
Real Time Path Planning of Robot using
Deep Reinforcement Learning

Jeevan Raajan 1, Srihari P V 1, Satya Jayadev P, B Bhikkaji,
Ramkrishna Pasumarthy

Department of Electrical Engineering, Indian Institute of Technology
Madras, Chennai, 600036, India (e-mail:
{raajan.jeevan,sriharivenkat95}@gmail.com)

Abstract: This paper considers finding a path in real time for a robot from the given initial
position to the goal position. The environment is assumed to be mapped (known completely)
and the resulting path should avoid all the obstacles, both static and dynamic in the mapped
environment. The robot’s (agent) dynamics is assumed to be discrete LTI with process noise
and is controlled with a finite set of inputs. An MDP formulation and a solution based on
Deep Reinforcement Learning framework are presented for the problem. Numerical experiments
are performed for the proposed method using Deep Q-Network algorithm and the results are
compared with the state of the art sampling based path planning algorithms for both static
and dynamic environments. It is shown that even though the proposed algorithm provides a
sub-optimal path, the computational time is shown to be significantly faster compared to the
traditional methods of path planning.

Keywords: Trajectory and Path Planning, Reinforcement Learning, Q-Learning, Autonomous
Vehicles, Learning and Adaptation in Autonomous Vehicles

1. INTRODUCTION

In the field of robotics, path planning is one of the most
basic and crucial component wherein the objective is to
determine a collision free path for the robot to the goal in
an obstacle rich environment. In early years, geometric al-
gorithms like visibility graph, cell decomposition and grid
based algorithms enjoyed great success in low dimensional
path planning problems. However, these algorithm tend
to be computationally intractable in higher dimensions
involving complex constraints. In the last two decades,
sampling based methods have been widely used for solving
path planning problems (LaValle (2006)) in higher dimen-
sions. Algorithms like Rapidly Exploring Random Tree*
(RRT*) (Karaman and Frazzoli (2011)) and Fast Marching
Trees* (FMT*) (Janson et al. (2015)) deals with finding a
feasible path in a fixed goal environment whereas a variant
of RRT* called the Real Time RRT* (RT-RRT*) (Naderi
et al. (2015)) deals with finding a path in dynamic environ-
ments involving changing obstacle and goal positions. Fur-
thermore, in order to account for the uncertainties involved
in the system and environment, Luders (2014) provides an
improved version of RRT* called the Chance-constrained
RRT* which allows for probabilistic constraints to be
placed on the path and proposes a similar improvement
to the FMT* named the Robust-FMT*. However the real-
time versions of all the above mentioned algorithms involve
significant computational overhead for finding the path
while performing collision checks, especially in dynamic
environments.

1 Authors contributed equally in this paper.

In recent years, the field of Reinforcement Learning (RL)
combined with deep neural networks has seen phenome-
nal progress as it has enabled tackling decision making
tasks involving complex environments. (Mnih et al. (2015),
Van Hasselt et al. (2016)). Recently, RL approaches have
been used to solve Real time path planning problems Lei
et al. (2018). However, most of the existing deep-RL algo-
rithms focus on collision avoidance rather than planning
a path for a dynamic environment Kahn et al. (2017). In
this paper, a Deep-RL based methodology using Deep Q-
Network is proposed to solve the path planning problem
described in Section 2.

2. PROBLEM STATEMENT

Consider a mobile robot in a 2-D environment of l× l m2

as shown in Figure 1 with the top left corner being the
origin. The robot is assumed to have the dynamics

qt+1 =Aqt +Bat + wt, t = 1, 2, . . . (1)

where qt = (xt, yt)
T ∈ R2 denotes the 2-D position of the

robot at time t, at ∈ A is the input vector, with A being
a finite subset of R2. The matrices A,B ∈ R2×2 with A
being Hurwitz. The process noise wt is assumed to be a
i.i.d Gaussian process with mean zero and having positive
definite covariance Pw.

