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Abstract: Acoustic radiation force (ARF) induced elasticity imaging is usually used to obtain the elastic 

properties of media by detecting the induced displacement at the focal point. However, the ARF induced 

displacement response actually appears not only at the focal point, but also in lateral dimension at the 

focal depth. The relationship between the stiffness of media and the axial-directional displacements in 

lateral dimension at the focal depth has been analyzed through theoretical derivation, simulation and 

experimental verification. The results demonstrate that the maximum displacement in lateral dimension is 

inversely proportional to the lateral distance from the currently estimated point to the focal point. 

Therefore, the maximum displacement in lateral dimension at the focal depth is capable of estimating the 

elastic properties of the media. Based on this conclusion, an ARF impulse imaging method using 

displacements of lateral dimension is proposed. The induced displacements at the focal point as well as in 

the lateral dimension at the focal depth are detected under only the focal point excited. In this way, the 

proposed imaging method is expected to broaden the ARF impulse imaging region from the focal point to 

a larger region in the lateral dimension while reducing patient acoustic exposure and transducer heating. 
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1. INTRODUCTION 

Elastic properties are important diagnostic indicators related 

to physiological and pathological condition, which are the 

intrinsic mechanical properties of soft tissues. Several groups 

have been exploring the feasibility of ultrasound elastography 

methods for imaging tissue structure (Dietrich et al. 2017, 

Doyley et al. 2014). During the propagation of ultrasound, 

acoustic radiation force (ARF) is generated due to the transfer 

of wave momentum (Westervelt et al. 1951, Torr et al. 1984). 

Recently, the ultrasound elastography methods based on ARF 

excitation that produce an ARF to generate localized 

displacement responses and shear wave propagation in the 

measured field have been investigated (Doherty et al. 2013).  

In 2001, the acoustic radiation force impulse (ARFI) imaging 

method has been developed by Nightingale to image local 

variations in mechanical characteristics of soft tissues 

(Nightingale et al. 2001). A single focused ultrasound 

transducer is applied to both induce and measure the 

displacement responses in the focal region. The results have 

demonstrated that the displacement responses are inversely 

proportional to the stiffness of soft tissues, which causes high 

contrast in variation of tissue stiffness. In 1998, the shear 

wave elasticity imaging (SWEI) method has been proposed 

by Sarvazyan to characterize and image soft tissue structures 

(Sarvazyan et al. 1998). A single focused ultrasound 

transducer is used to produce a sufficient ARF in the focal 

region to cause shear waves propagation, which are 

monitored at multiple lateral directions divided by a known 

distance from the focal region. The propagation velocity of 

shear wave can be calculated by the time information of 

displacements at these different lateral positions. Then the 

distribution of elastic characteristics in the measured field can 

be reconstructed by the velocity of shear wave. In 2015, in 

order to extend the axial region of excitation, a rapid multi-

focal zone ARFI imaging method has been investigated by 

Nightingale (Rosenzweig et al. 2015). The contrast to noise 

ratio can be improved, while the image quality is reduced 

slightly. In 2017, Zhou proposed a multi-functional ultrasonic 

micro-elastography imaging method, in which ARFI imaging 

and SWEI are both implemented (Qian et al. 2017).  

Traditional ARFI imaging method is usually used to obtain 

the elastic properties of media by detecting the induced 

displacement at the focal point. However, the ARF induced 

displacement response actually appears not only at the focal 

point, but also in lateral dimension at the focal depth. The 

objective of this proposed method is to make full use of 

information from the displacements in lateral dimension at 

the focal depth to estimate the elastic properties of media. 

The relationship between the stiffness of media and the axial-

directional displacements in lateral dimension at the focal 

depth is established through theoretical derivation, simulation 

and experimental verification.  

The analysis results demonstrate that the maximum 

displacement in lateral dimension is inversely proportional to 

the lateral distance from the currently estimated point to the 

focal point, and further prove that the maximum 
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displacement in lateral dimension at the focal depth is 

capable of evaluating the elastic properties of the media.  

