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Abstract: This paper studies the data-driven structural control of monopile wind turbine towers
based on machine learning approach, by using an active tuned mass damper (TMD) located
in the nacelle. The adaptive dynamic programming (ADP) approach is employed to obtain
the optimal controller which is derived on the modern large-scale machine learning platform
Tensorflow. The proposed network structure includes three simple three-layer neural networks
(NNs), i.e. a plant network, a critic network, and an action network. The plant network is
used to capture the fully nonlinear dynamics of the structural system while the action network
is used to approximate the optimal controller. Their training requires the gradient information
flowing through the whole network. The automatic differentiation is used in this paper for all the
gradient derivations, which greatly improves the employed ADP algorithm’s ability in solving
complex practical problems. The simulation results of structural control of monopile turbine
towers show that on average the active TMD achieves 15% performance improvement on tower
fatigue load reduction over a passive TMD, with small active power consumption (less than
0.24% of the turbine’s nominal power production). Besides, the controller design considers the
trade-off between control performance and power consumption.
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1. INTRODUCTION

Wind energy has received a lot of research attention
in the past decades. As land-based wind turbines have
many installation limitations, more and more offshore
wind turbines are being constructed, which can also take
advantage of the higher wind quality at sea. Offshore wind
turbines can be classified as fix-bottom ones and floating
ones according to their foundation type. Nowadays, most
offshore wind turbines are fix-bottom ones, among which
the monopile ones are most popular. Thus this paper
focuses on the structural control of monopile wind turbine
towers.

The pitch control ( Leithead et al. (2004); Soltani et al.
(2011)) and torque control ( Zhao and Weiss (2014); Zhang
et al. (2014)) are widely used for the vibration reduction
of wind turbine towers, but they may interfere with the
nominal power generation. Therefore, various structural
control techniques have been proposed, including Tuned
Mass Dampers (TMDs)( Tong et al. (2017); Lackner and
Rotea (2011a); Stewart and Lackner (2013)) and Tuned
Liquid Dampers (TLDs)( Colwell and Basu (2009)). The
performance of a TMD can be further improved by adding
an active force control to it, which is referred as Hybrid
Mass Dampers (HMDs). This has been studied in the
area of floating wind turbines with an HMD installed in
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the nacelle ( Lackner and Rotea (2011b); Stewart and
Lackner (2011); Hu and He (2017)), and in the floating
platform ( Li and Gao (2016)). However, in these works,
the controller designs were all based on linear models,
thus the resulting controllers worked well only when the
structural system was not far from equilibrium. In order to
improve control performance, the control strategy should
take account of the nonlinear dynamics of the structural
system. In this work, the adaptive dynamic programming
(ADP) approach is employed, with the fully nonlinear
dynamics of the structural system captured by artificial
neural networks (NNs).

Approximate Dynamic Programming, also known as Adap-
tive Critic Design, Reinforcement Learning, Adaptive Dy-
namic Programming, is a powerful tool for optimal control
problems. It was originally proposed by Webos ( Werbos
(1990, 1992)) and recently has caught a lot of attention for
the control of both Continuous-Time (CT) and Discrete-
Time (DT) systems ( Liu et al. (2017, 2014); Lewis and Liu
(2013); Lewis and Vrabie (2009); Jiang and Jiang (2017)).
There are mainly two types of iterative ADP algorithms,
Value Iteration Approximate Dynamic Programming (VI-
ADP) and Policy Iteration Approximate Dynamic Pro-
gramming (PI-ADP). The VI-ADP approach needs a well-
designed initial value function to guarantee the stability of
the iteration process while the PI-ADP approach requires
an admissible initial control law. In this work, the PI-ADP
approach is employed, as the open-loop structural system
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(including both the monopile wind turbine and the TMD)
is stable.