The robot consists of m distance sensors placed symmetri-
cally around it and their corresponding readings at time t

are denoted by d
(i)
t , i = 1, 2, . . .m. The maximum range of

the distance sensor is dmax. A sensor reading d
(i)
t < dmax

indicates the presence of an obstacle in that direction.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15811

Fig. 1: Environment Schematic

Let Q denote the total configuration space of the robot and
q0 be the initial position of the robot (refer Figure 1).
The obstacles in the environment are categorized under
two sets

Qobs1,t =

k1⋃
i=1

Q
(i)
obs1,t, (2)

Qobs2 =

k2⋃
j=1

Q
(j)
obs2, (3)

where Qobs1,t denotes the set of obstacles whose positions
can vary with time and Qobs2 denotes the set of obstacles

which are fixed in the environment. In (2) Q
(i)
obs1,t is taken

to be a ball of fixed radius r
(i)
obs1 with centre q

(i)
obs1,t at time

t and in (3) Q
(j)
obs2 is assumed to be a bounded convex

polygon. Refer to Figure 1 for an illustration with k1 = 6
and k2 = 4.

The dynamics of Q
(i)
obs1 obstacle in terms of its center is

given by:

q
(i)
obs1,t+1 = q

(i)
obs1,t + ci,t ∀i ∈ Qobs1. (4)

In (4) + operator represents the set translation and
ci,t, the time dependent translation for the obstacle, is
uniformly distributed over a finite set U . Furthermore, it
is assumed that the initial position of the robot is not in
the vicinity of the obstacles from set Qobs1.

The goal of the path planning is to find the sequence of
inputs a0, a1, . . . , aN ∈ A to go from an initial state q0
to the terminal state qN in minimal number of time steps
such that:

P (qN /∈Qgoal) < δ1, (5)

P (qt ∈ (Qobs1,t ∪Qobs2)) < δ2 t = 1, 2, . . . , N − 1. (6)

Here P denotes the probability, Qgoal ⊂ Qfree is a ball
with centre qgoal and radius rgoal. And δ1 and δ2 are
arbitrarily small user-defined value in (0, 1). In words, the
aim is to find a path from q0 to Qgoal with the probability
of collision with obstacles being less than δ2.

3. MARKOV DECISION PROCESS (MDP)

A Markov Decision Process (MDP) is characterized by the
tuple < S,A,P, r >. Here S ⊂ Rn is the state space,

A ⊂ Rm is a finite set referred to as the action space,
r : S × A × S → R is the reward function, P : S ×
A → S is the state transition probability which defines
the probability distribution over the next states given the
current state and action.

In this framework, at a given time instant t the agent’s
state st ∈ S. The agent performs an action at ∈ A
from state st and transitions to a new state st+1 with
probability P(st+1|st, at). The agent then receives a re-
ward r(st, at, st+1) from the environment for the action
taken and the state transitioned. In an MDP, the next
state st+1 depends only on the present state st and action
at. The action at is defined by a mapping π : S → A,
i.e., π(st) = at, referred to as a policy. The collection of
all possible policies is denoted by Π. A sequence

ω
(π)
t = (st, π(st), st+1, π(st+1), . . . , sN−1, π(sN−1), sN) ,

(7)
with a terminal state sN , is called a π sample path. The
discounted cumulative reward (return) corresponding to
this sample path is given by

Rπ(ωt) =

N−1∑
n=t

γn−tr(sn, π(sn), sn+1), (8)

where γ ∈ [0, 1] is the discount factor.

As the state transitions are random, the expected return
from state s,

V π(s) = E(Rπ(ωt)|st = s), (9)

The goal is to determine a policy π∗ such that

π∗ = argmax
π

V π(st) (10)

3.1 MDP Formulation of the Agent

State: The state vector s at time t comprises of the
measurements from the distance sensor (d(i)) and the 2-D

positions (x, y) of the agent (qt), the obstacles (q
(i)
obst,t) and

goal (qgoal).

st = {qt, d(i)t , q
(j)
obst,t, qgoal} ,i = 1, 2 · · · 8, j = 1, 2 · · · 6

At each time t there are 24 state variables. Also note
that the distance sensors help detect the obstacles in the
surrounding vicinity.

