k = 0, . . . N
are replaced by r2Q(k) and the problem min r2 subject to
constraints (24), (ii) is solved.

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

u0

r

Fig. 2. Dependence of the minimal radius of the tube on
the maximal value of the control

As an illustrative example we consider the equations

ẋ1 = x2, ẋ2 = −ω2
0(1 + ε sinωt)x1 + u+ v (25)

with ω0 = π, ω = 2π, ε = 0.1, describing parametric
vibrations of the controlled linear oscillator. Our objective
here is to observe the dependence of minimal radius r of
the target tube x21(t)+x22(t) ≤ r2, t ∈ [0, 60] on the control
bound u0 under the optimal ellipsoidal control of the form
u = θ1(t)x1 + θ2(t)x2 subject to constraint |u| ≤ u0. Fig.
2 demonstrates this dependence for R = diag(1, 1) and
G(σ) ≡ 1.

5. CONCLUSION

This paper demonstrates that reachable sets of a linear
time-varying continuous system under uncertain initial

states and disturbances with a bounded uncertainty mea-
sure are evolving ellipsoids. The uncertainty measure is
defined as the sum of a quadratic form of the initial state
and integral of a quadratic form of the disturbance over
finite-time interval. The cases of degenerated quadratic
forms are also considered. The matrices of the ellipsoidal
reachable sets satisfy the linear matrix differential equa-
tion. Application of this result allows to synthesize both
the optimal observer providing the ellipsoidal estimate of
the system state as well as linear non-stationary controllers
to steer the system state into a prescribed final ellipsoidal
set or to keep the entire system trajectory in a given
ellipsoidal tube. It is shown that the Kalman filter in the
state estimation problem is simultaneously the optimal
ellipsoidal observer, under deterministic initial states and
disturbances with the appropriate bounded uncertainty
measure. Illustrative examples for the Mathieu equation
demonstrate the effectiveness of the approach proposed.
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