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Abstract: In this paper, a class of nonlinear systems is considered, where the nominal system
representation is allowed to be non-minimum phase. A sliding surface is proposed which
is a function of the measured system output and an estimated state. A linear coordinate
transformation is introduced so that the stability analysis of the reduced order sliding mode
dynamics can be conveniently performed. A robust output feedback sliding mode control
(OFSMQ) is then designed to drive the system states to the sliding surface in finite time
and maintain a sliding motion thereafter. A simulation example is used to demonstrate the
effectiveness of the proposed method and the method is successfully applied to an inverted

pendulum.
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1. INTRODUCTION

Physical systems are frequently affected by external dis-
turbances and modeling uncertainties, which can have a
great impact on system performance. Sliding mode vari-
able structure control has been widely considered as an
effective method to tackle this problem due to its strong ro-
bustness properties and straightforward implementation.
Much of the early work assumed that all system state
variables are measurable (see e.g. Utkin (1977)). However,
in actual engineering systems, only output information
may be available. This has motivated the current emphasis
on the study of OFSMC.

Many OFSMC algorithms have been proposed for robust
stabilization of uncertain systems. A static output feed-
back variable structure control has been investigated for
linear systems without disturbances in El-Khazali and
Decarlo (1995). The case of matched disturbances and
OFSMC has been considered by appealing to a particular
canonical form in Edwards and Spurgeon (1998). However
unmatched disturbances also act on many systems. Model-
ing errors may also be unmatched. In sliding mode control,
unmatched disturbances directly affect the dynamics of
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the system when sliding. Output feedback sliding mode
schemes in the presence of unmatched linear disturbances
are considered in Zak and Hui (1993) and Choi (2002).
The disturbances experienced by physical systems may be
nonlinear and classes of more general unmatched distur-
bances have been considered in the design of OFSMC in
Yan et al. (2004a) and Liu et al. (2019). All the literature
above requires that the considered system is minimum
phase which limits application.

More recently, the study of OFSMC for non-minimum
phase systems has received attention. The tracking of
specific signals has been considered in Spurgeon and Lu
(1997), Shkolnikov and Shtessel (2002). In Yan et al.
(2004Db), a class of nonlinear systems has been stabilized
based on a dynamic OFSMC, where the nominal system
may be non-minimum phase. The results have been ex-
tended to time-delay systems (see e.g. Yan et al. (2009)
and Yan et al. (2010)), and interconnected systems (see
e.g. Yan et al. (2006)). Although the case of more general
unmatched disturbances with nonlinear bounds has been
considered in the literature above, an equivalent control
method has been used to analyze the stability of the
corresponding sliding mode dynamics, which makes the
analysis somewhat complicated.

In this paper, a dynamic OFSMC strategy is proposed
for a class of nonlinear non-minimum phase systems. Un-
der the conditions that the considered system can be
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transformed to the regular form (see e.g. Edwards and
Spurgeon (1998)), a new linear coordinate transformation
is presented so that the stability analysis of the reduced
order sliding motion dynamics can be clearly performed.
In comparison with most of the existing OFSMC methods
(see e.g. Gao et al. (2019) and Ji et al. (2019)), the nominal
part of the nonlinear system considered in this paper is
allowed to be non-minimum phase, which extends both the
potential practical application and the theoretical contri-
bution. It should be noted that the proposed new linear
coordinate transformation greatly facilitates the stability
analysis of the sliding motion dynamics. In light of this
transformation, the dynamical OFSMC can accommodate
unmatched uncertainty well and the stability analysis is
more intuitive and straight forward compared with the
results in Yan et al. (2004b), Yan et al. (2009) and Yan
et al. (2010).

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a nonlinear system

i =A%+ Bu+ f(i,t)
. (1)
y=0Cx%

where z € R",y € RP,u € R™ are the system state,
output and input vectors respectively with m < p < n,
and A, B, C are constant matrices with appropriate dimen-
sions, the function f (Z,t) represents the modeling error
and external disturbances. The following Assumptions are
imposed on system (1).

Assumption 1. System (1) is controllable and observable.
It follows from the observability of (A C) that there exists

a matrix L € R"™*P such that A — LC is stable. For any
symmetric matrix 1 > 0, the Lyapunov equation

(A—LCY'P, + Py(A—LC) = -Q (2)
has a unique symmetric solution P; > 0.

Assumption 2. f (Z,t) has a structural decomposition:
f(@,t) = EAL(%,1) (3)

where E is a known constant matrix, and ||A&(Z,t)|| <
¢(z,t) = n(x,t)||z| with ¢(&,t) Lipschitz with respect to
Z and where K¢ represents the Lipschitz constant.

Assumption 3. There is a known matrix F' such that

ETP =FC (4)
holds, where E is given by Assumption 2, and P; satisfies
(2).