Action Space: The action space comprises of 8 discrete
actions A={(0,1),(0,-1),(1,0),(1,1),(1,-1),(-1,0),(-1,1),(-1,-
1)}. Note each action a(i) ∈ A, i = 1, 2, . . . , 8 has a
component along x and y directions.

Reward: The objective of our path planning problem is
to take a sequence of actions in order to reach the goal.
The terminal reward on reaching the goal is accordingly
defined as +10. In order to minimize the length of the
traversed path to the goal, a penalty is given for each step
taken by the agent -0.01. If however the agent collides with
an obstacle or the environment edges, a reward of -10 is
given and the episode is terminated.

Remark:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15812

(1) The user-defined values δ1 and δ2 mentioned in Sec-
tion II are not dealt explicitly in this framework.
However it can be handled by an appropriate choice
of the reward function.

4. RL BASED METHODOLOGY

RL is a framework used to find an optimal policy π∗ for an
MDP. To solve the path planning problem formulated as
an MDP, a popular RL algorithm calledQ-Learning is used
(Watkins and Dayan (1992)). Many advanced variants of
Q-learning have been developed in recent years and one of
them called the Deep Q-Network (DQN) is applied in this
work.

4.1 Q-Learning

For a policy π, the Q-value for a state-action pair at any
time t is defined as

Qπ(st, at) =

∫
S

(
r(st, at, st+1) + γV π(st+1)

)
Pπ(st+1|st, at)dst+1. (11)

In words, Q-value for a policy π is the expected return
obtained by applying an action a at the state s and
following it up with policy π. The objective of the Q-
learning algorithm is to find Q-values for the optimal
policy π∗ i.e., to find Qπ

∗
(s, a) ∀s, a,

Qπ
∗
(st, at) =

∫
S

(
r(st, at, st+1) + γ max

at+1∈A

Qπ
∗
(st+1, at+1)

)
Pπ(st+1|st, at)dst+1. (12)

4.2 Deep Q-Network

In this method a neural network based function approxi-
mator is used to estimate the Q-values for the state-action
pairs, (Mnih et al. (2015)). The neural network is a non-
linear function, f : Rn → Rm, where n and m are the
dimension of the state space and action space respectively.
Note the optimal Q-function satisfies

Q∗(s, a) = Es′ [r(s, a, s′) + γmax
a′
Q∗(s′, a′)|s, a]. (13)

which is (12) in a compact form. The neural network
is used to estimate the above Q-function such that,
Q(s, a, θ) ≈ Q∗(s, a). Here, θ are the parameters (weights)
of the neural network. The neural network is trained with
the states as inputs and Q-values for each action as output.
The states and the actions are as mentioned in Section 3.1.
In general to learn the optimal Q values, the parameter θ
is updated using a gradient descent with the learning rate
α

θi+1 = θi − α∇θiL(θi), (14)

where
L(θi) = E[(yi −Q(s, a; θi))

2], (15)

being the cost function to be minimized,

∇θiL(θi) = E[(yi −Q(s, a; θi))∇θiQ(s, a; θi)] (16)

its gradient with respect to θ,

yi = E[r(s, a, s′) + γmax
a′
Q(s′, a′; θ−i)|s, a] (17)

the target Q value and Q(s, a; θi) is the Q-value predicted
by the neural network. The target Q-values are estimated
using a separate neural network. This network is a copy of
the original network but with parameters θ−. Henceforth,
the network used for estimating the target Q-values is
called the target network while the other network is called
the online network. To improve the stability of learning
and improve convergence, the target network weights (θ−)
are updated using the weights of the online network (θ)
periodically after every τ steps. In order to ensure all the
states are visited for learning their action-value pairs, the
environment is initially explored by taking random actions
and the corresponding Q-values are updated. The amount
of exploration is slowly decayed and the environment is
then exploited for high rewards by using a greedy strategy
to select an action a in state s that maximizes Q∗(s, a; θi).