Based on this conclusion, a novel ARFI imaging method 

which not only detects the induced displacement at the focal 

point but also utilizes displacements in lateral dimension at 

the focal depth is proposed. The elastic properties can be 

reflected by the maximum displacements in lateral dimension 

at the focal depth directly. The simulation and experimental 

results have validated that the elastic distribution of the 

measured field can be reconstructed by the maximum 

displacements in lateral dimension. 

In this way, the proposed imaging method is expected to 

broaden the ARF impulse imaging region from the focal 

point to a larger region in lateral dimension while reducing 

patient acoustic exposure and transducer heating. 

2. METHOD 

2.1 Acoustic Radiation Force 

ARF generation attributes to the transfer of wave momentum 

when ultrasonic wave is propagating in soft tissues with 

absorption and scattering properties (Westervelt et al. 1951, 

Torr et al. 1984). ARF in the direction of ultrasonic wave 

propagation is (Nightingale et al. 2001)  

EdrdrF sa )cos(                 (1) 

 

where F is the generated ARF, a  and s  are the total 

power caused by absorbing and scattering,   is the 

amplitude of scattered intensity,   is the scattering angle of 

ultrasonic wave, ddrr  is an area element, and E  is the 

temporal average energy density of the ultrasonic wave. 

Under the plane wave assumption, the ARF F  generated in 

an absorbing soft tissue becomes 

2 I
F

c


                                     (2) 

 

where c  is the velocity of ultrasonic wave,   is the 

absorption coefficient of soft tissues, and I  is the temporal 

average intensity of ultrasonic wave. 

2.2 Tissue Responses to Acoustic Radiation Force 

In ultrasound elastography methods based on ARF excitation, 

a focused ultrasound transducer is used to generate sufficient 

ARF in the focal region to cause localized displacement 

responses and shear wave propagation, and the physical 

model is illustrated in Fig. 1. Assuming that the tissue is 

linear, elastic, and isotropic, the governing equation can be 

described as (Doyley et al. 2012)  

   
2

2

2t
  


      



u
u u F             (3) 

 

where   and   are Lame constants related to Young’s 

modulus E  and Poisson’s ratio v , F  is the vector form of 

the ARF F , u  is the generated displacement caused by 

external force and internal stress, and 
2

2t





u
 is the acceleration, 

  is the density of soft tissues. 

Since the ARF applied to soft tissue is a pulsed form at the 

focal region, it can be expressed as (Li et al. 2017) 

( ) ( )t F x f                         (4) 

 

where f  is a vector, which is parallel to the direction of 

ultrasonic wave propagation, and the impulse function ( ) x  

and ( )t  indicate that f  is applied to the position x  at time 

t . Combing (3) and (4), the equilibrium equation can be 

expressed as  
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where u  is the axial-directional maximum displacement of 

the element along the force direction. The initial conditions 

( 0t  ) are  

0 0
u

u and
t


 


                           (6) 

 

According to the initial conditions, (5) can be solved by 

Green function (Bercoff et al. 2004). Therefore, the 

maximum displacement at position x  generated by ARF is  

2

1

4 T T

f x
u t

c x c




 
    

 

                    (7) 

 

where f  is the amplitude of f , x  is the distance from 

position x  to the focal region, 
Tc  is the shear wave velocity, 

which can be expressed by (Doherty et al. 2013) 

Tc



                                   (8) 

 

Assuming that the Poisson’s ratio v  of soft tissue is about 0.5, 

so the relationship between 
Tc  and Young’s modulus E  is  

23 TE c                                  (9) 

 

Therefore, (7) can be transformed by 
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The impulse function ( )
T

x
t

c
   means that the maximum 

displacement at position x  is generated when the shear wave 

propagates to that position.  