Assumption 4. B and C are both full rank, rank(CB) =
m.

Under Assumption 4, it follows from Lemma 5.3 in Ed-
wards and Spurgeon (1998) that there exists a nonsingular
coordinate transformation z = T such that the system
(1) can be described as:

&= Ax + Bu+ f(x,t)

y=Cz (5)

= TAT-! with Agy € Rmxm’

| A Are
where A = {Am A22]

B = [392} = TB with nonsingular matrix B, € R™*™,
C=CT ' and f(x,t)

It follows from Proposition 3.3 in Edwards and Spurgeon
(1998) that the pair (A;1, A12) is controllable. Thus there
exists a matrix K € R™*(=m) guch that A;; — Ao K is

stable. It follows that for any symmetric matrix Qs > 0,
the Lyapunov equation

(A1 — ApK) Py + Py(A1 — A1K) = Q2 (6)
has a unique symmetric solution Py > 0.

= TEAE(T 1 a,t).

From (2) and the relationship between (1) and (5),
(T7YAT — LCT)' P, + P(T"'AT — LCT) = —Q1 (7)

Let Py = (T*l) P (T7), @ = (T 1)TZQ1 (7).

L=TL,E=TE.
It follows from (7) and Assumption 3 that

(A—LC)' Py + Py (A~ LC) = —Qs (8)
with P3, @3 are all symmetric positive matrices and
ETPy=FC (9)

From the above analysis, the following lemma can be
obtained:

Lemma 1. The constrained Lyapunov equations (2) and
(4) hold if and only if (8) and (9) hold.

From Lemma 1, Assumption 3 together with Assumption
1 represents a structural characteristic that is independent
of the coordinate system.

The objective of this paper is to design a composite sliding
surface formed by the system output and the estimated
state for system (5) such that the reduced order sliding
mode is asymptotically stable. For system (5), a dynamic
output feedback control of the following form
T=2(tu,y) (10)
u=u(ti,y) (11)
will be designed such that the associated closed-loop
system formed by (5), (10) and (11) can be driven to the
pre-designed sliding surface in finite time and a sliding
motion maintained thereafter even in the presence of
unmatched uncertainties.

3. SLIDING MOTION STABILITY ANALYSIS
3.1 Dynamic compensator design

Based on the analysis above, the following dynamical
compensator is constructed for the system (5):

&= A# + Bu+ L(y — C2) + ®(2,y,1)
where L satisfies (8) and

(y Ce ) "'71i_ —C%
<1><5c,y,t>={EF<y G080 F - Cd) #0
0, F(y—C%) =0

(12)

(13)

where E = TE with E given in (3) and F satisfies (4).
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It follows from (5) and (12) that
= (A= LC)e+ f(a,t) — B(d,y,t) (1)

where e = z — 2. In the (z,e) coordinate system, system
(5) and (14) can be described by

R R [ E PR

y=Cx

For the closed-loop analysis of (15) the following Lemma
will be required.

Lemma 2. (see e.g. Yan et al. (2004b)) There exists a
positive constant v such that |le]] < ~ if A(Q3) >

2K, |FC HT*H where

S \/ (eTPge)|t:t0 exp {ato} (16)

A (Ps)

MQs) 2K |FC||||[T~|
with oo =

2 (Ps) and e is given by (14).

Here A(-) and A(-) denote the minimum and maximum

eigenvalues respectively.

3.2 Sliding surface design and stability analysis of the
sliding motion

In order to construct a stable sliding mode dynamics,
a further transformation z = Tz will be introduced,
Inm O

K I,

coordinates, system (5) can be described by:
. [An A [ 0 -1
z_[Azl Azz} {22}+{Bz]u+Tf(T &t) (1)

where z; € R"™™, 25 € R™, A1; = A11 — A12K. Choose
the sliding function

o (y,&) = Sy + Sa& (18)
where S; € R™*P is design parameters, and So = .S —5,C
with S =[0 I, ] T.

Remark 1. It should be noted that A;; in (17) is stable.
When compared with the equivalent control method used
in Yan et al. (2004b), this simplifies the stability analysis
of the sliding mode dynamics. An additional advantage
is that the formulation provides a constructive design
method to determine S.

From (18), it follows that
o=5Czx+ S5 (x—e)

where T = and K satisfies (6). In the new

= Sz — Sse 19
= ST 12— Sse (19)
= 29 — SQ@

In the new coordinates the sliding surface is given by:
zZ9 = 526 (20)

When system (15) is restricted to the sliding surface (20),
the sliding mode dynamics are described by

LR o
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where f is the first m components of T'f (Tﬁlz, t) |
From Assumption 2 , it follows that

|Trr=z0|| <ITEIn@ T 20 |77 12 (22)
Then, from the definition of f1, (22) and the inequality

z
ol sy = [ Gt | < ol + 5al el
it can be seen that there exist functions x; and x2
(dependent on n, T, E, T and S5) such that

[f1 (z1, e, ) < xallzall + xz el (24)
Now, consider the term f(z,t) — ®(Z,y,t). From Assump-
tion 2 and (13), it follows that:

(i) when FCe =0, ®(&,y,t) = 0 and thus

22:;926.