Advancements including Double-DQN (Van Hasselt et al.
(2016)), Prioritized experience replay (Schaul et al. (2015))
and Dueling Q-Networks (Wang et al. (2016)) were used
in order to improve the efficiency of the DQN.

4.3 Neural Network Architecture

The number of neurons in the input layer n[0] is equal to
the number of states s considered, i.e., 24. It is followed by
2 hidden layer having n[1] = n[2] = 512 neurons each. The
hidden layer is followed by a Dueling architecture which

involves a layer having n
[3]
V = 1 neuron for estimating

state-value V (s) and n
[3]
Adv = 8 neurons for estimating

the advantage function for each action A(s, a). Finally the
output layer consisting of n[4] = 8 neurons combines these
two functions to give Q(s, a). The activation function used
is relu and the optimizer used is Adam.

5. REFERENCE ALGORITHMS

To evaluate the quality of the path returned by the
deep RL method, simulation trials were performed and
compared with popular algorithms like RRT*, FMT*, CC-
RRT*, Robust-FMT* and RT-RRT*.

In RRT* and FMT* the environment is randomly sampled
and the samples are connected based on some rule, thereby
forming a tree. Then the path to the goal from the start
is found by searching the constructed tree. A sampled
point will be discarded if it falls inside an obstacle or if
its connection to the tree passes through an obstacle. In
RRT*, the random samples are drawn one at a time while
in FMT* the algorithm begins only after the environment
is completely sampled. Both of the above algorithm works
well in static environment. In RT-RRT* a path from initial
position to goal is planned similar to RRT*. But at each
time step the agent (robot) will get an update regarding
the environment and will re-plan the path if necessary on
the go thereby handling dynamic constraints and goal posi-
tions. In CC-RRT*, the environment is randomly sampled
as mentioned above but each sample point is drawn from
a distribution on its own. The randomly sampled points
are then connected to the means of their distribution,
thereby forming a tree of state distributions. Obstacle

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15813

Algorithm 1

1: Given A,B,U , Pw, k1, k2
2: Initialize an online network θ and a target network θ−

randomly such that θ = θ− .
3: Initialize ε, γ, α, τ, λ0 (Refer Sections 6.4 6.5.1)
4: for each episode i until convergence do
5: Randomly initialize the environment as per

(18),(19),(20)
6: for j = 1 to N do
7: With probability ε, take random action aj and

with probability 1− ε, select aj = argmax
a

Q(sj , aj ; θ)

8: Store tuple < sj , aj , sj+1, rj > in replay buffer
9: Sample prioritized mini-batch of size m from

replay buffer
10: Estimate L(θ) using the mini-batch samples
11: Update θ using Adam optimizer
12: For every τ steps,update target network θ− ← θ
13: end for
14: ε = ε− εdecay
15: λi+1 = λi + ∆λ
16: end for

collision checking is based on computing the probability of
collision with the help of the probability ellipses defined by
the covariance matrices of the distributions. Robust-FMT*
works similar to CC-RRT*, except that the environment
is sampled completely at the start of the algorithm.

6. SIMULATION AND DISCUSSIONS

6.1 Simulation Platform

The simulations are performed on a 7th gen intel i7 pro-
cessor with 16GB DDR4 RAM. A 11GB RTX 2080 Ti
graphics card is used for training the neural network. In
order to keep the simulation trials impartial, the trained
neural network and reference algorithms used for com-
parison are evaluated using the computational power of
i7 processor only. The graphical environment is designed
using Pygame. Here we consider a 2D environment of
600x600 pixels with the top left most corner being the
origin. The robot is considered to be a point mass with
obstacles enlarged accordingly.