 

Fig. 1. Physical model of ultrasound elastography methods 

based on ARF excitation. 

2.3 Displacement Analysis in Lateral Direction 

The maximum displacement generated by shear wave 

propagation at each position is considered, regardless of the 

process of shear wave propagation. Therefore, the impulse 

function ( )
T

x
t

c
   could be eliminated, and (10) can be 

expressed as 

3 1

4

f
u

E x
                                    (11) 

 

From (11), it can be seen that the maximum displacement is 

inversely proportional to the Young’s modulus and the 

distance from focal region. In order to make full use of the 

maximum displacement information in the lateral dimension, 

the relationship of maximum displacement and the position at 

lateral direction is further studied. 

Take the logarithm of both sides of (11), it becomes 

lg lg lg lgu x m E                        (12) 

 

3

4

f
m


                                 (13) 

 

Therefore, in logarithmic scales, the maximum displacement 

decays linearly as the distance from focal region increases. If 

lg x  is treated as an independent variable and lg u  is treated 

as a dependent variable of lg x , lg lgm E  can be taken as 

Y-intercept of the linear function between lg u  and lg x . It 

can be seen that the value of Y-intercept is inversely related 

to the Young’s modulus of soft tissue. 

Equation (11) and (12) can reveal the relationship among 

maximum displacement, lateral distance and Young’s 

modulus of soft tissues. According to these relationships, 

relationship curves between the maximum displacement and 

the lateral distance have been illustrated as Fig. 2(a) and (b), 

where m = 1  10-3 kg·m/s2. According to (11), when 

Young’s modulus E  is large enough to a certain extent, the 

change of maximum displacement u  due to the change of E  

becomes very small, so in that range it is difficult to 

distinguish media with different Young’s modulus from Fig. 

2(a), for example, when the Young’s modulus is 50 kPa and 

100 kPa respectively. According to (12), the Young’s 

modulus on each curve have direct effects on the Y-intercepts. 

In Fig. 2(b), both of the coordinate axes are logarithmically 

processed, and it can be seen that the different lines have 

different Y-intercepts which are directly inversely related to 

the Young’s modulus. That is, the medium with small 

Young’s modulus may have great Y-intercept. Based on this 

conclusion, an ARF impulse imaging method using 

displacements of lateral dimension is proposed. 

 

Fig. 2.Maximum displacements under different Young’s 

modulus in lateral direction at the focal depth. (a) With 

linear scales. (b) With logarithmic scales. 

3. SIMULATION AND DISPLACEMENT ANALYSIS 

The maximum displacements are analysed at the focal region, 

and in the lateral direction at the focal depth. The feasibility 

of ARFI imaging method using displacements of lateral 

dimension has been explored by some phantoms with 

different inclusions through simulation.  

3.1 Displacement Analysis 

An inhomogeneous phantom simulation model with 

measured field 30 mm 30 mm  was constructed by 

COMSOL Multiphysics® 4.4, as shown in Fig. 3. A stiff 

square inclusion with a side length of 4 mm was set at the 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16127



 

 

     

 

focal depth from the lateral direction 4 mm to 8 mm, which is 

marked by the dashed red lines. The Young’s modulus of the 

background medium and the inclusion were set as 5 kPa and 

50 kPa. The density and attenuation coefficient of media 

were 1.0 kg/m3 and 0.7 dB/cm/MHz, and the focused 

transducer below the measured field was excited by signal 

with 3.5 MHz frequency and 0.1 ms duration time. The 

velocity of ultrasound was set as 1540 m/s. The maximum 

displacements were calculated by finite element method. 

 

Fig. 3. Schematic diagram of simulation configurations.  