(23)

" Py(f(x,t) — @(#,y,1)) = (FCe) 'AE =0 (25)
(ii) when FCe # 0,
6TP3(f(I7t) - (b(jvt))
= e T ~715L’ — m ~*1:2

<|FCe|[ (T 1)~ |FCel (T4, 1)
= K [FC| |7 el
Therefore from (i) and (ii) above, it follows that:
e Py(f(@,0) = (@, 1) < K [FCY |[T|lel®  (27)

Theorem 3. Suppose Assumptions 1-4 are satisfied. Then,
the reduced order sliding mode dynamics (21) are asymp-
totically stable if the matrix M defined by

B A(Q2) —2x1 || P2l - HP2A1252H — 1Pzl x2
T = ||PArSs|| = 1Pl x2 A (Qs) = 2K |FC ||T7H|
(28)
is positive definite.

Proof. For the system (21), consider the Lyapunov func-
tion candidate

V(z1,e,t) = el Pse+ 2,7 Pazy (29)

The time derivative of V' along the trajectories of the
dynamic system (21) is given as

V = —€TQ3€ —+ 26TP3 (f — (I)) — ZlTngl
+ 2217 PyA15S0e + 22T Po fy
Then from (24) and (27), it follows that

V< {=2(@s) + 2K |[FCY |77 } el

+{-2@Q2) + 2 1P} )
+2{[[P2AraSol| + | Pall x2} llell |21l

—~(hal e [l

(30)

le]

Hence, Theorem 3 follows since M > 0.

Remark 2. It should be pointed out that the stability
analysis of the sliding mode dynamics (21) does not require
that the considered system is minimum phase since the
design of the sliding function (18) is based on the dynamic
compensator (12) and the system output. Meanwhile as
shown in (21), the unmatched uncertainty f; affects the
sliding mode directly, but K in (6) and L in (8) can be
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designed by pole assignment to guarantee that the sliding
motion is stable under the sufficient condition M > 0.
4. SLIDING MODE CONTROL DESIGN

Based on the estimated state given by (12) and the system
output, the following sliding mode control is proposed

u=—(SB)™" {SAfc +S,L (y — C&) + ﬁ[( (i:,y,t)}
g
(32)
where K (Z,y,t) is defined by
K (&,9,) = K¢ [$1CE| || 771 el + v 504

+ (IS1CE| + 152E1) ¢ (T"a,t) +n
with 7 a positive constant.

Theorem 4. Suppose Assumptions 1-4 are satisfied. Then,
the control (32) with K () defined in (33) will drive the
system (15) to the sliding surface and maintain a sliding
motion thereafter.

Proof. It follows from (15) and (18) that
6 (y,2) = SBu + S2®(Z,y,t) + S1Cf(x,1)

4 SAG + (S1CA+ SyLC) e (34)
By applying the control (32) to (34),
oo <~ ol (K nt) ~ [8:0G0.01

—[15:Cf (2, )] — (151 C Aell}

From Assumption 2,
IiC S ()l < ISICEI| (¢ (T a,t) = ¢ (T714,1))
+1$1CE| ¢ (T4 )
<K [$1CB| |77 el
+IS1CEI ¢ (T 4,t)

(36)
From (13) and Assumption 2,
1S20(2,9, 01l < IS: B¢ (T12,t)  (37)
From Lemma 2,
[51C Ae|| < v [|S1CA]| (38)

Based on the above analysis, the following inequality can
be obtained:

ol < —nlol| (39)
Hence, Theorem 4 follows since the so-called n reachability
condition is satisfied.

5. SIMULATION AND EXPERIMENTAL RESULTS

The Process Modelling and Control Group at the China
University of Petroleum (East China) has the inverted
pendulum rig shown in Fig.1. This system is nonlinear with
complex and non-minimum phase characteristics. The
proposed algorithm will be validated by both simulation
and experimental testing.