6.2 Environment Dynamics

The simulations are performed using the dynamics in

(1) with A =

[
1 0
0 1

]
and B =

[
30 0
0 30

]
. The input to

the system, a is provided as given in Section III. The
covariance matrix of the Gaussian process noise is assumed

to be Pw =

[
5 0
0 5

]
. It is worth emphasizing that the noise

in the system was taken to be Gaussian process to facilitate
comparison with algorithms like CC-RRT* and Robust-
FMT* (as they can handle only Gaussian noise). The Deep
RL method can be generalized to learn any type of noise
distribution.

The obstacle dynamics are simulated as mentioned in (4).
For simplicity it is assumed U = κ{(0,1),(0,-1),(1,0),(1,1),(1,-
1),(-1,0),(-1,1),(-1,-1)}. Here, κ is a scaling factor.

6.3 Simulation Environments

The environments used for simulation are classified into
static and dynamic. In the former, the positions of obsta-
cles and the goal are fixed for one trial (episode). While
in the latter the obstacle (Qobs1) dynamics follows (4) and
the goal position could be changed with respect to time.

Static Environment In each episode, the position of
the agent, the 6 dynamic obstacles (Qobs1) and the goal
are assigned randomly and these positions are fed as
states to the neural network. Over the course of training,
the RL agent learns to generalize planning a path for
various positions of agent, goal and dynamic obstacles
in the environment. In cases without process noise, the
agent learned to plan optimal paths, some of which being
exceedingly close to the obstacles. However, in the presence
of process noise in the system, the stochasticity in the
position of the next step of the RL agent sometimes
resulted in collision with the obstacles when passing near
it, thereby resulting in a large negative reward. This
implicitly encouraged the agent to maintain a safe distance
from the obstacle while planning a path.

||qt − qgoal||<λi, (18)

||qkobs1 − qlobs1||<λmin ∀ k, l = 1 . . . 6, k 6= l, (19)

||qkobs1 − qlobs2||<λmin ∀ k = 1 . . . 6, l = 1 . . . 4 (20)

Dynamic Environment The generalizing capability of
the neural network is used to extend the path planning
from a static environment to a dynamic environment. In
this case the neural network is trained with the obstacle
dynamics as mentioned in 6.2. This trains the RL agent to
account for the dynamic movement of the obstacles in the
environment.

6.4 Training

The DQN algorithm is used as mentioned in section 4. The
learning rate α is set to 0.0001. A discount factor γ of 0.99
is chosen. The target network is updated for every 5000
steps τ . The training is done using a simple ε greedy policy
to choose actions. Here, ε was decayed from 1 to 0.1 over
the course of 2,00,000 episodes. Once ε is decayed to 0.1,
an additional 50,000 episodes are trained to improve the
efficiency of the final path taken. Let the initial distance
between the agent and goal be denoted by λ. Now the
training is done as mentioned in Algorithm I.

6.5 Discussions

In this section, the challenges faced during the simulation
of the environment and the corresponding strategies used
to tackle them are discussed.

Sparse goal state The probability of reaching the goal
state without colliding with other obstacles during the
exploration phase is very small resulting in the terminal
state being the goal state, a sparse occurrence. Prioritized
experience replay helps overcome this by prioritizing such
transitions. Also, the training time is further improved
by keeping the distance between the agent and the goal
λ small in the initial stages of learning and gradually

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15814

increasing it as the training progresses. This significantly
increases the sample efficiency thereby leading to faster
convergence.

Static obstacle avoidance Terminating the episode in
case of collision with the static obstacles (Qobs2) during
training resulted in agent failing to learn obstacle avoid-
ance. This problem is overcome by continuing the training
episode even after such collisions.

Loops in the path Initial efforts to train the Q-network
largely resulted in the agent being unable to find paths
to the goal and instead tracing a loop. This is largely due
to very similar states nearby each other resulting is al-
most similar Q-value predictions. The dueling architecture
improved the Q-value predictions for such cases, thereby
overcoming the problem of loop formation.