Fig. 4 explores whether the maximum displacement in lateral 

direction at the focal depth is capable of reflecting the elastic 

distribution. Fig. 4(a) shows the computed maximum 

displacements in lateral direction with an inclusion at the 

focal depth. The blue curve in Fig. 4(b) shows the measured 

maximum displacements, and the dashed red line marks the 

true position of inclusion. All of the coordinate axes are 

logarithmically processed. From Fig. 4(b), the maximum 

displacements decline linearly at about 0-3 mm, 4 mm-8 mm, 

and 10 mm-18 mm in the lateral direction, which means that 

the Young’s modulus of each segment is the same. While the 

maximum displacements drop rapidly at about 3 mm-4 mm, 

which indicates that there could be a big increase of Young's 

modulus. Moreover, the maximum displacements increase 

significantly at about 8 mm-10 mm, which represents that 

there could be a fall-off of Young's modulus. It can be seen 

that the position where the maximum displacements vary 

rapidly is consistent with the position of inclusion.  

The results demonstrate that maximum displacements in 

lateral dimension at the focal depth can reflect the 

distribution of elastic properties through the displacement 

attenuation characteristics, and can be capable of determining 

the size and boundary of the inclusion effectively without too 

much complicated data processing. 

 

Fig. 4. Maximum displacements in lateral direction at the 

focal depth. (a) Computed maximum displacements. (b) 

Measured maximum displacements. 

3.2 Reconstruction Results 

In order to further investigate the feasibility of this proposed 

method, three phantoms (I), (II) and (III) with different 

inclusions were constructed, as shown in Fig. 5(a). Each 

phantom was composed of two media with different Young’s 

modulus, where the grey area represents soft medium with 

Young’s modulus of 5 kPa, and the black area is stiff medium 

with Young’s modulus of 50 kPa. The region of ARF applied 

is marked as blue, and the measured field studied shown in 

Fig. 5(b) is marked with a red dotted line in Fig. 5(a). The 

maximum displacements in lateral direction at the focal 

length, which is marked with a red dotted line in Fig. 5(b) are 

analysed. 

Fig. 5(c) and (d) display the maximum displacements in 

linear scales and logarithmic scales respectively, where the 

horizontal axes represent the distance from the focal region, 

and the vertical axes are the maximum displacement 

generated at the corresponding position. Fig. 5(c) shows that 

the maximum displacement declines rapidly as the distance 

from the focal region increases, so the difference in elastic 

properties cannot be distinguished by displacement directly. 

However, from Fig. 5(d), it can be seen that in logarithmic 

scales, the attenuation of maximum displacement is linear as 

the distance from the focal region increases for the same 

Young’s modulus, while the maximum displacement will 

vary significantly if there is a change in Young’s modulus. In 

logarithmic scales, for the linear function between the 

maximum displacements and the distance from focal region, 

all the slopes corresponding to media with different Young’s 

modulus are the same, while the values of Y-intercept are 

inversely related to Young’s modulus. Therefore, the 

inclusions could be identified by maximum displacements 

directly in logarithmic scales.  

 

Fig. 5. Phantoms with different inclusions in simulation. (a). 

Simulation model (b) Measured field. (c) Maximum 

displacements at lateral direction in linear scales. (d) 

Maximum displacements at lateral direction in logarithmic 

scales. 
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The reconstructed results are illustrated in Fig. 6. The images 

reconstructed from maximum displacements in lateral 

dimension in linear scales and in logarithmic scales are 

shown in Fig. 6(b) and Fig. 6(c). Comparing these two 

columns, the distribution of elastic properties in media can be 

reconstructed in logarithmic scales but not in linear scales. 

 

Fig. 6. Simulation results. (a) Measured field. (b) Images 

reconstructed in linear scales (c) Images reconstructed in 

logarithmic scales. 