The PI-ADP algorithm is realized by NNs. The employed
algorithm includes three networks, i.e. an action network,
a critic network, and a plant network, where the plant
network is used to capture the fully nonlinear dynamics
of the structural system and the action network is used
to approximate the optimal controller. The NN training
requires the gradient information flowing through all the
three networks, which is tackled by automatic differenti-
ation in this work. While to our knowledge, the network
structures in the existing literature are rather simple and
the training of the hidden layer is usually ignored. This
allows their gradients to be derived analytically, which will
become infeasible with complex network structure. Thus
the use of automatic differentiation in this work greatly
improves the employed ADP algorithm’s ability in solving
complex practical problems. Besides, the NN structure is
implemented on the large-scale machine learning platform
Tensorflow ( Abadi et al. (2015)), which makes the NN
training in this work very efficient, especially with the
use of GPU. The NREL (National Renewable Energy
Laboratory) 5-MW baseline monopile wind turbine model
( Jonkman et al. (2009)) is used in this study and an HMD
is installed in the turbine nacelle to suppress the tower
vibration in the fore-aft direction. The simulation is done
by the modified version of FAST (Fatigue, Aerodynamics,
Structures, and Turbulence) code ( Jonkman et al. (2005)),
which is called FAST-SC ( Lackner and Rotea (2011a)).
The plant network is trained based on the data generated
by FAST-SC. After training the plant network, a series
of ADP controllers are obtained by varying the penalty
term in the action network training, which considers the
trade-off between the control performance and power con-
sumption.

The remaining part of this paper is organized as follows:
the ADP approach is described in Section 2, where the
network structure is presented. In Section 3, the machine
learning based structural control design is described. The
simulation results are given in Section 4 and the conclusion
is drawn in Section 5.

2. ADAPTIVE DYNAMIC PROGRAMMING
APPROACH

2.1 Problem formulation

Consider a general nonlinear system

xk+1 = F (xk, uk), k = 0, 1, 2, ... (1)

where xk ∈ Rn and uk ∈ Rm are the n-dimensional state
variable and the m-dimensional control variable at time
step k, respectively. It is assumed hereby that F (0, 0) = 0
and F (xk, uk) is Lipschiz continuous on a compact set
Ω. Denote the sequence of control variables as ūk =
{uk, uk+1, uk+2, ...}, then the cost function for the state
x0 under the control ū0 is expressed as

J(x0, ū0) =

∞∑
k=0

U(xk, uk) (2)

where U(xk, uk) is the utility function. It is a positive-
definite function of xk and uk. Here we focus on state-

feedback control thus an arbitrary control law can be
expressed as a function of state variables

uk = µ(xk). (3)

The cost function for the state x0 under the control law µ
is expressed as

Jµ(x0) =

∞∑
k=0

U(xk, µ(xk)). (4)

The optimal cost function is then given as

J∗(x0) = inf
µ

(Jµ(x0)). (5)

According to Bellman’s principle of optimality we get

J∗(xk) = min
uk

{U(xk, uk) + J∗(F (xk, uk))},∀xk ∈ Ω (6)

and the corresponding optimal control law

µ∗(xk) = arg min
uk

{U(xk, uk) + J∗(F (xk, uk))},∀xk ∈ Ω.

(7)

2.2 Policy iteration algorithm

The PI-ADP algorithm begins with an admissible con-
trol law µ0 (i.e. a control law that is continuous on Ω,
µ0(0) = 0, and Jµ0(x0) < ∞,∀x0 ∈ Ω ), and then obtain
the optimal cost function and the optimal control law
iteratively through the policy evaluation and policy im-
provement procedure. During policy evaluation, the value
function Vi is constructed based on the corresponding
control law µi such that it satisfies the following equation

Vi(xk) = U(xk, µi(xk)) + Vi(F (xk, µi(xk))),∀xk ∈ Ω.
(8)

Then during the policy improvement, the control law µi+1

is updated based on the value function Vi according to

µi+1(xk) = arg min
uk

{U(xk, uk) + Vi(F (xk, uk))},∀xk ∈ Ω.

(9)

Through the iteration process (µ0 → V0 → µ1 → V1 →
µ2 → ...VN−1 → µN ), the optimal cost function J∗

is approximated by VN and the optimal control law µ∗

is approximated by µN . The properties of the PI-ADP
algorithm have been proved in ( Liu et al. (2014)), where
an admissible initial control law is required to guarantee
the convergence and stability of the algorithm.

2.3 Neural network implementation

The system to be controlled, the value function and
the control law are all approximated by NNs, which
are denoted as plant network, critic network, and action
network hereafter. A basic illustration of a NN with only
one hidden-layer is given in Fig. 1, and the corresponding
input-output relation can be expressed as

y = w2σ(w1x + b1) + b2. (10)

N1,N2, andN3 in Fig. 1 represent the input dimension, the
hidden-layer neuron number and the output dimension. w1

(b1) and w2 (b2) are the weight matrix (bias terms) of
the first layer and the output layer, which are all updated
during NN training in this work. The hyperbolic tangent
function is used as the activation function σ throughout
this work.
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Fig. 1. The illustration of an artificial neural network with
one hidden-layer.