Variable number of obstacles In general, the input di-
mensionality of a neural network is fixed. However, a
variable number of obstacles in the environment implies
variable number of input states. Therefore to fix the in-
put dimensionality, dummy obstacles assumed outside the
environment boundaries are provided as obstacle states.

7. RESULTS AND COMPARISON

The proposed method was compared with the sampling
based algorithms for over 100 different environments. In
order to keep the paper concise the comparison results
were provided only for one such environment.

7.1 Static environment case

In this case, the Deep RL approach is compared to RRT*,
FMT* and RT-RRT*. Figure 2 shows the path computed
by various algorithms for the environment. Table 1 pro-
vides details regarding the quality of the path determined
by the above four algorithm for an environment. Note
all sampling based algorithms used in the comparison are
initialized to 5000 nodes each.
The parameters determining the quality of the path are
the path cost and path duration. The path cost is the
total euclidean cost for reaching the goal from the starting
position of the robot. The path duration is the total time
taken in seconds for computing the path. For the sam-
pling based algorithms the computational time includes
the time taken for sampling the environment, growing the
tree and searching the tree to find the path. For Deep
RL the computational time involves the time taken for
forward propagation of the neural network. For effective
comparison, 50 trials were performed for the three algo-
rithms and the mean values for the parameters are used.
From Table 1, it can be inferred that though the sampling
based algorithms compute a lesser cost path, they are not
consistent. But the proposed method finds a unvarying
path at better computational time.

In case of process noise in the system, the Deep RL algo-
rithm is still able to handle this and compute a path. The
performance in this case can be evaluated by comparing
it with CC-RRT* and Robust-FMT*. The path quality in
this case involves two new parameters called the maximum
risk and accumulated risk. The former parameter is the

maximum among all the risks of collision involved in the
solution path while the latter is a summation of the risks
at each time step in the final path. Here, risk is a numer-
ical estimate for the agent’s probability of collision with
obstacles and is computed as mentioned in Luders (2014).
Table 2 provides the comparison results. From Table 2 it
is understood that the proposed method computes a lesser
cost path much faster than the robust algorithms but with
a higher overall path risk. And from Figure 2 it can be seen
that the computed path for the proposed method avoid
the obstacles by a higher margin compared to non-robust
sampling based algorithms like RRT* and FMT*.

Furthermore, the effect of following a particular policy
in a static environment under Deep-RL method can be
understood by plotting the magnitude and direction of
the Q-values as shown in Figure 2.f and Figure 2.g. The
arrows in the environment denote the direction the agent
will move if it is placed at that location. It can be observed
that these arrows converge on to the goal while deviating
away from the obstacles. Also the length of the arrows
represents the magnitude of the Q-values at that location.
It can be seen that the arrows have longer length near the
goal elucidating the fact that the regions near the goal
have higher Q-values.

7.2 Dynamic environment case

In this case the proposed method is compared with RT-
RRT* and CC-RRT*. In all three methods the path to
the goal is recalculated at every time step. However the
difference being that in RT-RRT* and CC-RRT*, the
entire path from current position of the agent to the goal
is calculated, whereas for the RL agent, the Q-network
only predicts the next optimal action to take at each time
step thereby reducing the computational overhead. Here
each time step of the environment is treated to be a static
case and the neural network finds the next action to take.
A video presenting the working of the proposed method
in various dynamic environments is provided in https://
youtu.be/8STUwjcKl2Q. Note for a dynamic environment
the Q-value magnitude and direction plot as shown in

Table 1: Path Quality for the Environment without noise

Parameters RRT* FMT* RT-RRT* Deep-RL
Path Cost Mean 646.78 522.03 521.03 514.26

SD 63.87 40.10 19.50 -
Min 492.02 491.38 495.38 514.26
Max 687.11 591.78 551.78 514.26