4. EXPERIMENTAL 

The experimental system is illustrated in Fig. 7. Two single-

element transducers were applied in this system. One of the 

transducers with central frequency of 3.5 MHz, which was 

called pushing transducer, was used to generate ARF to cause 

displacement responses. The other transducer called tracking 

transducer, which was placed on the opposite side of the 

pushing transducer, was used for acquiring RF echo data. A 

function generator (AFG3252, Tektronix, USA) was used 

along with an RF power amplifier (25A250, Amplifier 

Research, USA) to generate the excitation signal for pushing 

transducer. The excitation signal was a sinusoidal tone burst 

with a peak-to-peak amplitude of 80 V and a duration time of 

0.1 ms. An ultrasonic pulser-receiver (5077PR, Olympus, 

USA) was used to excite the tracking transducer with a peak-

to-peak amplitude of 100 V and a pulse repetition frequency 

of 5 kHz. A stepper motor was applied for mechanical 

scanning of the tracking transducer in the lateral direction, 

and the step size of each scan was 0.5 mm. These RF echo 

data acquired from tracking transducer were processed by 

phase-shift estimation method to calculate maximum 

displacement responses (Viola et al. 2003).  

In Fig. 8(a), three phantoms were made of different 

concentrations of agar and the same concentration of graphite 

powder to simulate media with different distributions (Hall et 

al. 1997). The background and inclusion of all these 

phantoms were 25 kPa and 525 kPa respectively, which are 

marked with grey and black. The region of ARF applied is 

marked as blue, and the direction of ARF is indicated by an 

arrow. The measured field displayed in Fig. 8(b) is marked 

with a red dotted line in Fig. 8(a).  

The images reconstructed in logarithmic scales are shown in 

Fig. 8(c). The experimental results demonstrate that this 

proposed method can distinguish media with different 

Young’s modulus, and can reconstruct the measured field by 

maximum displacements in the lateral dimension at the focal 

depth directly. In this method, the pushing transducer is fixed, 

and does not require scanning the measured field. In addition, 

the maximum displacements in the lateral direction can 

reflect the elastic properties directly, rather than calculating 

the propagation velocity of shear wave by the time 

information of displacements at these different lateral 

locations. Therefore, the experimental system and process 

can be simplified, and the imaging region can be extended.  

 

Fig. 7. Experimental system. 

 

Fig. 8. Phantoms with different inclusions in experiment. (a) 

Experimental model. (b) Measured field. (c) Images 

reconstructed in logarithmic scales. 

5. CONCLUSION 

The relationship between the stiffness of the media and the 

axial-directional displacements in lateral dimension at the 

focal depth has been established through theoretical 

derivation, simulation and experimental verification. The 

displacement responses in lateral dimension at the focal depth 

have been analysed, which illustrates that the logarithm of the 

maximum displacement is linear with the logarithm of the 

lateral distance with the value of Y-intercept inversely related 

to the Young’s modulus of the media. Therefore, a novel 

ARFI imaging method which detects the induced 

displacements at the focal point as well as in the lateral 

dimension at the focal depth is proposed. The simulation and 

experimental results have demonstrated that the elastic 
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distribution of the measured field can be reconstructed by the 

maximum displacements in lateral dimension directly, 

without scanning the measured field by pushing transducer. 

Compared with SWEI method, the images of measured field 

are reconstructed by maximum displacements in the lateral 

dimension directly, rather than calculating the propagation 

velocity of shear wave by the time information of 

displacements at these different lateral locations. Traditional 

ARFI imaging method is usually used to obtain the elastic 

properties of media by detecting the induced displacement at 

the focal point. While, for this proposed method, the elastic 

properties of media are not only evaluated by the induced 

displacement at the focal point, but also by the induced 

displacement in lateral dimension at the focal depth. In this 

way, the number of excitations can be decreased, and the 

imaging efficiency could be further improved if the tracking 

transducer is a phased array. Therefore, it is expected to 

reduce patient acoustic exposure and transducer heating to 

reduce damage to soft tissues. 

However, due to the attenuation of shear wave propagation, 

the displacements generated at different positions in the 

lateral direction are different. Therefore, some compensation 

algorithms still need to be applied to improve the attenuation 

of displacements in lateral direction in future.  
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