The whole network used in this work is illustrated in Fig.
2, where each network (i.e. the plant network, the action
network, and the critic network) has the same structure
as the one shown in Fig. 1. It is a common practice to
standardize the data in NN training, thus here we have
designed the networks in order to feed standardized data
for plant network training and critic network training. We
employ the standard scaler (denoted as Scaler 1, Scaler 2,
Scaler 3 and Scaler 4 in Fig. 2), which normalizes the data
by their mean value and standard deviation

dstd =
d−m(d)

s(d)
(11)

where m(d) and s(d) represent the mean and standard
deviation of the dataset d.

By feeding the standardized state xstdk , standardized ac-
tion ustdk and the target of the standardized state change

dxstd∗k to the plant network, it is trained to minimize the

mean squared error (MSE) between the target dxstd∗k and

the network output dxstdk . After the training process, the
prediction of the next state xk+1 is done by first transform-

ing xk, uk into xstdk , ustdk , then obtaining dxstdk through

the plant network, transforming dxstdk into dxk, and finally
adding xk and dxk. The reason for predicting the state
change instead of the state variable by plant network is
that it can greatly increase the prediction accuracy, since
the state change is usually subtle compared to the state
variable. Once the plant network is trained, we can proceed
to design the iterative controller by critic training and
action training.

For the critic training, the value function is approximated
directly by

Vi(xk) =

N∑
j=0

U(xk+j , µi(xk+j)) (12)

where N is a large number. Then the training is done by
minimising the MSE of the target Vi(xk) and the critic net-
work output. After the critic training, the action network
is trained such that it minimizes the value function

V (xk) = U(xk,uk) + V (xk+1). (13)

In practice, the minimization procedure is deemed as
completed when the mean square of the value function

changes very little ( less than a prescribed threshold )
with further training. The critic training and the action
training are done iteratively until they converge.

3. HMD CONTROLLER DESIGN

3.1 NREL 5MW Monopile Wind Turbine Model within
FAST-SC code

The NREL 5MW monopile wind turbine model within
FAST-SC code is employed in this paper. The HMD is
installed in the turbine nacelle and designed to move in
the fore-aft direction, and a stroke limitation of ±7m
is imposed. The damping coefficient, stiffness coefficient
and HMD mass are set as 7518N/(m/s), 61514N/m and
20000kg, which are the optimal parameters reported in
( Tong et al. (2017)). The simulations are carried out in
FAST-SC with all the degrees of freedom (DOFs) enabled
except the nacelle yaw DOF.

3.2 Plant network training

The structural system can be characterized by the primary
state variable x

x = [xhmd, uhmd, xtt, utt] (14)

where xhmd, uhmd, xtt and utt represent the HMD dis-
placement, HMD velocity, tower top displacement and
tower-top velocity, respectively. The training dataset is
generated by running the monopile turbine model for a
certain amount of time. From these time series data, a
set of training samples are extracted, with each sample
consisting of state variables at time k, action variables at
time k and state variables at time k + 1.

In this work, a 1200-second simulation with a time interval
of 0.0125s is carried out under the excitation of random
HMD force with a time step of 0.1s and within the
interval [−500, 500]kN. The training dataset is obtained
by eliminating the first 5-second time series and extracting
one data point with a time interval of 0.1s. Thus 11950
data points are collected. In each training sample, xk+1

is set to have a time difference of 0.05s with the current
state xk.

After generating the training dataset, a plant network
with the hidden-layer neuron number N2 = 15 is con-
structed and is trained with Adam optimization algorithm
( Kingma and Ba (2014)). The learning rate is set as 0.001
and the training error is set as 1.5 × 10−3. The trained
plant network is used to mimic the structural system. In
order to assess the accuracy of the trained plant network,
a comparison of the FAST-SC simulation results and the
plant network calculations is given in Fig. 3, including the
time series of the random HMD force and the comparison
of state variables. Both calculations are based only on
the same initial condition at t = 5s and the same test
perturbation force which has not been used during the
plant network training. A perfect match is observed for
the whole period. It is concluded that the plant network
has captured the fully nonlinear dynamics of the structural
system.
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Fig. 2. The whole network structure including the plant network, the action network and the critic network.