Path Mean 13.37 13.01 9.91 0.151
Duration(s) Min 12.79 12.76 8.76 0.128

Max 13.90 13.33 11.93 0.176

Table 2: Path Quality for Environment with noise

Parameters CC-RRT* Robust-FMT* Deep-RL
Path Cost Mean 726.92 657.290 550.97

SD 113.68 64.35 21.8
Min 565.04 567.41 519.12
Max 912.22 797.99 584.16

Path Duration(s) Mean 20.05 18.45 0.162
Min 19.02 18.01 0.147
Max 20.90 19.08 0.184

Maximum Risk Mean 0.0006 0.0007 0.038
SD 0.0002 0.0002 0.031
Min 0.00001 0.00003 0.0002
Max 0.0010 0.0014 0.096

Accumulated risk Mean 0.0016 0.0018 0.091

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15815

(a) RRT* (b) FMT* (c) RT-RRT* (d) CC-RRT*.

(e) Robust-FMT*. (f) Deep RL-without
Noise

(g) Deep RL-with Noise

Fig. 2: Path computed by various algorithms for an Environment.

figure 2 changes with every time step corresponding to the
changing dynamics of the environment components. This
allows the RL-agent to choose optimal actions accordingly.
It is apparent that RT-RRT* provides path with lower
path cost (in terms of euclidean distance) to the goal
(Naderi et al. (2015)) but the path considered could lie
close to the obstacles. Whereas the path provided by
CC-RRT* have less risk of collision but has a higher
path cost (Luders (2014)). Also, in both the algorithms
the path determined depends heavily on the samples in
the environment. The proposed method does not require
the environment to be sampled and it exhibits a better
performance with lesser risks of collision with obstacles
compared to RT-RRT* and lesser path cost as compared
to CC-RRT*.

8. CONCLUSIONS AND FUTURE WORK

Contributions of this paper involve developing a RL based
framework using Q-network to solve the given path plan-
ning problem involving static and dynamic obstacles. Nu-
merical and graphical simulations are performed and com-
pared with various sampling based path planning algo-
rithms. Simulation results suggest that with a marginal
drop in path optimality (path cost), the neural network
based path planner outperforms the traditional methods
in terms of computational speed.

Future work involves developing better encoding methods
to handle variable number of obstacles. Further, precision
control can be explored which involves moving to a contin-
uous action space involving control signals such as steering
and acceleration. Finally, we aim to translate the proposed
approach onto a hardware setup and test the efficiency of
the approach on a real-time robot.

REFERENCES

Janson, L., Schmerling, E., Clark, A., and Pavone, M.
(2015). Fast marching tree: A fast marching sampling-
based method for optimal motion planning in many

dimensions. The International journal of robotics re-
search, 34(7), 883–921.

Kahn, G., Villaflor, A., Pong, V., Abbeel, P., and Levine,
S. (2017). Uncertainty-aware reinforcement learning for
collision avoidance. arXiv preprint arXiv:1702.01182.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algo-
rithms for optimal motion planning. The international
journal of robotics research, 30(7), 846–894.

LaValle, S.M. (2006). Planning algorithms. Cambridge
university press.

Lei, X., Zhang, Z., and Dong, P. (2018). Dynamic path
planning of unknown environment based on deep rein-
forcement learning. Journal of Robotics, 2018.

Luders, B.B.D. (2014). Robust sampling-based motion
planning for autonomous vehicles in uncertain environ-
ments. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidje-
land, A.K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540), 529.

Naderi, K., Rajamäki, J., and Hämäläinen, P. (2015). Rt-
rrt*: A real-time path planning algorithm based on rrt.
In Proceedings of the 8th ACM SIGGRAPH Conference
on Motion in Games, 113–118. ACM.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015).
Prioritized experience replay. CoRR, abs/1511.05952.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep
reinforcement learning with double q-learning. In Thir-
tieth AAAI conference on artificial intelligence.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot,
M., and Freitas, N. (2016). Dueling network architec-
tures for deep reinforcement learning. In International
Conference on Machine Learning, 1995–2003.

Watkins, C.J. and Dayan, P. (1992). Q-learning. Machine
learning, 8(3-4), 279–292.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15816