Through mechanism modeling and model identification,
a linearized inverted pendulum model is obtained in the
form (1) where the system states # € R* represent the
deviation of the slider’s horizontal position (m), the slider’s

horizontal velocity (m/s), the pendulum angle (rad) and
the pendulum angular velocity (rad/s) from their respec-
tive equilibrium points, u € R! is the control input, repre-

senting the output torque of the motor drive (N), f(Z,t)
represents the modeling error and external disturbances

0O 1 0 0 0
Y —14.190 291 O ~ —961.51
and A = 0 0 0 11 B = 0 ,
285.68 0 —18.96 0 16060.57

¢ = 000

(1) 10 ()]' This system has zeros at —5.45144 and

5.45144 and thus the nominal system is non-minimum
phase. Suppose f(Z,t) satisfies

f(@,t) = EAL(7,1) (40)

where £ = 1072 x [8 0.54 0.02 —3.41] T ||AL(Z,1)| =
¢(%,t) =5 x 107*||Z|| with K; =5 x 10~%. The objective
is to design a control so that the system states converge
to zero asymptotically only using the system output in-
formation and the estimated state even in the presence of
unmatched uncertainties and modelling errors.

The coordinate transformation z = TF is given by

0 0 10
~ 016.70 0 1
=110 o0 (41)
0 1 00
Then the system can be represented by
0 1 0 -16.70
A— 29.72 0 48.70 0
- 0 0 0 1
2.91 0 —14.19 0
0
B 0 10010
B = 0 , €= {0 00 1}
—961.51
Since (A, C) is observable, choose
4 1
~ —14.19 6
L=1 "0 a3 (42)
285.68 —36.98

Then, A —TLC is stable and for Q3 = 1031y, the solution
of Lyapunov equation (8) is

Fig. 1. Sliding self-balancing offset inverted pendulum rig
produced by Educational Control Products
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8122.20 —500 0 4926.83
—500 13908.57 0 —144609.40
B=1 0 125 0 (43)
4926.83 —144609.40 0 1512778.63
Since (A11, A12) is controllable with
0 1 0 —16.70
Ay = 2972 0 4870 | | Ayp = l 0 1 (44)
0 0 O 1
Choose
K =[—0.41 —0.09 —0.88] (45)
Then Ay — AoK is stable and for Qo = 107315, the
solution of Lyapunov equation (6) is
0.81 0.16 1.87
P, =10"2x | 0.16 0.04 0.38 (46)
1.87 0.38 11.28

The new coordinate transformation z = Tz is given by

1 0 0 O
0 1 0 0
0 0 1 0
—0.41 —0.09 —0.88 1

T = (47)

Choose S = [—0.41 —0.09 —0.88 1], S; =[—0.02 —0.01],
So =[—0.41 —0.09 —0.86 1.01]. Based on the above anal-
ysis, Assumptions 1-4 and Lemma 2 are all satisfied with
F =[10 50]. Meanwhile, by direct computation, it follows
that xy; = 1073, x2 = 1.4 x 1073 and

| 0.0007668282825 —0.3219264043330
| —0.3219264043330 999.1452458529587

Thus the conditions of Theorem 3 are satisfied.
simulation, the initial condition is given by:

col(#,2) = (—0.03,0.01,0.08, —0.02,0.02, —0.01, —0.05, 0.01)

M

In the

(48)

0.06

- - -System state Z;
Compensator state &

time(s)

Fig. 2. The responses of Z; and 7 in the simulation test

- - -System state I
\ —— Compensator state @

time(s)

Fig. 3. The responses of Z3 and Z5 in the simulation test

The simulation results in Figs.2-6 show the effectiveness
of the designed control. The compensator can effectively
observe the system states and the controlled system shows
good robustness against unmatched disturbances.

The experimental results in Figs.7-10 show that the com-
pensator states and system output are well-behaved, the
control input is realistic and the sliding mode is reached.
The proposed algorithm is found to be applicable to a
nonlinear and non-minimum phase problem.

6. CONCLUSION

A dynamical OFSMC method has been proposed for a
class of nonlinear non-minimum phase systems. A sliding
mode control has been designed to ensure that the system
states reach the designed sliding surface in finite time.
Simulation and experimental test results are given to show
the effectiveness of the proposed control scheme. Future

0.1

’

' - - -System state &3
—— Compensator state @3

\
1
1
1
1
1
1
1
1
'
1

-0.05

-0.15
0

time(s)

Fig. 4. The responses of Z3 and &3 in the simulation test

0.3

- - -System state z4
Compensator state I

0 2 p s s 10
time(s)
Fig. 5. The responses of £, and &4 in the simulation test

x10°

0 2 4 6 8 10
time(s)

Fig. 6. The sliding function o in the simulation test
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Compensator state
~

0 10 20 30 40 50 60 70 80 90 100
time(s)

Fig. 7. The compensator states for the experimental tests

Control input(N)

20 40 60 80 100
time(s)

Fig. 8. The control input for the experimental tests

System output

20 40 60 80 100
time(s)

Fig. 9. The system output for the experimental tests

20 40 60 80 100
time(s)

Fig. 10. The sliding function o for the experimental tests

work will focus on the application of the proposed method
to interconnected systems.
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