Fig. 3. The comparison of the FAST-SC simulation results (solid line) and the plant network calculations (dashed
line). The sub-figures above show the time series of the HMD force for testing the trained plant network, HMD
displacement, HMD velocity, Tower top displacement, and Tower top velocity.

3.3 Action-Critic network training

After training the plant network, the training of the action
network and the critic network are conducted iteratively.
The hidden-layer neuron number of both networks is set
as 15, and the learning rate is set as 0.001. The bias term
is not used for the action network, imposing the condition
µ(0) = 0. The training error of critic network is set as 10−3

and the training convergence criterion of action network is
set as 10−5. The action network is initialized by very small

random weights as µ0 = 0 is an admissible control law for
the structural system. The value function is approximated
by equation (12) and N is set as 5000. The utility function
still needs to be specified in order to train the networks.
In this paper, the utility function is chosen as

U(xstdk ,ustdk ) = (xstdk )T ·Au · (xstdk ) +Bu · (ustdk )2 (15)

where Au = 10−4 × diag(1, 1, 25, 25). A number of values
are chosen for Bu, as reported in Table 1, in order to
investigate the compromise between the active control
force and the control performance.
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4. SIMULATION STUDY

With the converged plant network capturing the full
dynamics of the structural system and the converged
action network approximating the optimal control law, this
section is devoted to simulation tests.

The turbulent wind is generated by TurbSim ( Jonkman
and Kilcher (2012)) using IEC von Karman turbulence
model with the power law exponent set as 0.14 and
the turbulence intensity set as 15%. The wave condition
is generated based on the JONSWAP spectrum with
the peak-spectral period of the incident waves set as
12.4s. Four simulations are carried out. For the first two
simulations (S1 and S2), the main wind speed is 18m/s
and the significant wave height is 3.5m. For the last two
simulations (S3 and S4), the main wind speed is 10m/s
and the significant wave height is 2.0m. The wind inputs
for S1 and S2 (or S3 and S4) are generated by different
random seeds.

The MLife code ( Hayman and Buhl Jr (2012)) provided by
NREL is employed for computing the damage equivalent
load (DEQL). The frequency of DEQL is set to be 1 Hz
and the Wohler exponent is set as 3. The main simulation
results are given here, including the calculations with no
TMD, passive TMD, and HMD using a series of ADP
controllers (denoted as ADP1-ADP5). The DEQL based
on the bending moment at the tower base and the HMD
power consumption are listed for all the four simulations
(S1, S2, S3, S4) in Table 1. In addition, the fatigue damage
reductions over the cases with passive TMD are also
reported (the ones in the brackets in Table 1).

The tower top displacements for the simulations S1-S4 are
given in Fig. 4. As can be seen, the ADP-based HMD has
clearly stabilized the turbine tower. On average the DEQL
is reduced by 13.5% from the passive case with an average
power consumption of 11.8kW using the controller ADP5
in the cases of S1 and S2. As for the cases of S3 and S4,
the DEQL is reduced by 16.3% on average from the passive
case with an average power consumption of 2.9kW.

By changing the penalty coefficient Bu related to the
HMD force magnitude in the utility function, a set of
controllers are obtained. As can been seen from Table
1, the control performance increases monotonically with
the active power consumption. Due to the relatively small
stroke limitation and relatively small mass of the HMD,
the power consumption of these controllers are small. For
example the largest power consumption (corresponding
to ADP5) is just about 0.24% of the nominal power
of the turbine (but with a considerable improvement in
fatigue load reduction compared with the passive TMD).
We mention that the control performance can be further
improved by increasing the stroke limitation and/or HMD
mass.

5. CONCLUSION

The data-driven structural control of monopile wind tur-
bine towers has been investigated, by using an HMD in-
stalled in the nacelle. The ADP approach was employed
to obtain the optimal controller, which was derived on the
modern large-scale machine learning platform Tensorflow.

The use of automatic differentiation in this work greatly
improves the employed ADP algorithms’ ability in solving
complex industrial problems. In addition, our controller
design allows considering the trade-off between control
performance and power consumption. The simulation re-
sults showed that the HMD achieved an average 15%
performance improvement on the fatigue load reduction
compared with a passive TMD, with very small active
power consumption (less than 0.24% of the turbine’s nom-
inal power production).
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